
Generalized Meeting Businessmen Problem
Khalil Challita Member, IAENG

Abstract—In this paper we address the problem where a
distributed group of people wish to meet securely over the
Internet. Obviously, basic encryption techniques fail to achieve
this aim since they involve the encoding or decoding of messages
between two parties only. For this purpose, we propose a
cryptographic protocol that allows any number of people to
meet remotely while keeping their discussions secure from any
potential eavesdropper. Our solution uses a trusted third party
and is based on a refined version of the original Otway-Rees
protocol. Prior to the establishment of a secure communication
channel, we start by authenticating all the users involved. We
also provide a formal proof of the correctness of the suggested
protocol.

Index Terms—Public-key cryptography; Cryptographic pro-
tocols; Trusted party; Authentication protocols; Secure multi-
party computation.

I. INTRODUCTION

EXCHANGING confidential messages has long been of
interest to people working in different fields. Histor-

ically speaking, they resorted to classical encryption tech-
niques where two persons required to share a secret sym-
metric key, or possibly used steganographic techniques that
helped them hide the existence of the message itself. Today’s
needs have obviously changed since the design of the first
basic ciphers. Most military, governmental and commercial
organizations rely heavily on the Internet to communicate
and to exchange sensitive information. The invention of
pubic-key cryptography in 1976 by Diffie and Hellmann [17],
considered by many to be the most important invention
of the whole history of cryptography, allowed researchers
to elaborate very sophisticated and original protocols that
pervade our everyday life. Simple activities such as email
checking or online monetary transactions involve the implicit
use of cryptographic protocols. Schneier [33] suggested to
classify protocols based on their properties. We distinguish
from his work four major categories: basic, intermediate,
advanced, and esoteric protocols.
For example, and to cite just a couple of non traditional
protocols, one may have a look at the Dining Cryptographers’
Problem and the Millionaires’ Problem. Both problems are
impossible to solve using symmetric-key cryptography.
In the original version of the dining cryptographers’ prob-
lem [12], three cryptographers have a dinner. Afterwards,
one of them or the National Security Agency (NSA) pays
for the dinner. In the former case, Chaum’s protocol uses
secure multi-party communication to keep secret the identity
of the cryptographer who paid for it (in other words, the
other two cryptographers are unable to tell who paid for the
dinner); whereas in the latter case they can all agree to the
fact that the NSA made the payment. Another interesting
example was given by Yao [38]. He designed a protocol that

Manuscript received September 28, 2018; revised January 18, 2019.
K. Challita is with Notre Dame University - Louaize, Computer Science

Department, e-mail: kchallita@ndu.edu.lb.

allows two rich persons to tell which one is wealthier than the
other without revealing the amount of money they possess.
For example, if person A has 15 millions dollars and person
B has 21 million dollars, then at the end of the protocol they
both know that B is richer than A, but no clue whatsoever
is given about their respective fortune.
It is a well-known fact how hard it is to design a secure cryp-
tographic protocol [26]. Mao gives several examples where
even experts designed flawed protocols that were used for
several years. Some famous examples include the Needham
Schroeder protocol [29] and the Woo-Lam protocol [36],
[37]. Hence the need of formal methods to design better
protocol in the sense that such protocols must be proven
secure against specific types of attacks [1], [28], [32], [3],
[4], [5], [39], [7], [8], [43]. Other researchers analyzed the
security of protocols. One may cite Canetti [10], [11], [41],
[35] and Goldreich [19]. Recently, more protocols were de-
signed to address issues related to classical key authentication
problems [42] as well as to new esoteric protocols such as
the bitcoin backbone protocol [40].
In this paper we address the problem where several persons
wish to meet remotely and securely over the Internet. We
extend the work done in [13] where we suggested a protocol
based on a modified version of the Needham-Schroeder, and
that involved only three participants. Therefore we propose
a completely new protocol based on Otway-Rees’ one this
time. Our protocol starts by authenticating the users before
encrypting the exchanged messages. Note that our solution
is scalable and can include any number of participants.
This paper is divided as follows. We start in Section II
by presenting some relevant work related to secure multi-
party computation. In Section III, we list the properties
a cryptographic protocol must possess in order to enable
any number of persons to meet securely over the Internet.
Section IV focuses on approaches that involve an arbiter
to solve our problem, whereas we propose in Section V
solutions without any arbiter. We suggest in Section VI the
generalized meeting businessmen protocol that solves our
problem, before proving its correctness in Section VII.

II. RELATED WORK

As it was first described by Yao [38], secure multiparty
computation (SMPC) allows a set P = {p1, p2, · · · , pn}
of n players to compute an n-party function
f = f(f1, f2, . . . , fn) of their inputs without revealing any
additional information to corrupted players other than the
output of the function itself. At the end of the protocol,
we have the following guarantees: the output is correct and
each player’s input is kept secret from the others. We will
use in Section VI some of the techniques described here
as part of a cryptographic protocol to allow any number of
persons (who wish to meet) to participate in the generation
of a symmetric key K.

Engineering Letters, 27:3, EL_27_3_02

(Advance online publication: 12 August 2019)

__

Some research related to SMPC can be found in [22], [14],
[18]. Maurer [27] presented a simple approach to SMPC
that is not based on advanced sub-protocols (such as zero
knowledge proofs). He designed protocols that are secure
for mixed (i.e. active and passive) corruption. In a passive
corruption scheme, a player is aware of the whole internal
information of the corrupted player but does not deviate
from the protocol, whereas in an active scenario an adversary
A can take full control of a player and make him perform
illegal actions. We assume here that A is able to control
t < n players. We shall denote by t the maximum number
of players an adversary is able to corrupt. In the worst-case
scenario we have t = n − 1, where all but one player are
corrupted. Goldreich et al. [20] proved that security can
be achieved if t < n/2 for passively corrupted players.
They also showed that security holds for passive corruption
of players in case we have t < n. Later on, Ben-Or et
al. [6] established the fact that SMPC is possible if and
only if t < n/2 are passively corrupted, and if and only if
t < n/3 are actively corrupted. Another interesting result
was proposed by Goyal et al. [21], where they designed
a SMPC protocol that remained secure even in the case
when more than half of the players were dishonest. Instead
of relying on costly zero-knowledge proofs techniques,
their approach uses cut-and-choose techniques. It achieves
security in the case where any number of players collude
together. They extended a two-party protocol to a multi-party
case where the protocol they suggested is secure against
covert adversaries. Their solution uses several sub-protocols
(such as simultaneous commitment and open commitment)
and requires O(n3ts|C|) bits of communication. Note that
s denotes the statistical security parameter, |C| the size of
the circuit, and ε = 1− 1/t the deterrence probability.
We next turn our attention to selecting an appropriate
authentication protocol to be part of our solution in
Section VI. The Otway-Rees [31] protocol helps two users
achieve mutual authentication and allows them to share a
secret symmetric key. Below is a variation of the protocol
as given in [25]. Later on, Backes [2] established the
cryptographic security of this protocol.

Modified version of the Otway-Rees protocol
1) Alice → Bob : M , IDA, IDB , NA

2) Bob → T : M , IDA, IDB , NA, NB

3) T → Bob : M , {KAB}KAT
, {KAB}KBT

,
[NA, IDB , {KAB}KAT

]KAT
,

[NB , IDA, {KAB}KBT
]KBT

4) Bob → Alice : M , {KAB}KAT
,

[NA, IDB , {KAB}KAT
]KAT

The original version of the Woo-Lam protocol [36], [37]
and their fixes were shown to be vulnerable against a wide
range of attacks. Thus we consider a refined specification of
the protocol [26] that withstands all known attacks against
the original version, such as reflection and parallel-session
attacks.
The below protocol allows Alice to authenticate herself
to Bob, assuming that both Alice and Bob share secret
symmetric keys with a trusted entity T , denoted by KAT

and KBT , respectively.

Refined version of the Woo-Lam protocol

1) Alice → Bob: IDA

2) Bob → Alice: NB

3) Alice → Bob: [NB]KAT

4) Bob → T: [IDA, NB , [NB]KAT
]KBT

5) T → Bob: [NB]KBT

6) Bob accepts if the integrity [NB]KBT
verification re-

turns true.
One of the first public-key authentication protocols was

given by Needham and Schroeder [29]. We present below
a refined version of their protocol that is not vulnerable
against Lowe’s attack [23]. In this secure version, Alice and
Bob exchange messages by encrypting them using the other
party’s public key, denoted by PUA and PUB , respectively.

Refined version of the Needham-Schroeder public-key
authentication protocol

1) Alice → Bob: [{NA}PUB
, IDA]PUA

2) Bob → Alice: [{NA, NB}PUA
]PUB

3) Alice → Bob: [{NB}PUB
]PUA

Another relevant protocol to our problem was introduced
by Bellare and Rogaway [4], where they provided a formal
proof of its security. The MAP1 protocol allows an arbitrary
number of players to mutually authenticate themselves. We
also assume here that the players share a secret symmetric
key.

MAP1 protocol
1) Alice → Bob: IDA, NA

2) Bob → Alice: [IDA, IDB , NA, NB]KAB

3) Alice → Bob: [IDA, NB]KAB

We next specify the requirements a protocol must possess
in order to allow any number of persons to meet securely.

III. REQUIREMENTS AND LIMITATIONS

Our aim in this section is to specify the requirements
a cryptographic protocol must have in order to allow
any number of persons to meet remotely and securely. A
straightforward approach is to draw the parallel with what
happens during an actual meeting where several persons
gather to discuss private issues.
It is worth noting that any protocol that solves this problem
will have the same limitations to the ones that may happen
in an actual (i.e. physical) meeting. For example, we cannot
guarantee the fact that two of the persons who are in a
meeting do not cheat by using another communication
channel (e.g. using a phone), or simply by whispering if
they are sitting next to each other. Therefore, we will list
later on the assumptions under which this problem has a
solution.
We next define some words that will be of help for us
throughout the remaining of this paper.

Definition 1: (Basic terminology)
1) A ring of trusted people are trusted persons whose

role is to sign and validate any exchanged message
between the participants.

2) The persons who take part in a meeting are called the
participants.

3) Any person that is not supposed to be part of the
meeting is called a stranger.

Engineering Letters, 27:3, EL_27_3_02

(Advance online publication: 12 August 2019)

__

Let us assume that several persons are physically meeting
together. Obviously, the following conditions hold:

• Every person is aware of the identities of the other
participants;

• If a person says something, then it is heard by all the
others, and they know who said it;

• No person outside of the meeting room is supposed to
hear what is being discussed.

Hence the following four requirements a protocol must
satisfy:

1: Every person must be aware of the identities of all
the other participants in the meeting.

2: A message sent by a participant is revealed to all
the other ones.

3: No stranger can eavesdrop on their conversation.
4: The identity of the person who sent a message is

clear to all the participants.

The first requirement is about authentication. The second
deals with the delivery of a message. The third and fourth
messages enforce confidentiality and proof of origins, respec-
tively.

Other events/violations may happen during a meeting, such
as:

1) A participant leaves the meeting earlier than the others.
2) A participant arrives late to the meeting.
3) A participant leaves the meeting temporarily.
4) (Collusion) A number of participants do not follow the

rules and try to cheat by hiding some messages from
the others.

As we already said in the introduction, basic encryption
schemes cannot solve this problem since they are concerned
with securing the communications between just two parties.
Therefore the need of a specific protocol to address this issue.
But first we enumerate the main limitations inherent to any
cryptographic protocol that intends to solve our problem.
Let us assume that n participants need to have a secret
meeting. For this purpose they must share one common
symmetric key, denoted by Kn. Before designing a protocol
that solves our problem, one must take into account the
following scenarios:

1) During a meeting, a participant could reveal sensitive
information to an outsider by using another medium
than the protocol itself. For example by using a phone,
or even by sending him/her messages using another
secret key than Kn.

2) Two or more participants may collude together and
hide information from the others.

Nothing can be done to protect against the first point. Since
the participants are not physically present in the same room,
no one can monitor what the others are doing. Note that
the same may happen during a physical meeting where a
person is capable of revealing part of the conversation to a
stranger. Therefore, any cryptographic algorithm that solves
our problem will not take into account this case.
On the other hand, we will see later on that we are able to
deal with the second point by using a well defined signature
scheme.
Based on this brief analysis, the secure multiparty meeting
problem has a solution under the following assumption:

Assuming that the ring of trusted people is composed of m
persons, then there are at least 0 < m′ ≤ m honest
participants.

In other words, the group of m′ honest persons are
trusted to abide by the protocol. This assumption is true in
many real-life scenarios where some people meet with the
intention to keep their conversation secret.
On the other hand, there could be t ≥ 0 persons that try
to cheat by forging a message for example, or by hiding a
wire or a camera to disclose part of the conversation with
an outsider.
We next give two obvious remarks.

Remark 1: The above assumption does not forbid two or
more participants from colluding together.

We must be able to answer the following question: What
is the maximum number of participants that may collude
together while preserving the correctness of the protocol?
In other words, we must determine some t < n where we
assume that t participants try to cheat without violating the
correctness of the protocol (i.e. they will be detected).

Remark 2: Any solution to our problem under the above
assumption is at least as secure as any other means (e.g.
phone or video conference) used to allow people to meet
remotely.

In the following sections, we suggest several approaches to
help us design a solution to this problem, taking into account
the previously mentioned assumption.
Obviously, we must start by authenticating the participants
of a meeting.
We will consider protocols that involve a ring of trusted
people that contain at least three persons. If only two persons
are involved, then they can use a traditional encryption
scheme to communicate together.

IV. PROTOCOLS WITH AN ARBITER

Recall that any cryptographic protocol falls into one of the
following 4 categories:

Case 1: Using an arbiter and public-key cryptography.
Case 2: Using an arbiter but without public-key cryptog-

raphy.
Case 3: Without an arbiter but using public-key cryptog-

raphy.
Case 4: Without an arbiter and without public-key cryp-

tography.
In this section we indicate how to design protocols that

use an arbiter (i.e. case 1 and case 2 above). These are just
suggestions for future work. One may use them as guidelines
to write a protocol that solves the meeting businessmen
problem.
The main steps for designing a protocol with an arbiter are
the following:

Step 1. With the help of the arbiter, authenticate the
participants.

Step 2. Generate a session key and distribute it to the
participants. The ring of trusted people must take
part in this process. Note that the arbiter may
or may not be involved here (see Figure 1 for
example).

Engineering Letters, 27:3, EL_27_3_02

(Advance online publication: 12 August 2019)

__

Step 3. Before being sent, a message must be approved
(e.g. signed) by all or part of the ring of trusted
people.

Step 4. For each message that is sent, verify that all the
participants received and read it.

Remark 3: (It follows from Step 3) Every message must
be signed by the ring of trusted people (or part of it), before
being considered as valid.

Ring of trusted people Other participants

Arbiter

Generating a key
Authenticating the participants

Generating a key

Fig. 1. The Arbiter takes part in generating and exchanging a secret key.

Steps 1 and 2 are may be repeated more than once, in case
a person arrives late to a meeting or leaves it temporarily.
In such a case authentication may be required again, and we
could generate and distribute new secret key. Note that in
Step 2 we have the option to allow the arbiter to read the
content of the exchanged messages or not. The former case
applies when the arbiter participates in the generation of the
session key and distribute it to all the participants. Steps 3
and 4 are the most costly since they need to be repeated each
time a new message is exchanged among the participants.
To reduce the amount of work to be done here, we may use
a probabilistic algorithm that randomly chooses a number
of participants that belong to the ring of trusted people to
approve/verify a message. For example, if the size of the
ring is 10, our algorithm may choose randomly 4 persons to
verify a given message.
We next suggest several approaches to address this problem.
Case 1: Designing a protocol with an arbiter and with public-
key cryptography.

1) Use a public-key authentication cryptosystem such as
the refined version of the Needham-Schroeder protocol
as described in Section II (or a secure version of
the Denning-Sacco protocol [16]) to authenticate the
users and to help them generate a session key. This
step is performed at the beginning of the meeting
and should be repeated each time the number of
participants changes (e.g. someone joins the meeting
later on, or temporarily leaves, or simply leaves the
meeting earlier).

2) When a participant wishes to send a message, he/she
has to send it to the ring of trusted people (or part of it)
who signs it and then sends it to the other participants.

3) The meeting ends upon the request of the mediator
(person who called for the meeting) by sending a
special request to the ring of trusted people to signal
the end of the meeting.

Note that in this case we must try to forbid a group of
t participants to collude together by exchanging a message
that is not valid. We should address the case where part of
these persons are in the ring of trusted people.
This issue must be resolved empirically. We have a trade-off

between the amount of work to be done and the correctness
of the protocol in case we have collusion between a number
of participants. We next deal with the general case.
Assume that we have a number t of people who try to cheat.
Three cases are to be consider:

1) All of them belong to the ring of trusted people (worst
case).

2) All of them are outside the ring of trusted people (best
case).

3) Some of them belong to the ring of trusted people
while others don’t.

The best case scenario does not affect the correctness of the
protocol since the messages must be validated by the ring of
trusted people, and all of the participants who try to cheat
are outside of it. In the worst case scenario a violation of the
protocol may happen. Assume that the ring of trusted people
contain m persons and that we use some random algorithm
to select k ≤ m participants from the ring to validate a
message. Then it is impossible for us to stop these t persons
from cheating if, for example, they decide to: generate a new
message, or falsify an existing message, or even sign an old
message and then send it as being valid to the remaining
participants.
To prevent this from happening, we need to have at least one
honest person who is part of the ring of trusted people. We
can enforce this property as described below. Assume that
the maximum number of persons who try to collude is t,
then we must add to this group at least one honest user. This
can be reflected in the following remark.

Remark 4: A probabilistic algorithm must randomly se-
lect at least t+ 1 persons from the ring of trusted people to
sing/verify a message.
If this condition is not satisfied, then a violation of the
protocol cannot be avoided.
Our protocol shall include a modified version of any currently
available authentication protocol that is concerned with au-
thenticating only two users. Also note that the initial versions
of several protocols were flawed (see for example [15]). A
more detailed explanation of the security of these protocols
is provided in Section V.
One might replace Case 1 (1.) by any basic authentication
protocol using an arbiter, and then let the participants (or
just the ring of trusted people) generate a session key. In
this case the arbiter will not be able to read the content of
the exchanged messages.
In the above scenario (i.e. Case 1), a representative of the
ring of trusted people initiates the protocol with the arbiter to
authenticate all the users and to generate a session key. The
second point in the above case is very costly and involves a
lot of interactions from behalf the arbiter. A better solution
would be to replace the arbiter with this representative (in
this case he/she must be a trusted entity). Refer to Figure 2
for an illustration of Case 1 above.

Trying to reduce the amount of work to be done in Case 1
(2.) does not seem to work. For example, if we replace this
step by the following ones:

2’. Each participant sends his/her message to the others.
2”. The representative of the ring of trusted people chal-

lenges some randomly selected participants to check
whether or not they received the message.

Engineering Letters, 27:3, EL_27_3_02

(Advance online publication: 12 August 2019)

__

Ring of trusted people Other participants

Arbiter

Generating a key

Authenticating the users

Fig. 2. The Arbiter only takes part in authenticating the participants.

Then two persons could cheat by sending each other a
message without sharing it with the remaining participants.
In this case the representative will be unaware of the
existence of that message! For this to work, no one must
cheat; but then step (2”.) becomes useless.

Case 2: Designing a protocol that uses an arbiter but without
public-key cryptography.

1) Use a modified version of the Otway-Rees proto-
col [31], the woo-lam protocol as described in Sec-
tion II, (or the Neuman-Stubblebine protocol [30],
[34]) to authenticate the users and to generate a session
key. This step is done once.

2) Each participant sends his/her message to the others.
3) The meeting ends upon the request of the mediator.
If we do not wish to use timestamps then we use the

Otway-Rees protocol, otherwise we could use the Neuman-
Stubblebine one.
In this protocol no message can be signed, so validating the
origin of a message among a group of n persons who share
the same secret key is impossible; unless in some extreme
cases where all the participants trust each others and do not
cheat. In other words, each time someone writes a message,
he/she sends that message to all the other participants.
We next deal with the case of designing a protocol without
the arbiter’s involvement in the generation of a secret key.

V. PROTOCOLS WITHOUT AN ARBITER

We start here by discussing Case 3 where we assume
that the representative of the ring shares a secret master
key with all the other participants. The moderator belongs
to the ring of trusted people and plays a central role by
validating messages. See Figure 3 for example, where we
have a peer-to-peer scheme for exchanging messages that
are validated by the moderator.

Case 3: Designing a protocol without an arbiter but with
public-key cryptography.

1) The participants authenticate themselves using a one-
way function for example, or any basic authentication
protocol such as the refined version of the Needham-
Schroeder protocol (see Section II).

2) The participants use secure multiparty computation to
generate a session key.

3) Each time a participant wishes to send a message,
he/she has to send it to the ring of trusted people (or
to a random number k′ of persons of the ring) who
sign it and then send it to the other participants. No

message is considered to be valid unless signed by the
moderator.

4) The meeting ends upon the request of the mediator.

Ring of trusted people Other participants

Moderator x
x

x
x

x
x x

Fig. 3. The moderator is responsible for validating all the messages.

This protocol assumes that the participants can verify
the signature of the trusted people who sign the message.
They can use secure multi-party computation (SMPC) as
introduced by Yao [38] to generate a session key because
there is no arbiter.
Secure multi-party computation allows a group of n players
to compute an arbitrary agreed function of their private
inputs, even if an adversary may corrupt and control some
of the players.

The fourth case described in Section III cannot have a
practical solution. Indeed, we need public key-cryptography
to hope to find a solution to our problem. Consider for
example the following protocol, where we assume that all
the participants share a secret master key with the moderator:

Case 4: Designing a protocol without an arbiter and without
public-key cryptography.

1) The participants authenticate themselves using a sound
authentication protocol, such as the MAP1 protocol as
given in Section II.

2) The ring of trusted people generate a session key. The
key is then sent to all the participants.

3) Each participant sends his/her message to the others.
4) The meeting ends upon the request of the mediator.

In this case the participants cannot start the meeting
without generating a secret key. All they can do is to rely on
the ring (or part of it) to generate and distribute a symmetric
key. The representative of the ring could play the role of
an arbiter here. In Step 2 above, sending the message to
the representative in order to forward it adds no security to
the protocol. Indeed, a participant may cheat by sending a
message to a number k < n of participants using the session
key generated and distributed by the representative. The
fundamental problem that arises without the use of public-
key cryptography is that there is no means of validating
a message (e.g. by signing it). There is also the problem
of message origin (i.e. authenticate the person who initially
wrote the message). Upon the receipt of a message, no one
can be sure about the identity of the sender.
Based on our analysis in this section and in Section III, we
can certify that no practical solution to our problem exists
without the use of public-key cryptography. Thus practical
implementations of the secure multiparty protocol must be
based on Case 1 or Case 3 described in Section III.

Engineering Letters, 27:3, EL_27_3_02

(Advance online publication: 12 August 2019)

__

VI. THE GENERALIZED MEETING BUSINESSMEN
PROTOCOL

In this section we propose a protocol that uses symmetric-
key cryptography to authenticate the participants and a
public-key method to exchange messages. We assume here
that the ring of trusted people generates the session key K
to be used by the participants. We also assume that all the
participants can verify the signature of the arbiter (i.e. trusted
entity). Recall that selecting a secure authentication protocol
can be a daunting task. We discuss below the Woo-Lam and
the Needham-Schroeder protocols.
The original Woo-Lam protocol [36] contained several secu-
rity flaws. Furthermore, it turned out that a series of fixes
proposed by Woo and Lam [37] were also flawed: they
were vulnerable against reflection attacks. An early attack
on this protocol was discovered by Abadi and Needham [1],
where they illustrated a parallel session attack and suggested
a fixed version of the protocol. Later on, Clark and Jacob [15]
showed that the fixed version was also vulnerable against a
reflection attack. On the other hand, Denning and Sacco [16],
and also Lowe [23] discovered an attack on the Needham-
Schroeder public-key authentication protocol [29]. As ex-
plained by Mao [26], the fixed version was also insecure.
Mao and Boyd [25] provided a fixed version of the Woo-
Lam and Needham-Schroeder protocols that is based on a
new specification of authentication protocols.
After considering several approaches, we found out that the
refined version of the Otway-Rees protocol (as described by
Mao and Boyd [25]) was best suited for solving our problem.
The below protocol can be applicable to any number of users.
Recall the following notations:
• The participants are denoted by the capital letters Pi,

(i ∈ S) where S is a finite set; and the arbiter by T .
• PUPi (resp. PRPi) denotes the public (resp. private)

key of Pi.
• CertPi

is the public-key certificate of Pi (it contains
the identity and the public key of Pi among other
information, all of which are signed by the arbiter T).

• K is the session key.
• sigPi is the signature of Pi.
• TPi

is a timestamp issued by Pi.
• KPiT is the symmetric key Pi shares with the arbiter
T .

• NPi denotes a nonce generated by Pi.
We next assume that every trusted entity (i.e. person who

belongs to the ring of trusted people) is responsible for
authenticating a group of participants. Afterwards, all the
authenticated users will be announced to the people who
are meeting.
Note that each time a participant wishes to leave or join the
meeting a new session key must be generated by the ring of
trusted people.

The generalized meeting businessmen protocol
1) Pi → Pj :M,Pi, Pj , NPi , [M,Pi, Pj , NPi]KPiT

2) Pj → T : M,Pi, Pj , NPi , NPj , [M,Pi, Pj , NPi]KPiT
,

[M,Pi, Pj , NPj
]KPjT

3) T → Pj :
M, [KPiPj

]KPiT ,
[M,NPi , [KPiPj]KPiT]KPiT ,

[KPiPj
]KPjT ,

[M,NPj
, [KPiPj

]KPjT]KPjT ,
4) Pj → Pi :

M, [KPiPj]KPiT ,
[M,NPi

, [KPiPj
]KPiT]KPiT

The aim after this protocol is to authenticate all the people
and to exchange symmetric keys amongst users.
We kept the notation as in the original version of the protocol,
but in this case we could replace KPiPj by K, since the
latter is the session key to be used by all the participants. The
authentication and key distribution protocol must be executed
each time the number of persons who meet changes (e.g.
someone leaves or joins the meeting).
In the first step user i sends to user j a message M , their
identities, a nonce, plus the same information encrypted
using the symmetric key user i shares with the trusted
entity T . In step two, and after receiving a message from
user i, user j sends the same information to the arbiter T
plus identical information generated by j, encrypted using
the secret symmetric key j shares with the arbiter. In the
following steps the arbiter sends the symmetric key KPiPj

to both users i and j to be used in order to encrypt all the
messages they wish to exchange.
After completing this protocol, each participant is aware of
the others’ identities and possesses the session key K.
A graphical representation of the generalized meeting busi-
nessmen protocol (GMBP) is given in Figure 4.

Pi Pj

T

4− Both users share a symmetric key

2− Checking the request

3− Validating the request

1− Request to communicate with Pj

Fig. 4. The GMBP: authentication, key distribution, and message exchange.

Now each time a participant wishes to send a message,
he/she has to send it first to the arbiter, who then signs it
and sends it to the others.
For example, if Pi wants to send a message to all the
participants, we may have:

1) Pi → T : IDT , EK(M, IDT)
2) T → Pk : EK(EPRT

(M, IDPi
))

Here k ∈ S, which means that the message is sent to
all the participants. But the problem with this approach is
that a person Pk cannot be sure that Pi wrote M , since all
the participants possess the key K and someone could have
impersonated Pi. Furthermore, step two is very costly since
the whole message is encrypted using the private key of the
arbiter EPRT

.
We can overcome this problem by combining hash functions
with public-key cryptography as shown below.

1) Pi → T : IDPi
, TPi

, EK(M, sigPi
(hash(M),TPi

))

Engineering Letters, 27:3, EL_27_3_02

(Advance online publication: 12 August 2019)

__

2) T → Pk : TT , EK(M, sigT(hash(M), IDPi
,TT))

Depending on the implementation of the protocol, the
arbiter T may be replaced with a person from the ring of
trusted people (this would relieve the arbiter from signing
and verifying all the messages). In step 1, the arbiter decrypts
the second part of the message to ensure that the message
has not been modified, and that it has been sent by user Pi;
therefore providing a proof of origin and preventing illegal
tampering with the message.
An attacker is unable to read its content because it has been
encrypted with K. The timestamp TPi protects against replay
attack: The arbiter decrypts the message and verifies that the
decrypted value of the timestamp matches the one sent in
clear text.
In step 2 above, T sends the message to all the participants.
Upon receipt of this message, any user can verify that it is not
an old message and that Pi is the one who originally wrote
it. In order to save encryption/decryption time, T signs the
hash of the message with his/her private key , the ID of Pi,
and the timestamp TT .
Note that the last two steps can be repeated as many times
as needed.
Once the meeting is over, the representative of the ring of
trusted people (or the moderator) sends a special message to
all the participants to announce the end of the meeting. For
example T may send

T,End,EK(sigT (End, T))

to all the participants. The timestamp T is necessary to thwart
replay attacks. Otherwise, an attacker may replay an old
message to falsely announce the end of the meeting.

VII. CORRECTNESS OF THE GMBP

We use the BAN logic [9] to prove formally the
soundness of the GMBP protocol. This predicate logic can
be interpreted for users (i.e. participants), messages, keys,
and statements. We start with a quick overview of this logic
and see how to apply it to our case.
P |≡ X : Participant P considers the statement X as true.
P |∼ X : Participant P once said X .
P / X : Participant P has received the statement X .
]X : The statement X is new. No participants received it
previously.
P → X : Participant P should be trusted over the truth of
the statement X .
P

K↔ Q : Participants P and Q use the secret key K to
communicate. No one is capable of eavesdropping on their
conversation.
Below are some inference rules relevant to our case. These
rules allow us to reason about the predicates defined above.

The message meaning rule

P |≡ (Q
K↔ P), P / {X}K

P |≡ (Q|∼ X) (1)

This rule says that if participants P and Q share the same
secret key K, and if P receives a message X encrypted
using K, then P is sure that Q is the author of X .

The freshness rule
P |≡](X)

P |≡](X,Y) (2)

If P believes that the statement X is fresh (i.e. has not been
sent previously), then P also believes that the combined
statements X and Y are fresh too. This rule is useful when,
for instance, P receives a message X and a key K. Then
he/she is sure that the message and key were not sent before.

The nonce verification rule
P |≡](X), P |≡ (Q|∼ X)

P |≡ (Q|≡ X) (3)

If P believes that the statement X is fresh and that Q once
said X , then P is sure that Q believes in X .

The trusted party rule
P |≡ tp(Q), P |≡ (Q|≡ X)

P |≡ X (4)

If Q is a trusted party (in our case the arbiter) and P knows
that Q believes in statement X , then P also considers X to
be true. In other words, Q must be trusted unconditionally
by P .

The session key rule
P |≡ ({P,Q} / K), P |≡](K)

P |≡ (P
K↔ Q) (5)

If P knows that both P and Q received the key K, and also
that K is fresh, then P is sure that he/she shares K with
participant Q.

We next turn our attention to proving the soundness of
the GMBP. We assume that the set of participants includes
a trusted party denoted by T .

Definition 2: A protocol is sound if the following holds:
after completion, all inferred formulas are regarded as true
by the participants.

We next show that the symmetric key K that is generated
during the GMBP is fresh, and that it can be used securely
by all the participants to encode their communications.

Proposition 1: The generalized meeting businessmen pro-
tocol is sound with respect to generating a session key.

Proof: Formally speaking, we have to show that the
following holds for any participants Pi and Pj :
Pi|≡ (Pj |≡ Pi

K↔ Pj) and Pj |≡ (Pi|≡ Pi
K↔ Pj).

In other words, both Pi and Pj believe that the key K is
safe once they start using it.
First we assume that the arbiter is trusted by every partici-
pant: ∀i, Pi|≡ tp(T).
Now we show that ∀i, j, Pi|≡ Pi

K↔ Pj .
Indeed, since any participant Pi considers the following
statements to be true: T once approved K, and T knows
that he/she used K with Pi, and also that Pi, Pj and T used
K; then we can derive Pi|≡ Pi

K↔ Pj .
In notation we have:
Pi|≡ (T |∼ K), and
Pi|≡ (T |≡ T K↔ Pi), and

Engineering Letters, 27:3, EL_27_3_02

(Advance online publication: 12 August 2019)

__

Pi|≡ (T |≡ {T, Pj} / K), and
Pi|≡ (T |≡ {T, Pi} / K).
Added to this, we know that if T once sent K and Pj , then

the trusted party T transmitted K:
T |∼ (K,Pj)

T |∼ K
Applying the freshness rule and the nonce verification rule,
we conclude that Pi|≡ Pi

K↔ Pj .
Symmetrically speaking, we also have Pj |≡ Pi

K↔ Pj .
By extension, we conclude that Pi|≡ (Pj |≡ Pi

K↔ Pj) and
Pj |≡ (Pi|≡ Pi

K↔ Pj); which concludes our proof.

Therefore the key generated by the GMBP can be used by
all the participants to securely encode their communications.

VIII. CONCLUSION

We tackled in this paper the problem of several persons
who wish to meet securely over the Internet. Obviously, a
standard protocol cannot solve this issue since basic encryp-
tion techniques involve only two parties. Before generating
a session key, any approach must start by authenticating all
the users. After a quick overview of some authentication
protocols, we listed the requirements and the limitations
of any potential solution to our problem. Moreover, after
describing several possible designs based on the presence
or absence of an arbiter, we suggested a cryptographic
protocol that is based on a modified version of the Otway-
Rees authentication protocol. A trusted entity is involved
in generating a session key each time the protocol is run.
We also used the BAN logic to prove the soundness of the
GMBP.

REFERENCES

[1] Martin Abadi and Roger Needham, Prudent Engineering Practice for
Cryptographic Protocols, IEEE Transactions on Software Engineering.
22 (1996) pp. 6–15.

[2] M. Backes, Real-or-random key secrecy of the Otway-Rees protocol
via a symbolic security proof. Electr. Notes Theoretical Computer
Science. 155 (2006) pp. 111-145.

[3] M. Bellare and P. Rogaway, Provably secure session key distribution
- The three party case, In Proc. of the 27th ACM Symposium on the
Theory of Computing (STOC), ACM (1995) pp. 57–66.

[4] M. Bellare and P. Rogaway, Entity authentication and key distribution,
Advances in Cryptology - Proceedings of CRYPTO 93, Lecture Notes
in Computer Science. (1994) pp. 232–249.

[5] M. Bellare and R. Canetti and H. Krawczyk, A modular approach to
the design and analysis of authentication and key-exchange protocols,
Proc. 30th Symp. on Theory of Computing (STOC), ACM (1998) pp.
419–428.

[6] M. Ben-Or, S. Goldwasser and A. Widgerson, Completeness theorems
for non-cryptographic fault-tolerant distributed computation, Proc.
20th Symp. on Theory of Computing (STOC), ACM (1988) pp. 1–10.

[7] J. Blackledge and O. Iakovenko, Resilient Digital Image Watermark-
ing for Document Authentication, IAENG, International Journal of
Computer Science, volume 41, issue 1, (2014) pp. 1–17.

[8] S. Boonkrong and C. Somboonpattanakit, Dynamic Salt Generation
and Placement for Secure Password Storing, IAENG, International
Journal of Computer Science, volume 43, issue 1, (2016) pp. 27–36.

[9] M. Burrows, M. Abadi, and R. Needham, A logic of authentication,
Technical report SRC (1989).

[10] R. Canetti, Security and composition of multi-party cryptographic
protocols, Journal of Cryptology (2000) pp. 143–200.

[11] R. Canetti, Security and Composition of Cryptographic Protocols: A
tutorial, SIGCAT News , (2006), pp. 67–92.

[12] D. Chaum, The dining cryptographer problem: Unconditional sender
and receiver untraceability, Journal of Cryptology, (1988), pp. 65–75.

[13] K. Challita, Protocols for the meeting businessmen problem Annales
UMCS Informatica (2013) pp. 37–47.

[14] D. Chaum and C. Crépeau and I. Damgård, Multi-party uncondi-
tionally secure protocols, In Proc. 20th Symposium on the Theory of
Computing (STOC), (1988), pp. 11–19.

[15] J. Clark and J. Jacob, A survey of authentication protocol literature:
version 1.0 (1997).

[16] D.E. Denning and G.M. Sacco, Timestamps in Key Distribution
Protocols, Communications of the ACM, (1981), pp. 533–536.

[17] W. Diffie and M.E. Hellman, New Directions in Cryptography, IEEE
Transactions on Information Theory, (1976), pp. 644–654.

[18] Laura Giordano and Alberto Martelli, Verifying agents’ conformence
with multiparty protocols, Springer-Verlag Berlin Heidelberg, (2009),
pp. 17–36.

[19] Oded Goldreich, Cryptography and cryptographic protocols, Dis-
tributed Computing, (2003), pp. 177–199.

[20] O. Goldreich, S. Micali and A. Widgerson, How to play a mental
game - A completeness theorem for protocols with honest majority,
Proc. 19th Symp. on Theory of Computing (STOC), ACM (1987) pp.
218–219.

[21] Vipul Goyal and Payman Moassel and Adam Smith, Efficient Two
Party and Multi Party Computation Against Covert Adversaries, Eu-
rocrypt, (2008), pp. 289–306.

[22] Gillat Kol and Moni Naor, Cryptography and game theory: Designing
protocols for exchanging information, International Association for
Cryptographic Research, (2008), pp. 320–339.

[23] G. Lowe, An attack on the Needham-Schroeder public-key authenti-
cation protocol, Information Processing Letters (2008), pp. 320–339.

[24] W. Mao and C. Boyd, Towards a Formal Analysis of Security Proto-
cols, Proceedings of the Computer Security Foundations Workshop VI
(1993), pp. 147–158.

[25] W. Mao and C. Boyd, Methodical use of cryptographic transformations
in authentication protocols, IEEE Proceedings, Comput. Digit. Tech.
(1995), pp. 272–278.

[26] Wenbo Mao, Modern cryptography: Theory and practice, Prentic Hall,
1st edition, (2003).

[27] Ueli Maurer, Secure Multi-Party Computation Made Simple, Discrete
Applied Mathematics (2006), pp. 370–381.

[28] C.A. Meadows, Formal Verification of Cryptographic Protocols: A
Survey, Advances in Cryptology, ASIACRYPT, Proceedings Springer-
Verlag, (1995), pp. 133–150.

[29] R.M. Needham and M.D. Schroeder, Using Encryption for Authenti-
cation in Large Networks of Computers, Communications of the ACM
(1978), pp. 993–999.

[30] B. C. Neuman and S. Stubblebine, A note on the use of timestamps
as nonces, Operating Systems Reviews (1993), pp. 10–14.

[31] D. Otway and O. Rees, Efficient and Timely Mutual Authentication,
Operating Systems Review (1987), pp. 8–10.

[32] R.D. Rubin and P. Honeyman, Formal Methods for the Analysis of
Authentication Protocols, Draft manuscript (1994).

[33] Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and
Source Code in C, Wiley, 2nd Edition (1994).

[34] B. C. Neuman and S. Stubblebine, A note on the use of timestamps
as nonces, Operating Systems Reviews (1993), pp. 10–14.

[35] W. Simpson and K. Foltz, Ports and Protocols Extended Control for
Security, IAENG, International Journal of Computer Science, volume
44, issue 2, (2017) pp. 227–240.

[36] T.Y.C. Woo and S.S. Lam, Authentication for Distributed Systems,
Computers, (1992) pp. 39–52.

[37] T.Y.C. Woo and S.S. Lam, A lesson on authentication protocol design,
Operating systems Reviews, (1992) pp. 24–37.

[38] A. C. Yao, Potocols for secure computations, In Proc. 23rd IEEE
Symposium on the Foundations of Computer Science (FOCS), (1982)
pp. 160–164.

[39] Y. Lindell, Secure multiparty computation for privacy preserving data
mining, Journal of Privacy and Confidentiality, (2009).

[40] J. Garay, A. Kiayias, N. Leonardos, The bitcoin backbone protocol:
Analysis and applications, Cryptology-EUROCRYPT, (2015).

[41] R. Amin, G.P. Biswas, An Improved RSA Based User Authentication
and Session Key Agreement Protocol Usable in TMIS, Journal of
Medical Systems, (2015).

[42] C. Boyd, A. Mathuria, Protocols for Authentication and Key Estab-
lishement, Springer, (2013).

[43] M. Younes and A. Jantan, Image Encryption using Block-Based
Transformation Algorithm, IAENG, International Journal of Computer
Science, volume 35, issue 1, (2008), pp 15–23.

Engineering Letters, 27:3, EL_27_3_02

(Advance online publication: 12 August 2019)

__

