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Abstract—Anime sketch coloring is to fill various colors
into the black-and-white anime sketches and finally obtain
the color anime images. Recently, anime sketch coloring has
become a new research hotspot in the field of deep learning. In
anime sketch coloring, generative adversarial networks (GANs)
have been used to design appropriate coloring methods and
achieved some results. However, the existing methods based
on GANs generally have low-quality coloring effects, such as
unreasonable color mixing, poor color gradient effect. In this
paper, an efficient anime sketch coloring method using swish-
gated residual U-net (SGRU) and spectrally normalized GAN
(SNGAN) has been proposed to solve the above problems.
The proposed method is called spectrally normalized GAN
with swish-gated residual U-net (SSN-GAN). In SSN-GAN,
SGRU is used as the generator. SGRU is the U-net with the
proposed swish layer and swish-gated residual blocks (SGBs).
In SGRU, the proposed swish layer and swish-gated residual
blocks (SGBs) effectively filter the information transmitted by
each level and improve the performance of the network. The
perceptual loss and the per-pixel loss are used to constitute
the final loss of SGRU. The discriminator of SSN-GAN uses
spectral normalization as a stabilizer of training of GAN, and
it is also used as the perceptual network for calculating the
perceptual loss. SSN-GAN can automatically color the sketch
without providing any coloring hints in advance and can be
easily end-to-end trained. Experimental results show that our
method performs better than other state-of-the-art coloring
methods, and can obtain colorful anime images with higher
visual quality.

Index Terms—Anime sketch coloring, U-net, spectrally nor-
malized GAN, swish layer, swish-gated residual blocks.

I. INTRODUCTION

Anime sketch coloring is an important step in animation
production. Its purpose is to convert the black-and-white
anime sketches into the colorful anime images. At present,
anime sketch coloring mainly relies on the anime painters
with the professional ability. It takes a lot of time and effort
to manually color the anime sketches and the coloring effect
is influenced by the professional ability of the anime painters.
In order to reduce the difficulties of manual coloring, it is
very important to design an appropriate automatic coloring
method. The automatic coloring methods can avoid the
complicated work procedures generated by manual coloring,
and also enable ordinary people to easily create the favorite
anime images.

Recently, generative adversarial networks (GANs) [1] have
been used for anime sketch coloring and some anime sketch
coloring models based on GANs are proposed, such as
Style2paints [2], Paintschainer [3], Auto-painter [4] and so
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on. These methods automatically convert the black-and-white
anime sketches into the colorful anime images and the speed
of coloring is faster than that of manual operation. However,
GANs usually have the problems such as the difficulties
of network training, unstable generating effects and non-
convergence of the network. These problems lead to the poor
quality of the colorful images generated by the anime sketch
coloring models based on GANs, such as unreasonable
color mixing, dramatic changes in colour brightness, coloring
beyond the filled areas and so on. All in all, the current anime
sketch coloring models based on GANs are difficult to meet
the actual needs.

GANs are composed of the generator and the discrimi-
nator. For anime sketch coloring, the generator of GANs is
used to generate the colorful anime images. The architecture
and the loss function of the generator have direct impacts on
the quality of the generated images. Therefore, designing the
appropriate architecture and loss function can effectively im-
prove the quality of the generated images. The discriminator
of GANs is used to determine whether the image generated
by the generator is close to the effect of manual coloring.
Since the discriminator affects the training stability of GANs,
the discriminator also needs further optimization to ensure
the stability of the training.

In order to solve the above problems, we propose a deep
learning architecture for anime sketch coloring. This new
architecture is composed of the swish-gated residual U-net
(SGRU) and spectrally normalized GAN (SNGAN) [5]. It is
called spectrally normalized GAN with swish-gated residual
U-net (SSN-GAN). The black-and-white anime sketches are
input into SSN-GAN, and then the colorful anime images
are output. The discriminator of SNGAN uses the spectral
normalization to enhance the stability of the network training.
SGRU is an improvement to the U-net [6] and is used to
be the generator of SNGAN. SGRU contains the proposed
swish-gated residual blocks (SGBs) and swish layers which
are inspired by the swish activation function [7]. SGBs and
the swish layers can filter the feature information transmitted
in SGRU and improve the learning ability of the network. S-
GRU uses the perceptual loss [8] and the per-pixel loss as the
training loss of the generator. The use of the perceptual loss
can help the network to color the black-and-white animation
sketches with more smooth and saturated colors and solve the
coloring problems caused by the automatic coloring models
based on GANs. The discriminator of SSN-GAN is used as
the perceptual network to extract the perceptual features to
calculate the perceptual loss. Experimental verifications are
conducted on the Danbooru2017 dataset [9]. Experimental
results show that SSN-GAN is significantly better than other
state-of-the-art methods and the quality of the color images
generated by SSN-GAN is close to or reaches the level of
manual coloring.
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The remainder of this paper is organized as follows. The
related work is described in Section 2. The architecture of
SSN-GAN is presented in Section 3. Experimental datasets
and results are reported in Section 4. Finally, some conclu-
sions are given in Section 5.

II. RELATED WORK

Recently, generative adversarial networks (GANs) attracts
increasing attention in the field of deep learning technology
(DL) [10]. A GAN often comprises a generator and a
discriminator that learn simultaneously. The generator tries
to capture the potential distribution of real samples, and
generates new data samples. The discriminator is often
a binary classifier, discriminating real samples from the
generated samples as accurately as possible. These two
networks are optimized using a min-max game: the generator
attempts to deceive the discriminator by generating data
indistinguishable from the real data, while the discriminator
attempts not to be deceived by the generator by finding the
best discrimination between real and generated data.

Many researchers have proposed many GANs variants for
the improvement of GANs. Arjovsky [11] proposed Wasser-
stein GAN (WGAN) by using the Earth-Mover distance to
replace the Jensen-Shannon divergence for evaluating the
distribution distance between the real data and the generated
data. They used a critic function that builds on Lipschitz
constraint to represent the discriminator. WGAN makes
significant progress towards stable training of GANs, but
can still generate low-quality samples or fail to converge in
some settings. Mirza [12] introduced the conditional version
of generative adversarial nets. It extends the GAN framework
to the conditional setting by making both the generator
and the discriminator networks class-conditional. Conditional
GANs have the advantage of being able to provide better
representations for multi-modal data generation. Chen [13]
described InfoGAN, an information-theoretic extension to
the Generative Adversarial Network that is able to learn
disentangled representations in a completely unsupervised
manner. InfoGAN is a generative adversarial network that
also maximizes the mutual information between a small
subset of the latent variables and the observation. They derive
a lower bound of the mutual information objective that can
be optimized efficiently. Qi [14] presented the Lipschitz reg-
ularization theory and algorithms for a novel Loss-Sensitive
Generative Adversarial Network (LS-GAN). Specifically, it
trains a loss function to distinguish between real and fake
samples by designated margins, while learning a generator
alternately to produce realistic samples by minimizing their
losses. The LS-GAN further regularizes its loss function with
a Lipschitz regularity condition on the density of real data,
yielding a regularized model that can better generalize to
produce new data from a reasonable number of training
examples than the classic GAN. They further presented a
Generalized LS-GAN (GLS-GAN) and showed it contains a
large family of regularized GAN models, including both LS-
GAN and Wasserstein GAN, as its special cases. Berthelot
[15] proposed BEGAN, which is a new equilibrium enforcing
method paired with a loss derived from the Wasserstein
distance for training auto-encoder based GANs. This method
balances the generator and discriminator during training.
Additionally, it provides a new approximate convergence

measure, fast and stable training and high visual quality.
Odena [16] proposed auxiliary classifier GAN (AC-GAN) for
semi-supervised synthesis. Their objective function consists
of two parts: the log-likelihood of the correct data source
and that of the correct class. The key of AC-GAN is
that it can incorporate label information into the generator
and adjust the objective function for the discriminator. In
consequence, the generation and discrimination abilities of
GAN are improved. Yu [17] proposed SeqGAN to generate
data sequences. Modeling the data generator as a stochastic
policy in reinforcement learning (RL), SeqGAN bypasses
the generator differentiation problem by directly performing
gradient policy update. The RL reward signal comes from
the GAN discriminator judged on a complete sequence, and
is passed back to the intermediate state-action steps using
Monte Carlo search. Extensive experiments on synthetic data
and real-world tasks demonstrate significant improvements
over strong baselines.

The work of coloring black-and-white anime sketches
is similar to neural style transfer (NST) [18], [19], [20].
However, unlike NST, anime sketch coloring does not require
the style reference image in advance so that it is more
challenging. Recently, the automatic coloring models based
on deep learning mainly uses the architecture of GANs.
Sangkloy [21] proposed a deep adversarial image synthesis
architecture that is conditioned on sketched boundaries and
sparse color strokes to generate realistic cars, bedrooms, or
faces. They demonstrated a sketch based image synthesis
system which allows users to scribble over the sketch to
indicate preferred color for objects. The network can then
generate convincing images that satisfy both the color and
the sketch constraints of user. The network is feed-forward
which allows users to see the effect of their edits in real time.
The Pix2Pix method proposed in the literature [22] used the
conditional GAN (cGAN) to achieve general image-to-image
transfer. They demonstrated that this approach is effective at
synthesizing photos from label maps, reconstructing objects
from edge maps, and colorizing images, among other tasks.
Zhang [2] integrates residual U-net to apply the style to the
black-and-white sketch with auxiliary classifier generative
adversarial network (AC-GAN). In fact, Style2paints is the
style transfer model and it needs to provide the color refer-
ence image in advance when converting the animation sketch
into the color image. Liu [4] proposed a model called auto-
painter which can automatically generate compatible colors
given a sketch. Wasserstein distance is used in training cGAN
to overcome model collapse and enable the model converged
much better. The new model is not only capable of painting
hand-draw sketch with compatible colors, but also allowing
users to indicate preferred colors. Experimental results on
different sketch datasets show that the auto-painter performs
better than other existing image-to-image methods.

It can be seen that much research has been done in GANs
to enhance the performance of GANs and GANs has also
achieved outstanding results in anime sketch coloring.

III. OUR METHOD

A. Architecture of generator

1) Swish layer and swish-gated residual blocks: This
paper proposes a novel type of residual blocks, which is
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Fig. 1. The structures of the residual block, swish layer and SGB. Each blue box represents the corresponding data operation in the network. The arrows
indicate data flow.

an improvement on the residual blocks in Resnet [23].
The novel residual blocks are called the swish-gated blocks
(SGBs). SGBs are composed of the proposed swish layers
and the residuals. The proposed swish layer contains the
convolutional layer and the swish activation function [7].
The structure of the residual block, the swish layer and SGB
are shown in Fig.1. In Fig.1, x represents the input data
and F (x) represents the residual. F (x) + x is the output
of the residual block. The H(x) represents the output of
the convolution layer in the swish layer. The ”·” denotes the
element-wise multiplication and ”+” means the element-wise
addition. The R(x) represents the output of the convolution
layers using the nonlinearity function LReLU [24] in SGB.
The S(x) represents the output of the swish layer. The ”⊕”
indicates the concatenation operation of the feature maps.
The R(x)⊕ S(x) represents the output of SGB.

As shown in Fig.1, x are added directly to the residuals in
the residual block without any processing. In order to process
x, the swish layer is proposed to control the propagation
of x. In fact, the swish layer can be considered as the
swish-inspired adaptive gating mechanism. Compared to the
residual block, SGB uses the swish layer to filter x. The
purpose of SGB is to control the data sent to the higher
layers through the shortcut connection [23]. Formally, the
swish layer can be defined as:

S(x) = x · σ(H(x)) (1)

where x and S(x) are the input and output of the swish layer.
The H(x) represents the output of the convolution layer in
the swish layer. The ”σ” denotes the sigmoid function. The
”·” denotes the element-wise multiplication.

SGBs combine the residual blocks and the swish layers.
In SGBs, the swish layers are used as the learnable gating
mechanism which can filter the transmitted information. The
x is filtered by the swish layer and the filtered information
is concatenated to R(x) to obtain the output of SGBs. SGB
can be expressed as:

y = R(x)⊕ S(x) (2)

where R(x) can be considered as the residuals of SGB and
S(x) is the output of the swish layer in SGB. The ”⊕”
denotes R(x) and S(x) are concatenated together.

2) Architecture of generator: In this paper we propose
spectrally normalized GAN with swish-gated residual U-net
(SSN-GAN) which is composed of the swish-gated residual

U-net (SGRU) and spectrally normalized GAN (SNGAN) for
coloring the black-and-white anime sketches into the colorful
anime images. The generator of SSN-GAN is SGRU, which
is the U-net [6] with the swish-gated residual blocks. The
structure of SGRU is shown in Fig.2. The network has 6
different resolution levels. With the increase of the serial
number of the level, the resolutions of the feature maps
decrease gradually.

In the vertical direction of SGRU, the swish layers are
embedded between two adjacent levels. The swish layers and
the stacked convolutional layers in the left (right) branches
constitute SGBs. The structures inside the dashed boxes
in Fig.2 are SGBs. There are 10 SGBs in SGRU. In the
horizontal direction of SGRU, the swish layers are embedded
in each skip connection between the left and right branches
to filter the information passed from the encoding path to the
decoding path. The swish layers in the skip connections can
improve the performance of the network.

Except for the last convolutional layer used in the output of
SGRU, all other convolutional layers use layer normalization
[25] and nonlinearity LReLU. In SGRU, the input of SGBs
in the ith level is the output of the 1 × 1 convolutions in
the (i − 1)th level and the output of SGBs in the ith level
is concatenated to the input of the 1 × 1 convolutions in
the (i+ 1)th level. From the 1st level to the 6th level, the
number of convolution kernels in each convolutional layer
of SGB in ith level is the same as the number of the 1× 1
convolutional kernels in the (i− 1)th level. Like the U-net,
the upsampling still uses the deconvolution method.

The last convolution layer in the first level of the right
branch converts the feature maps into the color image. It
does not use the normalization operations and the activation
functions. SGRU contains 6 levels, the number of the convo-
lution kernels in each convolution layer from the first level
to the last level is 96, 192, 288, 384, 480, 512, respectively.

SGBs and the swish layers used in SGRU have the
following obvious advantages: 1) the swish layers as the
learnable gating mechanism in SGBs or SGRU can be used to
filter the feature information transmitted from the lower layer
to the higher layer or between the same layer. The swish layer
can intelligently filter the transmitted information to enhance
the important information in the feature maps; 2) SGB is an
improvement for the general residual block, which is more
able to improve the learning ability of the network than the
general residual block; 3) the use of SGBs can effectively

Engineering Letters, 27:3, EL_27_3_01

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



Fig. 2. The architecture of SGRU. Each blue box represents a multi-channel feature map. Each brown box represents a multi-channel feature map output
by the swish layer. Each black box represents the copies of the feature maps of the left branch. The number on the box indicates the number of channels.
The arrows denote the different operations. The S indicates the swish layer. From the 1st level to the 6th level, the resolution of the feature maps is
halved in turn.

prevent the problem of gradient disappearance during deep
network training. In addition, SGBs can effectively improve
network performance and enable our model to generate the
images with higher visual quality.

B. Architecture of discriminator

Generally, the role of the discriminator is to distinguish
between the generated images and the ground-truth images.
In this paper, the discriminator is a convolutional neural net-
work. The architecture of the discriminator is shown in Fig.3.
The discriminator is mainly composed of 5 convolutional lay-
ers and 1 fully connected layer. It should be noted that there
is only one neuron in the fully connected layer. The spectral
normalization operations are used for the weight parameters
of each convolution layer and the fully connected layer. The
instance normalization [26] operations are performed on the
feature maps output by the convolutional layers using the
activation function LReLU. The specific structural details of
the discriminator are shown in Table I.

TABLE I
THE SPECIFIC STRUCTURAL DETAILS OF THE DISCRIMINATOR.

layer output size filter size stride
input image 256x256x3 - -

Conv1 128x128x64 5x5 2
Conv2 64x64x128 5x5 2
Conv3 32x32x256 5x5 2
Conv4 32x32x512 3x3 1

Max pool1 16x16x512 2x2 2
Conv5 16x16x1024 3x3 1

Max pool2 8x8x1024 2x2 2

In our work, the discriminator has two tasks: 1) it is used to
discriminate between the generated images and the ground-
truth images like the general discriminator; 2) it is used as
the perceptual network to extract the perceptual features of
both the generated images and the ground-truth images for
calculating the perceptual loss.

In SSN-GAN, the purpose of spectral normalization is to
enhance the stability of network training. Spectral normal-
ization controls the Lipschitz constant of the discriminator
function by literally constraining the spectral norm of each
layer. It normalizes the spectral norm of the weight matrix W
of the discriminator so that it satisfies the Lipschitz constraint

Fig. 3. The architecture of the discriminator.

σ(W ) = 1, where σ(W ) is the spectral norm of the matrix
W which is equivalent to the largest singular value of W .

C. Training

SSN-GAN is trained end-to-end with the supervised
method. SSN-GAN uses the training pair D = {S,G} as
the input training dataset. A black-and-white anime sketch
S is used as the input and the corresponding reference color
image G as the output label. For the coloring tasks, simply
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comparing the pixel colors of the generated image and the
reference color image can severely penalize the quality of
the output image because the transformation from the anime
sketch to the color image is not a one-to-one transformation.
In fact, anime sketch coloring is a one-to-many transfor-
mation. For example, the hair color in the reference color
image is red, but the hair color in the output color image
may be black or silver. These hair colors are reasonable for
anime. But the color of two kinds of hairs would have huge
differences as measured by the per-pixel loss and the per-
pixel losses do not capture perceptual differences between
the output images and the reference color images. In this
situation, the perceptual features of the color of these two
kinds of hairs may be similar. Therefore, in addition to the
per-pixel loss, the perceptual loss is also employed in the
generator of SSN-GAN to measure the high-level perceptual
differences between the output images and the reference
color images.

In our work, the discriminator of SSN-GAN is used
as the visual perception network to extract the perceptual
features of the images output by the generator SGRU and
the reference color images. The loss function of the generator
includes the per-pixel loss and the perceptual loss between
the output images and the reference color images. Let ϕ be
the discriminator. The ϕl represents a collection of layers
in the network ϕ. The total loss function of the generator
SGRU can be represented as:

Lg =
∑
l

λl||ϕl(T )− ϕl(G)||1 (3)

where T and G represents the output color image and
the reference color image, respectively. ϕl(T ) and ϕl(C)
represent the feature maps output from the lth layer in the
discriminator when T and G are respectively input to the
discriminator. l ∈ {0, 1, 2, 3, 4, 5} and ϕ1 to ϕ5 represent
the convolutional layers (conv1, conv2, conv3, conv4 and
conv5) that are selected to calculate the perceptual loss in
the discriminator. When l = 0, ϕ0(T ) and ϕ0(G) represent
the original input T and G. The hyperparameter λl is used
to balance the contribution of the lth layer to the total
loss Lg and λl = {0.88, 0.79, 0.63, 0.51, 0.39, 1.07}. Adam
optimizer [27] is applied to minimize the total loss.

The discriminator is essentially a binary classifier and
its role is to distinguish between the images output by the
generator SGRU and the label images. The loss function of
the discriminator used is expressed as follows:

Ld = −E[log(σ(D(G)) + log(1− σ(D(T )))] (4)

where D(T ) and D(G) represent the output of the dis-
criminator with T and G as the input, respectively. The E
represents mathematical expectation. The σ(.) represents the
sigmoid function.

IV. EXPERIMENTS

A. Datasets and evaluation metrics
We performed a lot of experiments on the Danbooru2017

dataset [9] to verify the performance of the proposed net-
work. The Danbooru2017 dataset is a large-scale crowd-
sourced and tagged anime illustration dataset. In Dan-
booru2017 dataset, we selected 18, 560 color anime images

for training. These color images and their corresponding
black-and-white sketches obtained from preprocessing (re-
size, truncate to squared images and extract sketches) are
used as the training dataset. In our experiments, the resolu-
tion of all training images is adjusted to 256× 256.

It is well-known that evaluating the quality of a generated
image is an open and difficult problem [28]. For the task
of coloring, when the same black-and-white anime sketch is
used as the input to get the corresponding color image, the
different networks may color different colors at the same
position. In addition to the difference in color, the color
anime images generated by different networks may also have
great differences in the content (texture, brightness, shad-
ow, etc.) and the image visual quality. Therefore, we used
several standard quantitative measures of the image visual
quality to evaluate and compare the proposed methods and
other existing methods. The standard quantitative evaluation
metrics used in our experiments included peak signal-to-
noise ratio (PSNR), structural similarity (SSIM) [29], feature
similarity (FSIM) [30] and FSIMc (FSIM incorporates image
chrominance information) [30]. In order to evaluate the visual
quality of the images generated by SSN-GAN and compare
to other networks that use the U-net as the generator, Frechet
inception distance (FID) [31] is also used as the evaluation
protocol to quantify the quality of our results.

B. Results

The qualitative results of the three coloring models on
the Danbooru2017 dataset are shown in Fig. 4. It can be
clearly seen that compared with SNGAN-Unet the generator
of which is U-net, the color images generated by SSN-GAN
are more vivid and saturated. Specifically, the color gradient
is smoother and the shadow distribution is reasonable. In
addition, when the discriminator is not used as the perceptual
network to calculate the perceptual loss, the model is called
SSN-GAN without perceptual loss. To verify the validity of
the perceptual loss, we compared SSN-GAN and SSN-GAN
without perceptual loss. As can be clearly seen from Fig. 4,
the color images generated by SSN-GAN without perceptual
loss are not rich enough and have fewer changes in color
gradation. Moreover, the color saturation is lower and there
is no obvious boundary between foreground and background
colors. Therefore, the perceptual loss is important to improve
the effect of coloring. Compared with the color images
generated by other two methods, the images generated by
SSN-GAN are richer in texture details and smoother in color
transition.

To further investigate our approach, we use the quantitative
criteria to evaluate the quality of the generated images.
We used Frechet inception distance (FID) to evaluate three
coloring models. FID compares the inception activation value
between the real image and the generated image. Since
automatic coloring is a one-to-many conversion, FID is
mainly used in this paper to evaluate the visual quality of
the generated images. Table II reports FID of the different
networks. The best results are shown in boldface. SSN-GAN
without perceptual loss is marked as SSN-GAN-wpl in Table
II. As can be seen from Table II, our method outperforms
the other methods and can generate the color images with
higher visual quality.
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Fig. 4. Qualitative comparison of the generated images on the Dan-
booru2017 dataset.

TABLE II
COMPARISON OF FID OF THE DIFFERENT NETWORKS ON THE

DANBOORU2017 DATASET.

SSN-GAN-wpl SNGAN-Unet SSN-GAN
FID 119.59 112.85 106.55

In order to compare the performance of 3 methods, PSNR,
SSIM, FSIM and FSIMc are conducted. Table III shows the
quantitative results of the three methods. The best results are
shown in boldface. SSN-GAN has achieved the best results
on all metrics. Moreover, the results of SSN-GAN without
perceptual loss are lower than all methods. It indicates
that the perceptual loss plays an important role in anime
sketch coloring. Our proposed generator SGRU has better
performance than the U-net. Therefore, the quality of the
color anime images generated by SSN-GAN is better than
SNGAN-Unet and SSN-GAN without perceptual loss.

TABLE III
QUANTITATIVE COMPARISON OF THREE COLORING METHODS ON THE

DANBOORU2017 DATASET.

PSNR SSIM FSIM FSIMc
SSN-GAN-wpl 16.616 0.831499 0.845807 0.826905
SNGAN-Unet 17.077 0.844272 0.853128 0.834270

SSN-GAN 17.485 0.849160 0.856360 0.837966

The comparison results of SSN-GAN, Style2paints [2] and
Paintschainer [3] are shown in Fig. 5. As shown in Fig.
5, the colorful images generated by SSN-GAN have higher
visual quality than other two state-of-the-art coloring models.
Compared with Paintschainer and Style2paints, SSN-GAN is
more adept at processing the texture details which makes
the coloring smoother and more natural. SSN-GAN can
effectively avoid the problems existing in Style2paints and
Paintschainer, such as the color clutter caused by irregular

Fig. 5. Qualitative comparison of the state-of-the-art coloring models.

mixing of multiple colors, the sharp changes in colors bright-
ness, coloring beyond the filled areas and so on. Therefore,
the coloring effect of SSN-GAN is superior to the state-of-
the-art coloring methods.

Table IV shows the quantitative comparison results of
SSN-GAN, Style2paints and Paintschainer. The best results
are shown in boldface. In Table IV, SSN-GAN outperforms
Style2paints and Paintschainer on all metrics. It indicates
that the visual quality of the color anime images generated
by SSN-GAN is better than Paintschainer and Style2paints.
Among the three methods, SSN-GAN can get the best
coloring effect.

TABLE IV
QUANTITATIVE COMPARISON OF SSN-GAN, STYLE2PAINTS AND

PAINTSCHAINER ON THE DANBOORU2017 DATASET.

PSNR SSIM FSIM FSIMc
Paintschainer 14.516 0.784078 0.799761 0.785066
Style2paints 14.802 0.785283 0.791618 0.772001
SSN-GAN 19.127 0.844990 0.873481 0.857569

V. CONCLUSIONS

This paper presents spectrally normalized GAN with
swish-gated residual U-net (SSN-GAN) which is composed
of the swish-gated residual U-net (SGRU) and spectrally
normalized GAN (SNGAN) for automatically coloring the
black-and-white anime sketches into the color anime images.
In SSN-GAN, the discriminator uses the spectral normal-
ization to make the training more stable, and the generator
SGRU uses the swish-gated residual blocks (SGBs) and
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the swish layers to improve the quality of the generated
images. SSN-GAN can be easily trained end-to-end with the
perceptual loss and the per-pixel loss while the discriminator
is used as the perceptual network. On the Danbooru2017
dataset, the experimental results show that the proposed
method has obvious advantages over other state-of-the-art
automatic coloring models in the complicated sketch coloring
tasks. Compared with other state-of-the-art methods, the
output images colored by SSN-GAN have the higher visual
quality. Future work includes implementing the conditional
black-and-white anime sketch coloring and generating larger
resolution color images.
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