
 

 

Abstract— This paper presents a method for particulate 

material PM10 modeling based on support vector regression 

(SVR). Specifically, we applied ε-support vector regression (ε-

SVR) and ν-support vector regression (ν-SVR) to a set of data 

recorded in the city of Santa Marta, Colombia, between 1999 

and 2016. The set of data was initially pre-processed, filtered 

and normalized, and then was used to fit the SVR models. The 

parametrization and accuracy of each regression model are 

reported here. We used a month as the unit of time for the 

models and analyzed the accuracy for one-step predictions. 

The final results of this work show the best parameters and 

prediction properties of the SVR models for pollution data 

modeling in Santa Marta. 

 

Index Terms— air quality, PM10, machine learning, support 

vector regression 

 

I. INTRODUCTION 

ir pollution in urban areas has become a relevant 

phenomenon for the scientific community. The study 

of this phenomenon is necessary to enact regulatory policies 

in order to reduce the impact of air pollution on human life 

and the environment [1]. 

A vast amount of documentation links the presence of air 

pollutants to several public health problems. Specifically, 

pollution is linked to a higher risk of respiratory, 

cardiovascular, and nervous-system diseases, general 

disabilities, and cognitive ability reduction [2]–[6]. 

Consequently, deeper understanding of the effect of air 

pollution on human health and the technological 

mechanisms for monitoring it are of great interest. 

Advancing in this field will allow governmental entities to 

propose optimal regulatory strategies to avoid health risks 

without affecting economic growth. 

According to the literature, primary air contaminants can 

be classified as conventional or non-conventional. 

Typically, conventional pollutants include carbon monoxide 

(CO), nitrogen dioxide ( 2NO ), ozone ( 3O ), sulphur oxide 

( 2SO ) and particulate matter 10PM  [7]–[9]. On the other 

hand, non-conventional pollutants include: Benzene 

( 66HC ), lead (Pb) and its composites, cadmium (Cd), 
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mercury (Hg), hydrogen Sulphur ( SH2 ), etc. [10]. It is 

important to note that there are more studies about the 

impact of conventional contaminants on human health than 

that of non-conventional contaminants. 

Particulate matter (PM) is often made up of small 

airborne particles with different diameters. These are 

classified as thick, fine, and ultra-fine particles with aero 

dynamical diameters of 2.5 to m10 ( 10PM ), less than 

m5.2 ( 5.2PM ), and smaller than m1.0 ( 1.0PM ) [11], 

respectively. These particles are mainly composed of dust 

and smoke particles emitted by wood burning, diesel 

vehicles, and industrial operations. Although, some studies 

indicate a correlation between health conditions and air 

pollution levels, the identification of toxic PM components 

is a complex task. The problem arises because PM is 

composed of a complex mixture of solid and liquid particles 

with significant variations in mass, size,  shape, volume, 

chemical nature, acidity, solubility, and origin [12]. 

The World Health Organization (WHO) has published the 

guidelines for air quality in Europe from 1987 to the present 

[13]; and recently, also for the rest of the world [14]. In 

Colombia, air-quality norms have been established over the 

past decade [10], [15]. These regulations state the maximum 

permissible values of contaminants for annual exposure. 

Table 1 lists some of these contaminants, the maximum 

permissible levels in Colombia, and the maximum levels 

recommended by WHO. It also contains a general measure 

defined as Total Suspended Particles (PST, from the 

Spanish Particulas Suspendidas Totales). 

In Colombia, the Ministerio de Ambiente (the Ministry of 

the Environment) elaborated a binding protocol for the 

monitoring and supervision of air quality. The protocol 

defines the target air quality for each year depending on a 

constant measurement process carried out by the Air Quality 

Vigilance System (SVCA, from the spanish Sistema de 

Vigilancia de Calidad del Aire). The design, location, and 

some other factors of the measurement process are also 

decided by the protocol [16].  

Environmental authorities in Colombia have monitored 170 

stations since 2010. Of these stations, 47%, are manually 

operated, 35% are automatically operated, and 18% are 

semi-automatically operated. 10PM  pollutants have been 

monitored in 85% of these stations, while 2SO  and 2NO  

contaminants have been monitored by 35%, 3O  by 25%, 

PST by 24%, CO by 23%, and 5.2PM  by 15% of these 
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stations [17]. 

According to a Colombian case-study by the World Bank 

[18], people are mostly concerned with contaminants due to 

their effect on the population with a high risk of illness and 

mortality, especially for children under five and the elderly. 

Urban air contamination caused three times more deaths 

than inadequate water supply in 2002, and five times more 

deaths than indoor air contamination. The study also reveals 

that the analyses of the impact caused by 10PM  cost almost 

0.8% of the Gross Domestic Product (GDP) in 2002, and 

1.12% in 2010. 

 
TABLE 1.  

MAXIMUM PERMISSIBLE VALUES FOR SEVERAL CONTAMINANTS IN 

COLOMBIA AND THE LEVELS RECOMMENDED BY THE WHO. 

Contaminant 

Maximum Permissible                   

value µg/m3  
Average exposure 

time 
Colombia WHO 

PST 100 150 Annual 

PM10 50 20 Annual 

PM2.5 25 10 Annual 

SO2 250 20 24 hours 

NO2 100 40 Annual 

O3 80 100 8 hours 

CO 10000 10000 8 hours 

 

Specifically, in the Magdalena department, of which 

Santa Marta is the capital, PST measurement from 2007-

2010 showed a progressive reduction from values of 

184µg/m3 mainly in areas close to coal shipping harbors. 

Some stations registered values of 88µg/m3, which were 

under the threshold. However, this value was very close to 

the maximum permissible  value (100 µg/m3) [17]. 

Several studies have attempted to predict air pollution 

level through computational models [14].  Furthermore, it is 

of interest to include different atmospheric or social 

variables in these models to establish correlations.  

The techniques used to forecast include multiple linear 

regression [15]–[18], data mining [19], wavelet analysis 

[20], hidden Markov models [21], [22], artificial neural 

networks [23]–[24], fuzzy logic, neuro-fuzzy logic, and 

stochastic simulation [25], among others [26].  

In this study, we describe the fitting of prediction models 

for contaminant concentration applied to a dataset 

registerered from 12 monitoring stations in Santa Marta, 

Colombia. The results exposed here were obtained by 

regression, using vector support machines, and were 

compared with previously reported work. The goal was to 

determine an accurate mathematical model to predict 

pollution concentration in our city. Our main contributions 

are the analysis of the data and the results of the regression 

models.  

The document is organized as follows: Section II describes 

the employed methodology. Section III contains the results 

obtained from the computational models. Finally, Section 

IV presents some conclusions from the analysis of the 

results.  

II. MATERIALS AND METHODS 

Constructing computational prediction models entails 

three main phases: data selection and preprocessing, model 

parametrization, and accuracy evaluation. In this study, we 

followed the general scheme shown in Fig. 1, which 

includes these three phases. 

A. Data description 

In Santa Marta, the public entity in charge of the SVCA, 

according to the law, is the Corporación Autónoma 

Regional (Corpamag). The purpose of this entity is to 

manage environmental issues and all issues related to 

renewable natural resources. Corpamag operates twelve air 

monitoring stations placed along the coastal area, within the 

municipal limits of the cities of Santa Marta and Ciénaga 

[19], as shown in Fig 2.  

 

 
 

Fig. 1.Block diagram of the working methodology. 

 

From these stations, only seven still contain fully 

functioning devices. The other stations are difficult to 

access, or have electrical supply issues. Eight measurement 

devices are available in the seven stations, the locations of 

which can be seen in white in Fig. 2. The other stations left 

can be seen in gray. Four out of the eight available stations 

measure PST, including PM10. 

The monitoring devices are mostly manually operated, 

and are able to manage high volumes of PST with 

volumetric flow controllers [20]. Table 2 shows the name of 

the twelve stations, the contaminants measured by each one, 

the operational state, and the year in which the station 

started to register data  [17], [19]. Table 3 shows the 

geographical localization of the stations. 

B. Scale transformation 

In order to have a standard time unit for all the stations, we 

transformed the registered data into a monthly time series by 

using a geometric mean estimation. For every subset of i 

samples taken during month j, the monthly jPM10
value is 

estimated by Equation 1. 

n

n

j

ijj PMPM 



1

,

1010
 

(1) 

where n is the number of valid samples taken in month j. 

In this study we worked with the data obtained from the 

seven active stations in Table 2. This data is freely available 
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in Corpamag’s web system. The original samples were 

registered in a time interval of three days [21]. 

Usually, time series must be transformed and smoothed 

using different kinds of filters. Smoothing the series 

improves data interpretation and generates more realistic 

and accurate results. In this work we employed the 

Savitzky-Golay filter [24], which fits low-degree 

polynomials to a set of sequential data using linear least 

squares and convolution [25]. This filter is based on a p 

grade polynomial regression with at least 2n+1 equidistant 

points (T-n, …, T0, …, Tn) [26], and is defined as 

follows[24]: 





m

mi

jij TC
n

T 1

1  (2) 

where jT  is the result after filtering. The index j  

corresponds to the current datum  being filtered, 

1jT corresponds to the original values in the time series, Ci 

is the coefficient for the ith value of  the filter, n is the 

number of convoluting integers equal to 2m+1 (see Fig. 3). 
TABLE 2.  

MONITORING STATIONS AND MEASURED VARIABLES. 

Id Name Contaminant State Starting Date 

1 Invemar PST Active 1999 

2 C. Santa Marta PM10 Active 2007 

3 C. Ejecutivo PST Active 1999 

4 Cajamag PST Inactive 2003 

5 Batallón PST Active 1999 

6 Molinos PM10 Active 2011 

7 Zuana PM10 Inactive 2007 

8 Aeropuerto PST Inactive 1999 

9 Don Jaca PM10 y PST Active 1999 

10 Alcatraces PM10 y PST Inactive 1999 

11 Papare PST Inactive 2005 

12 Costa Verde PM10 y PST Active 2008 

 
TABLE 3.  

GEOGRAPHICAL LOCALIZATION OF ACTIVE STATIONS WITHIN THE LIMITS OF 

THE SANTA MARTA MUNICIPALITY. 

Id 
Geographical localization 

Latitude Longitude 

1 11°15'02.8940” 11°15'02.8940” 

2 11°14'25.6063” 11°14'25.6063” 

3 11°14'23.3610” 11°14'23.3610” 

5 11°13'57.2185” 11°13'57.2185” 

6 11°11'40.5247” 11°11'40.5247” 

9 11°05'54.5046” 11°05'54.5046” 

 

C. Regression with support vector machines – SVR 

 The purpose of SVR is to fit a multivariate regression 

function f(x) over a set of N observations X ϵ RN. The fitting 

procedure transforms the observation set from a n-

dimensional space to a m-dimensional space, such that m>n. 

The transformation is performed by a function or kernel 

Φ:nm. Afterward, the procedure continues applying 

multiple linear regression methods in the new feature space.  

In this study, we use support vectors v (v-SVR) and epsilon 

regulated regression ɛ (ɛ-SVR) [27]–[29]. Let X={(x1,y1), 

…, (xi,yi)} be the observation set, where each element xi ϵ 

RN represents an input, and yi ϵ R1 represents an output 

value. The optimization problem of a v-SVR regression can 

be expressed with the following restrictions: 

 
 

Fig. 2. The monitoring stations located in Santa Marta, Colombia. 

 

 

 

Fig. 3. Savitzky-Golay filter.  
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where 10  v , C is the regularization parameter, and 

 ix  is the space transformation function, or kernel. The  

value is the cost function, or loss, and represents an error 

tolerance. Thus, if  i
T xw   is in the yi range, it is not 

considered to be an error. As described by [27] and [29],  a 

proper estimation of   is difficult. The reason is that the 
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procedure introduces a new parameter v to control the 

number of support vectors and training errors.  

Equations 3 and 4 can be solved by introducing Lagrange 

multipliers α*, η*, β ≥ 0. In this way, we obtain a dual 

Lagrange formulation for v≥0, C>0: 
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Therefore, the regression function is approximated as 

follows: 





l
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where b represents a systematic error or noise, and k is the 

dot product in the feature space yielded by the 

transformation function Φ or kernel: 

 

))().((),( yxyxk   (8) 

D. Parameter selection for the v-SVR model 

 Three parameters must be established to build the SVR 

regression model: C, ɛ, and δ. C is the penalty parameter. ɛ 

is the tolerance parameter, which measures the degree of 

fitting of the regression model to the training data. δ is a 

parameter related to the selected kernel function. Model 

performance and accuracy depend on parameter selection. 

There is no widely accepted procedure to determine hyper-

parameters for SVR models [30]–[32]. However, multiple 

approaches have been proposed to address the parameter 

selection issue [30], including exhaustive search, analytical 

techniques, and metaheuristic techniques, such as genetic 

algorithms and particle swarm optimization. 

 

Analytical parameter selection technique 

This technique uses standard SVM parametrization which 

employs the training data statistics and noise variance to set 

up the model’s parameters. The following equations 

compute parameters C and ɛ: 

 

)3,3max( yy yyC    

n

n
noise

)ln(
   

(9) 

Where y  is the mean value of the training data 

corresponding to the outputs 1Ryi  , and σy is the standard 

deviation of values y in the training data. The σnoise 

parameter is the standard deviation of  the noise estimation 

for the training set, and τ is a constant,  experimentally set to 

3 in [32]. In addition, kernels such as the Radial Basis 

Function (RBF) and the sigmoid function require an 

additional parameter δ that can be approximated by: 

 

)(~ xRangek   (10) 

where k is a constant in the range (0.2, 0.5), and x is the 

input component from the training set. Thus, the width 

parameter δ of the RBF kernel reflects the distribution or 

range of the training set’s x values. Although the estimated 

parameters do not generate high precision models, they 

constitute a more convenient approximation than using 

default values. 

 

Exhaustive search 

Exhaustive search is the most widely used parameter 

selection technique. It is a straightforward approach for 

parameter estimation. This technique is based on evaluating 

model effectiveness on a grid formed by parameter tuples, 

commonly comprised of values for C and ɛ. This approach 

is computationally expensive as it is a brute force method. 

However, the exhaustiveness also makes this technique the 

most precise when a big enough grid is searched. 

In order to perform exhaustive search, we select v training 

sets using the cross-validation procedure. Then, we select all 

the tuples (C, ɛ) in a grid that contains all the possible 

values in a given range, generated with a given step size. 

Due to the high computational cost it is recommended to 

divide the search into two phases. In the first phase (coarse 

search), the purpose is to localize regions where the optimal 

values can be found. This first search is carried out with a 

large step size.  In the second phase (fine search), the search 

is carried out within the candidate regions, therefore, a 

smaller step size is used. During the search, the model is 

parametrized and all tuples (C, ɛ) are evaluated on the 

training set. After carrying out grid search, the tuple which 

resulted in the highest accuracy is selected to compute the 

final SVR model [33]. Algorithm 1 describes the complete 

search procedure.  

 

Meta-heuristic techniques 

Meta-heuristic techniques are employed to reduce 

computational costs in complex and wide search spaces. The 

heuristics aim to minimize the cost of finding global optima. 

Although these techniques are more complicated to 

implement when compared to analytical or exhaustive 

search, the availability of repositories and libraries in 

modern programming languages makes it easier to employ 

meta-heuristic methods. Some of the methods that are 

employed the most in the literature include genetic 

algorithms [34]–[36], differential evolution [37], and 

particle swarm optimization [31], [38].  

 
ALGORITHM 1. AN EXHAUSTIVE SEARCH FOR PARAMETERS C AND Ɛ 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

Select v subsets using cross-validation 

Establish Δc and Δɛ as the step-sizes, define 

(C1, ɛ1) and (Cf, ɛ1) 

For C = C1 through Cf step = Δc 

   For ɛ= ɛ1 through ɛf step = Δɛ 

     Accu(C, ɛ) = Evaluate (C, ɛ) 

    Fstop 

Fstop 

Select the candidate region and define ( '

1C ,
'

1 ) 

y ( '

fC , '

f ) 

For C= '

1C through '

fC step =  '

f  

   For ɛ = 
'

1  through 
'

f  step = 
'

  

     Accu(C, ɛ) = Evaluate (C, ɛ) 

   Fstop 

Fstop 

(Coptimal, ɛoptimal)=minAccuracy(C, ɛ) 

 

This procedure can be easily extended to three parameters. 
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E. Kernel function selection  

The selection of the kernel function relies on the application 

knowledge domain and should be based on the training data 

distribution. Some typical kernel functions are linear, 

polynomial, gaussian, and RBF-based functions: 
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F. Error estimation 

Similar to parameter selection, a standard method for 

error estimation does not exist. We applied the Mean 

Absolute Error (MAE), the Root of the Mean Square Error 

(RMSE) and Mean Absolute Percentage Error (MAPE). 

However, since MAPE is vulnerable to divisions by zero or 

values close to zero, we also used the error measure called 

Mean Arc-Tangent Absolute Error (MAAPE). According to 

[39], MAAPE keeps the ideas behind MAPE and overcomes 

the zero or close-to-zero values problem. The method uses 

bounded influences for outliers, considering the ratio as an 

angles instead of a slope. Additionally, we used the Index of 

Agreement (IA) metric, which varies between 0 and 1, as a 

standardized measure of prediction error. The error metrics 

are defined as follows: 
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where iy  is the response value or ground truth, iŷ  is the 

value predicted by the SVR model, 
iy  is the mean of the 

ground truth data, and N is the number of datums for which 

predictions were carried out. 

 

III. RESULTS AND DISCUSSION 

 

We selected four stations for modeling particulate matter 

concentration behavior in Santa Marta. The criteria we 

employed were to select stations that were active and that 

had devices for measuring PM10 (see Table 2). Data for each 

station was published by the SVCA between 1999 and 

2015.  

Each dataset was transformed into a monthly time series 

as explained in Section 2.2. Fig. 4 shows the histogram of 

PM10 concentration for each station, along with the 

estimated normal density function in blue, and the kernel 

density estimation function in red.  

Each set of data was also smoothed by means of a 

Savitsky-Golay filter (Eq. 2). In order to adjust the filter’s 

parameters, we tried out different values for n. Fig. 5 shows 

the effect of the filter on a segment of a data series as the 

number of samples varies from 5 to 17. This way, we set 

n=13 and p=7.   

Fig. 6 displays the results of the smoothing algorithm for 

each data series. We can observe that the smoothed series 

maintain the behavior of the original data. The filter reduces 

pronounced high and lows values, as well as small 

fluctuations in short time lapses. 

We normalized the smoothed series before further 

processing, since normalization is a standard preprocessing 

step for facilitating convergence in SVR-based models. 

The next step was to parametrize the model for the 

training phase. We employed Algorithm 1 to perform an 

exhaustive search of the SVR model parameters. In the first 

search, we evaluated values in the (0,1) range for ɛ, with 

step size 0.1, and values in the (2-2, 210) range for parameter 

C, with step size 1. In the second phase we evaluated values 

in in the ranges (B-0.25, B+0.25) and (2B-1, 2B+1), for ɛ and C 

respectively, where B represents the best value found in the 

coarse search for both parameters. For this phase, the step 

sizes were 0.01 for ɛ and 1/6 for C. We used Linear, Radial, 

and Sigmoid kernel functions for each parameter tuple we 

evaluated. Radial and Sigmoid kernels required parameters 

δ and γ, which were also optimized with exhaustive search.  

Fig. 7 shows several examples of errors produced by 

different parameter tuples using ɛ-SVR modeling.  The left 

side of the figure shows the behavior of error for the first 

phase, while the right side shows the behavior of error for 

the second phase. Figures 7a, 7b, 7c, and 7d show the 

results for stations 2, 6, 9 and 12 respectively. Blue areas 

represent regions with the best precision,  and red areas 

represent regions with the worst precision. The scale on the 

right side of each figure is used for reference, as error levels 

colors in the two optimization phases can not be directly 

compared. 

    Once we obtained the best set of parameters for each time 

series, we evaluated two regression models: ɛ-SVR and v-

SVR. The v parameter for the latter is usually related to the 

proportion of desired support vectors with respect to the 

number of samples in the dataset. 
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a) 

 

b) 

 

c) 

 

d) 
Fig. 4. Histograms of PM10 monthly concentration for stations 2, 6, 9, and 

12, along with the estimated normal density functions and the kernel 

density functions. 

 

 
Figure 5. Effect of window size (n) variation on the Sgolay filter.  

 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 6. Real and smoothed data for stations a) station id 2, b) station id 6, c) 

station id 9 and d) station id 12.  

 

Contrary to ɛ-SVR, v-SVR  controls the amount of data 

employed for each support vector. Nevertheless, ɛ-SVR 

controls error by penalizing values bigger than ɛ based on 

the value assigned to C.  

Table 4 shows the results of each regression model for 

each time series using different kernels. Each value in the 

table represents the error values obtained in the coarse and 

fine exhaustive search phases. Additionally, the number of 

support vectors for each model is shown. The lowest error 
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for all time series was obtained by employing a radial kernel 

and v-SVR regression. It is important to note that v-SVR  

used significantly more support vectors than ɛ-SVR in the 

majority of the cases. 

After parameter selection and training, we tested the best 

model on ~70% of the data for each time series. Table 5 

shows accuracy measurements according to the metrics 

described in section II.F. Due to the varying properties of 

each metric, interpretation can be difficult. Some metrics 

depend on scale, while others can be symmetrical or 

asymmetrical. 

A widely employed metric is the Index of Agreement 

[40], which takes values in the [0-1] range, where 1 is a 

perfect match, and 0 indicates no agreement at all. The IA 

metric resulted in values close to 1 for all tests, showing 

there is high agreement between the model predictions and 

the true values for each test sample. One important feature 

of the IA index is the sensitivity to extreme. However, the 

Savitsky-Golay filter smoothed the series, and reduced the 

effect of such values. 

Although forecast was not our primary goal, we also 

estimated model forecast accuracies. For this purpose, we 

analyzed one-step forecast by training the models and 

computing error levels over all the the available data. Three 

scenarios were chosen for training: using raw data,  using 

smoothed data, and using smoothed and normalized data. In 

the first two scenarios, the error was estimated based on the 

original series values, while in the third scenario, the error 

was estimated based on a normalized version of the original 

data. Table 6 shows the errors estimated for each scenario. 

The third scenario yielded the smallest error because SVM 

assumes data to be in normalized.  

 Scaling or normalizing prevents large numerical values 

from dominating the model and small values from being 

treated as irrelevant. According to [41], the advantage of 

preprocecing data for SVR model is due to to the fact that 

kernel values usually depend on the inner product of the 

feature vectors. In this case, normalization avoids numerical 

issues such as floating point overflow and underflow. 

In [26], we show the accuracy of a neural network for 

predicting PM10 levels. Table 7 compares the results 

obtained by SVR and the Neural Network model using one-

step prediction. 

SVR-based models obtained the best results when predicting 

a single step. However, the models lose accuracy when 

predicting farther away future values. In these cases, Neural 

Network-based models tend to be more accurate; in other 

words, the SVR model does not have good forecasting 

capabilities when more than one-step prediction is needed.

 

TABLE 4.  

ACCURACY RESULTS FOR EACH KERNEL AND REGRESSION TYPE. THE PARAMETERS FOR EACH EXPERIMENT WERE SET UP BASED ON ALGORITHM 1. 

  Linear Polynomial Radial Sigmoid 

  Coarse Fine Coarse Fine Coarse Fine Coarse Fine 

E. Id Tipo perf vs perf vs perf vs perf vs perf vs perf vs perf vs perf vs 

2 
ε-SVR 0.7933 29 0.6089 22 0.7500 30 0.5639 22 0.3366 16 0.3328 27 1.9692 53 0.6260 17 

ν-SVR 0.7524 51 0.2789 58 0.7713 51 0.4341 93 0.2989 53 0.2785 57 2.1572 50 0.5429 97 

6 
ε-SVR 0.5571 15 0.4010 12 0.8034 16 0.4002 14 0.1042 37 0.0568 26 0.7038 11 0.4327 9 

ν-SVR 0.5742 26 0.2158 25 0.8297 26 0.4177 41 0.0979 27 0.0567 32 0.9975 27 0.4558 36 

9 
ε-SVR 0.6132 20 0.4652 16 0.7169 49 0.4230 27 0.4094 23 0.4142 23 0.6906 23 0.4609 21 

ν-SVR 0.6226 44 0.4330 61 0.7329 44 0.3945 85 0.4671 46 0.3804 85 0.8592 44 0.4251 61 

12 

 

ε-SVR 0.8250 9 0.1491 9 0.8616 28 0.7932 27 0.0240 46 0.0179 36 1.080 7 0.8732 9 

ν-SVR 0.9506 24 0.7310 29 0.7423 25 0.7334 36 0.0218 29 0.0137 46 1.1359 24 0.7232 38 

 
TABLE 5.  

ERROR ESTIMATION FOR THE BEST MODEL FOR EACH TIME-SERIES. 

E. id MAE RMSE MAPE(%) MAAPE(Rad) IA 

2 0.365307 0.467860 298.3705 0.923807 0.919576 

6 0.100931 0.151759 40.1036 0.874319 0.993306 

9 0.462434 0.554829 267.6361 0.881412 0.904340 

12 0.065141 0.103595 43.1614 0.896402 0.993000 

 
TABLE 6.  

ERROR MEASURE FOR ONE-STEP (MONTH) FORECASTING. 

 Raw Smooth Smooth-Norm 

E. id RMSE MAPE(%) RMSE MAPE(%) RMSE MAPE(%) 

2 5.07270 9.10091 2.28103 6.28736 0.30978 6.55967 

6 28.47664 63.37646 0.68135 4.03060 0.03393 2.17593 

9 19.48254 80.62483 18.45204 51.55000 0.73111 1.75134 

12 56.14660 66.21061 2.78011 5.98025 0.23700 3.78349 

 

TABLE 7.  

ERROR COMPARISON. 

E. id 

SVR NN 

RMSE RMSE 

2 0.30978 0.525 

6 0.03393 0.198 

9 0.73111 0.125 

12 0.23700 0.458 
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b) 

 
 

c) 

  
d) 

 
Fig. 7. Color map representation of coarse (left) and fine (right) parameter optimizations. The explored parameters are  and C for SVR, on four time-series. 

From top to bottom a),  b) , c), and d) correspond to stations 2, 6, 9, and 12 in Table 2, respectively. 

 

IV. CONCLUSIONS 

Methods for modeling pollution are essential for enacting 

regulatory policies. Traditional approaches for analyzing 

pollution data use the highest possible granularity, that is, at 

least one hour or a day measurement periods. The data used 

in this work, available for Santa Marta city, does not allow 

for this granularity level due to inadequate measurement 

equipment and human error in data collection procedures. 

For this reason, we scaled the time series to monthly data. 

Previous works focused to bio-inspired techniques for 

pollution modelling, while the method developed in this 

paper focuses on pre-processing the time series and using 

different SVR models. Our method generated more accurate 

models in comparison to previous work in one-step 

prediction scenarios. The best model on the Santa Marta 

pollution data was obtained using a -SVR regressor with a 

radial kernel function. 
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One of the main limitations of the models proposed in 

this work is the lack of additional variables, such as 

environmental or correlating factors like wind direction, 

industry locations, traffic, and temperature, among others. 

The construction of  a more robust and general model 

should include additional information, such as the 

aforementioned factors, as well as data adquired more 

regularly and with better measuring devices and 

methodology. 
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