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Abstract—This paper empirically investigates the modeling
of Gross Regional Domestic Product (GRDP) prediction
using a genetic algorithm approach and Cobb-Douglas model
and also studied the variables that influence it. The genetic
algorithm approach used to estimate the Cobb-Douglas model
parameters. Meanwhile, the Cobb-Douglas model utilized for
predicting the model of GRDP that measured using the value
of expenditure (expenditure-based). Further, we also discussed
the comparison of the level of prediction errors using the
genetic algorithm and ordinary least square (OLS) approaches.
The results of the analysis show the level of prediction errors
in the sample assessed by using Mean Absolute Percentage
Error (MAPE) that obtained from the estimator using genetic
algorithms approach is 0.177, while by using the OLS approach
is 0.190. It shows that the prediction value of errors from a
genetic algorithms approach is smaller when compared to the
OLS approach. Of these, we found that the genetic algorithm
is the best approach used to estimate the model of GRDP that
measured using the value of expenditure in Garut Regency,
Indonesia. Also, by using a genetic algorithm approach, this
study also found that the variables of government consumption
expenditure, gross domestic fixed capital formation, and
net export, and determined inventory changes, the GRDP
prediction for the next two periods is IDR 44,449,327 and IDR
45,457,805. Therefore, the model of GRDP prediction using
expenditure-based values can be used as a consideration in
making the budget plan by the local government in Garut
Regency, Indonesia.

Keywords : GRDP; Cobb-Douglas model; Genetic algorithm
and MAPE.

I. INTRODUCTION

GROSS Regional Domestic Product (GRDP) at the re-
gional level (province / regency) is an indicator to

measure the ability of a region to create output (value added)
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at a certain period [1]. GRDP is the amount of added
value generated by all business units in a in a particular
region or the sum of the value of end goods and services
produced by all economic units in a region [2]. GRDP based
on expenditures are all components of final demand con-
sisting of: household consumption expenditure and private
non-profit entities, government consumption, gross domestic
fixed capital formation, inventory change, and net exports
(representing exports minus imports). GRDP describes the
economic development of a region and can also be used as
a reference in evaluating and planning regional development
[3]. Therefore, it is crucial to predict GRDP by using an
appropriate method.

There are several studies relevant to GRDP prediction
modeling referenced, in this study. For example, analyzed
the effect of foreign direct investment net entry on GDP
in Poland between 1994-2012, using the Cobb-Douglas pro-
duction function was presented in [4]-[5]. In such an anal-
ysis defined conditions necessary for the positive influence
of foreign direct investment in Poland. Also assumed the
assumptions are the Cobb-Douglas production function and
predicted changes in GDP value in Poland. I also identifiess
the factors that significantly affected economic growth in
Poland. Based on the analysis, it is shown that gross fixed
capital formation, employment, foreign direct investment,
exports, and research & development affected the change of
GDP value in Poland. Similar research using Cobb-Douglas
production function for GDP prediction can be seen in [6]-
[9]. In 2004, Junoh described a comparative case study be-
tween neural network and econometric approaches to predict
GDP growth in Malaysia using knowledge-based economy
indicators based on time series data collected from 1995-
2000. The results show that the neural network technique
has an increased potential to predict GDP growth based on
knowledge-based economy indicators [10]. In 2013, Nigar
and Saxena presented a new genetic algorithm-based system
for inductive machine learning [11]. The system presented
can be used for economic prediction, especially to predict
a country’s GDP. They present a genetic algorithm-based
system that can be used to predict a country’s GDP, with
adaptive genetic algorithm learning techniques. The system
presented provides all the necessary input facilities, in order
to make predictions with the best results. In 2016, Gaffar
developed a genetic algorithm for the analysis and forecast
of regional economic growth, in which agricultural and
industrial sectors as independent variables [1]. The research
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was conducted in East Kalimantan Province between 2002-
2012. Based on the results of the study, it is suggested to
use genetic algorithms in order to improve the accuracy of
regional economic growth predictions. Similar studies have
also been carried out on [12]-[13].

Motivated by a considerable in GRDP, this work makes a
contribution to the predictive modeling of GRDP based on
expenditure by using Cobb-Douglas production function, and
parameter estimation by using a genetic algorithm approach.
In the last focus section, the Cobb-Douglas model and
genetic algorithm are used for predictive modeling of GRDP
based on expenditure in Garut regency of Indonesia.

II. MATERIALS AND METHODS

In this section, the discussion covers materials and meth-
ods. The material is to describe the data used in the research
following the source while the method is to explain the
models and approaches used to analyze the data.

A. Material

The data analyzed in this research is the economy of Garut
Regency, namely Gross Regional Domestic Product (GRDP),
especially those based on expenditure. Related data obtained
from the Central Bureau of Statistics (CBS) Garut regency,
between 2010 and 2016. The model used in this study is
the Cobb-Douglas production function, which is estimated
using a genetic algorithm. The data were analyzed using
Microsoft Excel and Eviews 9.0 software applications, as
well as Matlab R2013a.

B. Method

In this section, we discussed the models and the algorithm
approach used in data analysis, for predictions modeling of
GRDP based on expenditure.

Cobb-Douglas production function
The production function is defined as the relationship

between the factors of production (input) used with the
resulting output [14]-[15]. In 1928, Charles Cobb and Paul
Douglas developed a model of the relationship between
factors of production and output, after this referred to as
the Cobb-Douglas production function [16]. In economics,
the Cobb-Douglas production function is widely used to
describe the relationship between output and input.

The Cobb-Douglas production function with more than
two independent variables can be described as follows [17]:

Y = bXβ1

1 Xβ2

2 Xβ3

3 ...Xβn
n eε (1)

Where Y is the dependent variable (output); b constant
intercept; X1, X2, X3, ..., Xn independent variable (input);
β1, β2, β3, ..., βn elasticity of the independent variable; e =
2.7182818285 natural numbers; and ε error (residual).

The sum of elasticities is a measure of returns to scale.
Thus, there are three possible alternatives [18]-[19]:

• Decreasing returns to scale, if
n∑
i=1

β1 < 1

It is an increasingly decreasing yield on the scale
of production, where output increases with a smaller
proportion of inputs.

• Constant returns to scale, if
n∑
i=1

β1 = 1

It is an addition that has a constant result on the scale of
production, when all inputs increase in certain propor-
tions, and the output produced in the same proportion
equals the proportion of the input.

• Increasing returns to scale, if
n∑
i=1

β1 > 1

It is an increasing addition to the production scale,
where output increases with a greater proportion of
inputs.

Equation (1) can be transformed natural logarithm into
equation (2), thus yielding the following linear equation:

lnY = lnb+β1lnX1+β2lnX2+β3lnX3+ ...+βnlnXn+ε
(2)

If we let A = lnY, β0 = lnb,D1 = lnX1, D2 =
lnX2, D3 = lnX3, ..., Dn = lnXn, then equation (2) can
be expressed as a linear regression equation:

A = β0 + β1D1 + β2D2 + β3D3 + ...+ βnDn + ε (3)

The estimator of equation (3) is:

Â = β0 + β1D1 + β2D2 + β3D3 + ...+ βnDn (4)

The following equation gives the sum of the residual
squares of equation (3):

∑
ε2 =

∑
(A−β0−β1D1−β2D2−β3D3− ...−βnDn)2,

(5)
where is the residual ε = A− Â.

Genetic algorithm
A genetic algorithm is a heuristic method developed based

on genetic principles and the natural selection process of
Darwin’s Evolutionary Theory [20]. A genetic algorithm
was invented by John Holland around the 1960s and was
developed by his student David Goldberg in the 1980s.
The search process of a settlement in a genetic algorithm
takes place the same as the election of an individual to
survive in the evolutionary process [21-22]. In the process
of evolution will be obtained individuals who can survive,
which these individuals have repeatedly experienced gene
changes to adjust to the environment. These gene changes
occur through breeding, which in the genetic algorithm this
breeding process is the rationale in getting better children.

The general structure of the genetic algorithm is the
following steps [23-25]:
• Initial population generation, this initial population was

generated randomly to obtain an initial solution;
• The population consists of some chromosomes that

indicate the solution achieved;
• The formation of a new generation, to form a new gener-

ation three operators are involved, namely reproduction
/ selection, cross over and mutation;
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• Evaluation of the solution, the process of each popula-
tion is evaluated by determining the fitness value of each
chromosome, and the evaluation is carried out until the
criteria of discontinuation are met. If the termination
criterion has not been met, a new generation is re-
established by repeating step b).

Based on the structure of the genetic algorithm, to min-
imize the objective function as the sum of residual squares
(5), the following genetic algorithms can be prepared [26]:

1) Determination of the initial population, the initial pop-
ulation is determined as much J , which generated
randomly. This initial random population number is
then transformed into the form of decimal values θj ,
with j = 1, ..., J ;

2) Evaluation of the chromosome, the fitness value of the
chromosome is the objective function as the sum of
the residual quadratic equations (5). The fitness values
are chosen the smallest, for the minimization program.

3) Determination of population convergent percentage,
percentage convergent population pc, is a percentage
of the number of individuals who generate the same
fitness score and the most. The value of population
convergence pc this is calculated based on the follow-
ing equation:

pc =
n

pop
× 100%, (6)

Where n the number of individuals that can produce
the same fitness and the most, and pop population
number. Item Evaluation of dismissal conditions is
the genetic algorithm process will be dismissed when
the generation counter has reached the number of
generations cg , which is specified as big as cg = 1000,
or a convergent percentage population pc has reached
the threshold limit specified i.e. τ = 90%.

4) Chromosome selection is the selection process based
on roulette wheel selection. For the minimization pro-
gram, evaluate the fitness value eval(vi), i = 1, ..., n,
do refer to equation (5), using equations:

eval(vi) =
1

1 + f(θ)
(7)

with f(θ) the fitness values based on equations (5),
and θ′ = (β0, β1, β2, β3, ..., βn).

5) Cross-breeding is a new population of selection is
conducted by cross-breeding, based on the Single-Point
Crossover (SPX).

6) Mutations; the mutation of each generation is done by
calculation m× pop size× pm, where is the number
of mutations, pop size population size, and pm prob-
ability of mutation (probability value is determined
randomly).

7) Decoding, is the process of coding the genes in the
chromosome to return its original value, i.e. transform-
ing coding into decimal values.

Test statistic for model evaluations
• Multicollinearity test statistic

On the assumption of multiple linear regression model
is the absence of multicollinearity on independent
variables. The multicollinearity test was performed
to test the strong linear relationship between the

independent variables in multiple regression equations.
There are several testing methods that can be used
for multicollinearity test, i.e. by looking at the value
of Variance Inflation Factor (VIF) in the regression
model. If the value of Variance Inflation Factor (VIF)>
10 on each independent variable, it can be concluded
that the model is multicollinearity [27-28].
Some alternative ways to solve the problem if there
is multicollinearity are as follows: (i) replacing or
removing variables that have high correlation; (ii)
Increasing the number of observations; and (iii)
Transforming data into other forms, such as natural
logarithms, square roots, or first difference delta form.

• Heteroscedasticity test statistic
The linear model of multiple regression has the as-
sumption that the equation is the same, or in other
words homogeneous so that heteroscedasticity should
not occur. Heteroscedasticity occurs at the time of
residual and the predicted value has a correlation or
relationship pattern. Heteroscedasticity test is performed
to determine the equal or not variant, from residual
observation one with other observation on regression
model [29]. Spearman correlation rank test is one way
to determine the occurrence of heteroscedasticity.
In Spearman’s rank correlation test statistic, the hypoth-
esis used is H0: no heteroscedasticity occurs, and H1:
heteroscedasticity occurs. The test is done by determin-
ing the sequence value of | εt | and Dit, determined
rank ri.s using equations:

ri.s = 1− 6


n∑
i=1

d2i

n(n2 − 1)

 (8)

where ri.s is Spearman’s correlation rank coefficient,
and di deviation, which can be determined by using the
equation di = rank(Di.t) − rank | εt |. Next, specify
a statistical value ti.stat with equations:

ti.stat =
rs
√
n− 2√

1− r2s
(9)

Determining the value of t(α2 ,v) with a significance level
α= 0.05 and degrees of freedom v = n − 2. Testing
criterion is rejected H0, if ti.stat < −t(α2 ,v) or ti.stat >
t(1−α2 ,v)

• Autocorrelation test statistics
Autocorrelation tests are used to determine whether the
residuals of an observation are related to each other.
Autocorrelation occurs when there is a high correlation
between error values [30]. The assumption of multiple
linear regression model is no autocorrelation. How to
detect the existence of autocorrelation can be done by
using Durbin-Watson test statistic (DW).
The hypothesis used is H0 : no autocorrelation occurs,
and H1 : autocorrelation occurs. The DW statistical
test, done by calculating the statistical value dstat using
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equations:

dstat =

T∑
t=1

(εt − εt−1)2

T∑
t=1

ε2t

(10)

where T the number of data, and εt residual at time t.
Next, determine the value dL and dU from the Durbin-
Watson (DW) table. Testing criterion is rejected H0 if
dstat < dL or dstat > 4 − dL, and accept if dL ≤
dstat ≤ 4 − dU . If in other conditions, it cannot be
concluded [31].

• Normality test statistic
The normality test is used to determine the distribution
of residual data to spread normally or not. Normality
can be detected by testing Kolmogorov-Smirnov (KS).
The hypothesis used is H0 : data is normally distributed,
and H1 : data is not normally distributed. The test is
done by determining the residual deviation, ie by using
the equation:

sεt =

√√√√√ T∑
t=1

(εt − ε̄)2

T − 1
(11)

Transform value εt become zt with equations zt =
(εt − ε̄)/sεt . Determine the probability value P (zi)
based on standard normal distribution table. While the
chances are proportional S(zt) determined using the
equation S(zt) = randl(zt)/n.
Next, calculated the value of the absolute difference
| S(zt) − P (zt) |. Statistics of Kolmogorov-Smirnov
KSstat determined using the equation:

KSstat = max {| S(zt)− P (zt) |} (12)

Determine the critical value of statistic KS(α,T−1), with
significant levels α = 0.05. The testing criteria are
rejected H0 if KSstat > KS(α,T−1).

Goodness of fit test
Goodness of fit test is conducted to know whether a

variable can be approached by using a theoretical model or
not [32]. In this research the goodness of fit test performed
include: partial parameter significance test, simmer synthesis
significance test, and correlation test between independent
variable with dependent variable.
• Partial significance test statistic

This partial significance test, intended to test the sig-
nificance of each parameter θi(i = 0, 1, 2, 3, ..., n),
where θi ∈ {β0, β1, β2, β3, ..., βn} of equation (4), in
affecting the dependent variable. For parameter test θi,
the hypothesis used is H0 : θi = 0 and H1: θi 6= 0.
The test is conducted by using statistic tstat, where the
equation is:

tstat =
θi

SE(θi)
, (13)

where SE(θi is the standard error of parameter θi.
Reject the hypothesis H0 if | tstat |>| t(T−2, 12α) |, or
Pr [tstat] < α, where t(T−2, 12α) the critical value of the
distribution-t at a level of significance of 100(1− c)%,
and T the number of data.

• Test statistics for parameters simultaneously

This simultaneous significance test, intended to test the
significance of the parameters simultaneously θi(i =
0, 1, 2, 3, ..., n), where θi ∈ {β0, β1, β2, β3, ..., βn} of
equation (4), in affecting the dependent variable. The
hypothesis used is H0 : θ1 = θ2 = θ3 = 0 and H1 :3
θ1 6= θ2 6= θ3 6= 0. Testing is done by using statistic F ,
where the equation is:

Fstat =
MSreg
s2

, (14)

Where MSreg mean square due to regression, and s2

mean square due to residual variation.
Reject the hypothesis H0 if Fstat > F(1,T−2,1−α), or
Pr [Fstat] < α, where F(1,T−2,1−α) the critical value
of the distribution F at the level of significance 100(1−
α)%, and T the number of data.

• Test statistic of coefficient of determination R2

The coefficient of determination R2 measure how large
the diversity of independent variables to the dependent
variable, based on the level of strength of the relation-
ship. So the coefficient of determination is the ability or
influence of independent variables Di(i = 1, 2, 3, ..., n)
to affect the dependent variable A. The equation of R2

are as follows:

R2 =

T∑
t=1

(Ât − Ā)2

T∑
t=1

(At − Ā)2
(15)

The value of the coefficient of determination is between
0 and 1. Values R2 a small close to 0 means that the
variation of the independent variable is very limited,
and a value close to 1 means the variation of the
independent variable can provide all the information
needed to predict the dependent variable.

Prediction(Forecasting)
Forecasting is done because of the complexity and un-

certainty faced by the forecasting model [33]. There are
many methods that can be used to measure the accuracy of a
forecasting model, including the Mean Absolute Percentage
Error (MAPE). MAPE can be determined using the following
equation [34-35]:

MAPE =

(
1

T

T∑
t=1

| At − Ât |
At

)
× 100% (16)

The smaller the MAPE values, the smaller the value of error,
and the greater the degree of accuracy.

III. RESULTS AND ANALYSIS

In this section we discuss the result and analysis which
includes: natural logarithm transformation data; estimating
parameters; test classical assumptions; estimating parameters
using genetic algorithm; test the goodness of fit; and predict
GRDP based on expenditure.

A. Data of natural logarithm transformation

Referring to equation (5), for the purpose of estimating
Cobb-Douglas model parameters, the GDP data based on
expenditure is done by natural logarithm transformation.
The data of natural logarithm transformation is given in
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TABLE I
TRANSFORMATION DATA OF GRDP BASED ON EXPENDITURE

ln Y ln X1 ln X2 ln X3 ln X4 ln X5

17.053 16.833 11.860 14.489 14.347 14.014
17.125 16.917 11.913 14.571 14.716 13.950
17.229 17.013 11.988 14.727 14.055 14.501
17.333 17.106 12.208 14.785 14.674 14.301
17.429 17.199 12.283 14.843 14.708 14.577
17.521 17.303 12.247 15.031 14.586 14.612
17.609 17.393 12.308 15.161 14.694 14.605

Table I.

Where Y is GRDP based on expenditure; X1 household
consumption expenditure; X2 consumption expenditures of
non-profit households; X3 government consumption expen-
diture; X4 gross domestic fixed capital formation and net
exports (exports minus imports); and X5 inventory changes.

B. Estimating parameters

Parameter estimation on equation (2) is done by analytical
method and genetic algorithm. Referring equation (5), ana-
lytical parameter estimation can be done by using Ordinary
Least Square (OLS) method with Eviews 9.0 software,
obtained by estimator of coefficient parameter and standard
error as given in Table II.

TABLE II
ESTIMATOR OF COEFFICIENT PARAMETERS

Variable Coefficient Std. Error
D1 0.305366 0.125006
D2 -0.022354 0.011528
D3 0.378964 0.075314
D4 0.144172 0.019291
D5 0.155369 0.023682
C 2.44177 0.420262

Based on the parameter estimators in Table II, with round-
ing up to two decimal places, a linear regression equation can
be composed as follows:

Â = 2.44 + 0.31D1− 0.02D2 + 0.38D3 + 0.14D4 + 0.16D5

(17)

C. Testing the classical assumptions

Testing the classical assumptions made here include: mul-
ticollinearity test, heteroscedcedity test, autocorrelation test,
and normality test.

Testing the multicollinearity
The multicollinearity test was performed on the parameter

of the estimated regression equation presented in Table II
and equation (18). The tests were performed using the help
of Eviews 9.0 software, and the results are given in Table
III.
The VIF value can be seen in the fourth column of the
centered VIF column. Based on Table III, the VIF value
of all independent variables is higher than 10, so it can
be concluded that multicollinearity occurs. Because multi-
collinearity occurs, it must issue the independent variable
that has the most substantial VIF value is variable D1. After
that, re-estimation is done. The re-estimate is also done using

the help of Eviews 9.0 software, and the results presented in
Table IV.

TABLE III
MULTICOLLINEARITY TEST RESULTS

Variable Coefficient Variance Uncentered VIF Centered VIF
D1 0.015626 28345386 3445.415
D2 0.000133 120879.8 25.06571
D3 0.005672 7700851 1708.662
D4 0.000372 487596.1 123.5563
D5 0.000561 717401.0 238.9366
C 0.176620 1094326 NA

TABLE IV
FIRST RE-ESTIMATE RESULTS

Variable Coefficient Std. Error
D2 -0.019624 0.021415
D3 0.562562 0.009044
D4 0.189614 0.009539
D5 0.210421 0.013583
C 3.463677 0.070204

Based on the parameter estimators in Table IV, with round-
ing up to two decimal places, a linear regression equation can
be prepared as follows:

Â = 3.46− 0.02D2 + 0.56D3 + 0.19D4 + 0.21D5 (18)

Multicollinearity test results after removing the variable
D1 shown in Table V.

TABLE V
MULTICOLINEARITY TEST RESULTS FIRST RESET

Variable Coefficient Variance Uncentered VIF Centered VIF
D2 0.000459 119743.6 24.83010
D3 8.18E-05 31877.57 7.072986
D4 9.10E-05 34218.84 8.671015
D5 0.000185 67747.23 22.56380
C 0.004929 8765.936 NA

Based on Table V, there is still a VIF value greater than
10 i.e. V IFD2

= 24.83010, so that will be released again
independent variable that cause multicollinearities that have
the biggest VIF value that is variable D2. Repeat the second,
also using the Eviews 9.0 software. The re-estimation results
are presented in Table VI.

TABLE VI
SECOND RE-ESTIMATE RESULTS

Variable Coefficient Std. Error
D3 0.562406 0.008798
D4 0.181856 0.004277
D5 0.199818 0.006923
C 3.493336 0.060612

Based on the parameter estimators in Table VI, with round-
ing up to two decimal places, a linear regression equation can
be composed as follows:

Â = 3.50 + 0.56D3 + 0.18D4 + 0.20D5 (19)

The second multicollinearity test results after removing the
variable D1 and D2 given in Table VII.
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TABLE VII
MULTICOLLINEARITY TEST RESULTS SECOND RESET

Variable Coefficient Variance Uncentered VIF Centered VIF
D3 7.74E-05 31866.39 7.070505
D4 1.83E-05 7266.674 1.841367
D5 4.79E-05 18591.80 6.192159
C 0.003674 6902.868 NA

Based on Table VII, the VIF value of all independent
variables is smaller than 10, so it can be concluded that there
is no multicollinearity to the independent variable D3, D4

and D5. Therefore, the next stage is to test heteroscedasticity.
Testing the heteroscedasticity
Heteroscedasticity test was performed by Spearman’s rank

correlation test statistic referring to equations (8) and (9).
From the calculation results obtained respectively are as
follows: for independent variable D3 value of r3.s = 0.57
and t3.stat = 1.55; for independent variable D4 value of
r4.s = 0.29 and t4.stat = 0.68; and for independent variable
D5 value of r5.s = 0.64 and t5.stat = 1.68.

While at the level of significance α = 0.05, of the
distribution-t standard table and with degrees of freedom
v = 5, obtained statistical critical value t(0.025;5) = −2.5706
or t(1−0.025;5 = 2.5706. So it happens that t(0.025;5) ≤
r3.s, r4.s, r5.s ≤ t(1−0.025;5, thus if the hypothesis refers to
the Spearman rank correlation test, then the hypothesis H0

be accepted. Means there is no heteroscedasticities on each
independent variables D3, D4, and D5.

Testing the autocorrelation
The autocorrelation test conducted to identify the existence

of correlation on the residual data of εt. The autocorrelation
test was performed using the Durbin-Watson statistic test.
The test is performed concerning (11), using the help of
Eviews 9.0 software, the results are shown in Table VIII.

TABLE VIII
AUTOCORRELATION DETECTION RESULTS

R-squared 0.986106 Mean dependent var 4.57E-15
Adjusted R-squared 0.916635 S.D depentent var 0.001365
S.E. of regression 0.000394 Akaike info criterion -13.07173
Sum squared resid 1.55E-07 Schwarz criterion -13.11809

Log-likelihood 51.75104 Hannan-Quinn Criter -13.64476
F-Statistic 14.19448 Durbin-Watson Stat 2.089043

Based on Table VIII, the Durbin-Watson statistical value
dstat = 2.089043. While with a significant level α = 0.05,
from the Durbin-Watson statistical table obtained values
dL = 0.46723 and dU = 1.896362. To obtain the composi-
tion of values dL ≤ dstat ≤ 4−dU . If we refer to the Durbin-
Watson statistic test, then the hypothesis H0 is accepted.
That is, there is no autocorrelation in the residual εt in
observational data. When compared with research conducted
by [36]. The results of our R-squared (98.16%) have a
better performance level than the previous study, which was
95.09%.

Testing the residual normality
Normality assumption testing is performed with the aim

of ensuring that residual εt the distribution follows a normal
distribution with a mean of zero and a certain variance.
Testing assumption of residual normality εt here is performed
using the Kolmogorov-Smirnov (KS) statistical test. Testing

assumption of residual normality is done by referring to
equations (12) and (13), using the help of Microsoft Excel
2010 software, and the results obtained values KSstat =
0.23741.

While at the level of significance α = 0.05 and with
degrees of freedom v = 7 − 1, from the statistical table of
Kolmogorov-Smirnov obtained critical value KS(0.05;6) =
0.483. So it shows that KSstat ≤ KS(0.05;6), thus the
hypothesis H0 be accepted. Meaning that residual εt distri-
bution follows normal distribution. Based on the estimation
result obtained the mean value of residual εt is µε = 3.5×
10−15 ≈ 0, and value of variance σ2

ε = 1.86323 × 10−16,
thus residual εt ∼ N(0, 1.86323× 10−16).

Cobb-Douglas model estimate based on OLS
Based on the above description, the model evaluation test

is met. The test results show that the data are normally
distributed, free from multicollinearity, no heteroscedasticity,
and no residual autocorrelation, and residual normal distri-
bution with zero mean and variance. Therefore, indicating
that the model estimator generated for GRDP is based on
expenditure is the best estimator. The estimate of multiple
linear regression equations for GRDP based on expenditure
is given by equation (19).

Estimating the parameters by using genetic algorithms
Referring to the equation of multiple linear regression

equations (19), in this section parameter estimation is used
β0, β3, β4, and β5, using a genetic algorithm approach. The
goal is to get parameter estimators β0, β3, β4, and β5, which
is better than the estimator estimation parameter using OLS.
Where parameter estimator results from genetic algorithm
approach is expected to produce residual quantity

∑
ε2t and

smaller MAPE values, as compared to the result parameter
estimators of OLS.

Estimated parameters β0, β3, β4, and β5, using a genetic
algorithm approach is done by referring to the structure
and stages contained in the genetic algorithm. The stages
of parameter estimation β0, β3, β4, and β5, using a genetic
algorithm in this research was done with the help of Matlab
R2013a software, as follows.
• Declaration of fitness function by click file→ new →
function.

• Type optimtool in the command window, then enter.
• Select ga-Genetic Algorithm on the solver. Enter the

fitness function that has been stored in the fitness
function box. In this case, the fitness function is the
residual value equation for each sequence of periods
(years).

• Enter the number of variables that the solution will look
for in the number of variables box. In this study the
sought is β0, β3, β4, and β5,therefore the number of
variables box is filled 4.

• Enter the lower limit and lower limit for parameter
values β0, β3, β4, and β5,on the bounds box. In this
study, the lower limit enter [0 0 0 0] in the lower box,
and [3.55 0.6 0.2 0.25] to the upper as the upper limit.

• Select roulette on selection function and single point on
crossover function.

• Select the stopping creteria, select the stop criteria for
the optimization process using genetic algorithm. In
this study, the stopping criterion used is the number
of generations.
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• Check the best fitness, best individual, and stopping
options in the plot functions.

• Click start to run the program and get the solution of
the problems sought.

The process of parameter estimation β0, β3, β4, and β5,
using genetic algorithms done iteratively according to the
sequence of years of GRDP data. In 2016 iteration sequence,
in this study yields the smallest residual value. So the values
of β0, β3, β4, and β5, on the order of the year is selected for
use in the formation of multiple linear regression models.
The parameter estimator values obtained using the genetic
algorithm are rounded to two decimal places β0 = 3.54, β3 =
0.52, β4 = 0.18, and β5 = 0.24. Using the parameter
estimator by referring to equation (3), can compile multiple
linear regression equations as follows:

A = 3.45 + 0.52D1 + 0.18D2 + 0.24D5 + ε (20)

• Testing the goodness of fit
To be more convincing result of estimation, in this
research parameter estimator resulted from genetic algo-
rithm approach, goodness of fit test is done. Goodness
of fit test of parameter estimator is done by partial
significance test, simultaneous significance test, and
coefficient of determination test.

• Testing the partial significance
Partial testing is done with the aim to find out how
significant each estimator contributes to the effect on
the dependent variable. Testing of partial significance
in this research is done by using statistic-t, refers to
equation (14).
For parameter estimator β̂0 = 3.54, the hypothesis used
is H0 : β̂0 = 0 and H1 : β̂0 6= 0. The statistical value
for β̂0 is tstat(β̂0)

is determined by reference of equation
(14), and values are obtained tstat(β̂0)

= 6.35082. While
at the level of significance α = 0.05 and degrees of
freedom v = 7 − 3 − 1, from the distribution statistic-
t table obtained critical value t(1−0.025;3) = 2.35366.
Therefore, tstat(β̂0)

> t(1−0.025;3), so hypothesis H0

rejected. Meaning that parameter estimator β̂0 = 3.54
is a significant contribution to affect the dependent
variable A.
Furthermore, in the same way, the test of partial sig-
nificance is made against the parameter estimator β̂3 =
0.52, β̂4 = 0.18, andβ̂5 = 0.24. The test results show
that the three parameter estimators, each contributing
significantly affect the dependent variable A.

• Testing significance simultaneously
Tests of simultaneous significance, conducted with the
aim to find out how much the significance level of all
parameter estimators together can affect the dependent
variable. Significant testing simultaneously in this study
was conducted by using statistical test F , which refers
to equation (15).
In testing the simultaneous significance of the parameter
estimator β̂3 = 0.52, β̂4 = 0.18, and β̂5 = 0.24, the
hypothesis used is H0 : β̂0 = β̂3 = β̂4 = β̂5 = 0,
and H1 : ∃β̂0 6= β̂3 6= β̂4 6= β̂5 6= 0. Statistic value
of Fstat is determined by using equation (15), and the
result is Fstat = 36420643. While at a significant level
α = 0.05, and with degrees of freedom v1 = 3 and v2 =

7−3−1, of the distribution Ftable obtained critical value
F(0.05:3:3) = 9.28. So it shows that Fstat > F(0.05:3:3),
therefore hypothesis H0 rejected. Meaning that param-
eter estimators β̂0 = 3.54, β̂3 = 0.52, β̂4 = 0.18,
and β̂5 = 0.24, simultaneously significantly affect the
dependent variable A.

Determine the coefficient of determination
Determination of coefficient of determination done with
purpose to know how strong correlation between independent
variable with dependent variable. Determination of coeffi-
cient of determination correlation between independent vari-
able D3, D4 and D5, with the dependent variable A, is deter-
mined using equation (16). The calculation results obtained
coefficient of determination R2 = 0.973 or R2 = 97.32%.
This shows that the correlation between the independent
variables D3, D4 and D5, with the dependent variable A,
is very strong.

Cobb-Douglas model estimator based on genetic algo-
rithm
Based on the estimation using genetic algorithm, and good-
ness of fit test and also very strong correlation, this shows
that multiple linear regression equation (20) is the best
estimator. Referring to equation (4), the multiple linear
regression equation estimator of equation (20) is as follows:

Â = 3.54 + 0.52D1 + 0.18D2 + 0.24D5 (21)

The estimate of multiple linear regression equations for
GRDP based on expenditure is given by equation (21).
Referring to equations (1) and (2), equation (21) can be
transformed into the Cobb-Douglas production function as
follows:

Ŷ = e3.54X0.52
3 X0.18

4 X0.24
5 (22)

Furthermore, because of the amount of elasticity β3+β4+
β5 = 0.52 + 0.18 + 0.24 = 0.94 or β3 + β4 + β5 < 1,
this shows the characteristic decreasing return to scale. That
is, when the expenditure is enlarged, the GRDP based on
expenditure will decrease.

Determine prediction error rate
Determination of prediction error rate is done in order to
know how well the estimation model is fit. The model
estimate is considered suitable if it can produce a very small
predictive error rate near zero. In this study to the level
of error prediction is determined by using Mean Absolute
Percentage Error (MAPE) in equation (17). For the purposes
of determining the error rate, it is necessary to predict the
sample. Predictions in the sample were performed using
multiple linear regressions (21), and the results can be shown
as the graph in Fig. 1.

Based on the prediction result in the sample done by using
equation (21), obtained MAPE value of 0.177 or 17.7%.
MAPE of 17.7% is a relatively small value, thus the estimator
of multiple linear regression equation (21) or Cobb-Douglas
production function (22) is suitable for modeling data of
GRDP based on expenditure of Garut Regency.

For an analysis of this level of accuracy, the actual data
of GRDP in Garut Regency is projected for 20 years. In the
same way, actual government consumption expenditure X3

data, gross domestic fixed capital formation, and net exports
X4, and inventory changes X5 are projected for 20 years.
Furthermore, the projected value of variables X3, X4, and
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Fig. 1. Graph of predictive and actual data

X5, substituted in equation (21), can be obtained from the
projected GRDP prediction data Ŷ . Graphs of actual data
projection and prediction data projection are presented in
Fig. 2.

Fig. 2. Graphs of Actual Data Projection and Prediction Data Projection

Using equation (16), Prediction Data Projection for a
period of 20 years has a MAPE value of 0.044902415 or
4.49%. This means that the model in equation (21) for the
20 years projected data has an accuracy rate of 95.91%. Next,
if noted Fig. 2, from the period of the 1st to the 10th year,
it appears that Actual Data Projection and Prediction Data
Projection graphs are relatively coherent. After the 10th year
period the graph began to move away between the two. This
shows that the model parameter estimates in equations (21)
and (22), at the latest every 10 years, need to be re-evaluated.
Also using equation (16), Prediction Data Projection for up
to 10 years has MAPE value of 0.032832684 or 3.28%.
This means that the model in equation (21) for the 10 years
projection data has an accuracy rate of 96.72%.

Furthermore, by using the Cobb-Douglas production func-
tion model (22), we can predict the out sample value of
GRDP based on expenditure for the two future periods. It
assumed that the value of each variable increases from the
previous year and the results as given in Table IX.

Comparison of estimation results from OLS and genetic
algorithm
Comparison of estimation results is done to determine the
level of suitability of the model, which is obtained from
the estimation by using OLS and genetic algorithm. Based
on the estimation results and the prediction error rate, it is

TABLE IX
PREDICTED VALUES OF GRDP BASED ON EXPENDITURE FOR

THE NEXT TWO PERIODS

Period Y X3 X4 X5

1 44,449,327 3,841,167 2,406,357 2,202,809

2 45,457,805 4,000,000 2,500,000 2,500,000

summarized in Table X.

TABLE X
COMPARISON OF MODEL ESTIMATION RESULTS

Parameters Method β̂0 β̂3 β̂4 β̂5
∑

ε2t MAPE

OLS 3.50 0.56 0.18 0.20 0.075 0.192

Genetic Algorithm 3.54 0.54 0.18 0.24 0.007 0.177

Based on Table X, it is shown that the residual squared
sum of the genetic algorithm approach is 0.007 smaller
than the ordinary least square (OLS) approach of 0.075.
The predicted error rate in the sample measured using
Mean Absolute Percentage Error (MAPE) obtained from the
estimator using the genetic algorithm is 0.177, smaller than
that of the OLS approach of 0.192. So it can be concluded
that estimation using genetic algorithm is better, compared
with using OLS. Therefore, furthermore to predict the value
of GRDP based on expenditure in Garut Regency, conducted
by using genetic algorithm approach. Also, MAPE values
obtained from OLS analysis and genetic algorithms are less
than 10%. This shows that the analysis obtained is very good
forecasting of GRDP values.

IV. CONCLUSION

In this paper, we have analyzed the modeling of GRDP
prediction based on expenditure using genetic algorithm
approach and the Cobb-Douglas model as a case study of
Garut Regency, Indonesia. Based on the result of analysis,
we can be concluded that the GRDP based on expenditure
in Garut Regency, significantly follow the Cobb-Douglas
model. The estimation of parameters performed by using a
genetic algorithm, obtained the estimator values are β0 =
3.54, β3 = 0.52, β4 = 0.18 and β5 = 0.24. The prediction
results of GRDP based on expenditure in Garut Regency
using a model estimator from the genetic algorithm approach
is IDR 44,449,327 and IDR 45,457,805. This value is used
for consideration in making a budget expenditure plan for
the Garut Regency.
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