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Abstract—Based on the movement mechanism of strip steel 

and main drive system during the continuous rolling process, 

the main drive system of each frame was simplified into a 

two-degree-of-freedom discrete model and the strip steel was 

simplified into an axially moving Euler beam. Then, the coupled 

mechanical model of transverse and longitudinal vibrations of 

the strip steel with torsional vibration of the main drive system 

was established. Meanwhile, the nonlinear vibration differential 

equations of the coupled model were derived with Hamilton's 

principle, and the solution method of the mathematical model 

was studied. In fact, the solution method of the mathematical 

model was a joint solution process of discrete matrix differential 

equations and continuous nonlinear differential equations. 

Therefore, the established model could be called the 

discrete-continuous coupled nonlinear vibration model. Then, 

the discrete-continuous coupled differential equations were 

jointly solved with the modified iteration method and the 

Kantorovich averaging method. Finally, by using the MATLAB 

simulation, the amplitude-frequency response curves of strip 

steel vibrations coupled with torsional vibration of main drive 

system were obtained to explore the influences of axial velocity 

and tension of strip steel on coupled vibration characteristics. 

The results improve the theoretical study on the vibration of 

rolling mill for engineering applications. 

 
Index Terms—coupled model, nonlinear dynamics, strip steel 

vibration, torsional vibration  

 

I. INTRODUCTION 

uring the continuous rolling process, strip steel 

vibrations are unavoidable [1]. The coupling between 

the elastoplastic body of strip steel and the main drive system 

directly affects the overall dynamic performance of rolling 

mills, but the effect has not been widely concerned. The 

influences of the strip steel vibration and the torsional 

vibration of main drive system on the overall dynamic 

performance of rolling mills cannot be ignored. The coupling 

mechanism between the strip steel vibrations and the 

torsional vibration of main drive system is relatively complex 

and the coupled vibration may cause serious consequences 

[2]. Therefore, it is necessary to explore the nonlinear 

vibrations of strip steel with the impact of torsional vibration 

of the main drive system. 

In recent years, the torsional vibration and strip steel 

vibration have been extensively researched. Liu Hongmin et 

al. found that the torsional vibration of rolling mills showed 

the chaotic characteristics [3]. Shi Peiming et al. obtained the 

amplitude frequency response equation of the nonlinear 

system under the combined action of motor disturbance 

torque and rolling load torque by using the multi-scale 

modeling method [4]. Zhang Yifang and Yan Xiaoqiang 

explored the coupling effects of the electric system on the 

torsional vibration of rolling mill transmission system [5]. 

Our group studied the influences of multi-clearance and 

slipping on the torsional vibration of the main drive system of 

rolling mill [6, 7]. In terms of strip steel vibrations, 

Swiatoniowski and Bar established the nonlinear vibration 

mathematical model based on the consideration of the 

coupling vibration effect between strip steel and adjacent 

frame systems and indicated the relationship between the 

rolling speed and the strip steel vibration [8, 9]. Kim et al. 

studied the parametric resonance of galvanized sheets in the 

process of metal plate coating, and analyzed the influences of 

axial velocity and time-varying tension on the plate's motion 

characteristics and stability [10]. Peng Yan and Sun Jianliang 

established the relationship model  among front tension, back 

tension, and rolling force of the strip steel in the roller 

systems according to the relationship between the rolling 

speed and the angular velocity of the roll and gained the 

influence of the torsional vibration on the shape of the strip 

steel [11, 12]. Tong Chaonan et al. established the dynamic 

friction equation of the roll gap and the distribution model of 

the forward rolling stress in the deformation zone and 

discussed the vertical vibration mechanism and stability of 

the cold rolling mills [13]. 

Nevertheless, the coupling relationship between strip steel 

vibrations and torsional vibration of main drive system was 

seldom reported. We previously established a nonlinear 

dynamic coupling model between roller and strip steel [14, 

15] and found that the torsional vibration of one frame main 

D 

Manuscript received June 4, 2018; revised August 12, 2019. This work 

was supported in part by the Natural Science Foundation of Hebei Province 

in China under Grant E2017203115, in part by the National Natural 

Science Foundation of China under Grant 61803327, in part by the Natural 

Science Foundation of Hebei Province in China under Grant 

F2016203263, and in part by the Youth Top-notch Project of Hebei 

Province under Grant BJ2019209. 

C. Gao is currently a Lecturer with Department of Mechanical and 

Electrical Engineering, Tangshan University, Tangshan City, Hebei 

Province, China(e-mail: 7921086@163.com). 

J. Li is currently an Associate Professor with Department of Automation, 

Yanshan University, Qinhuangdao City, Hebei Province, 

China(corresponding author to provide phone: 86-13833513655; fax: 

86-335-8072979; e-mail: jxli@ysu.edu.cn). 

L. Liu is currently a Lecturer with Department of Automation, Yanshan 

University, Qinhuangdao City, Hebei Province, China (e-mail: 

leliu@ysu.edu.cn). 

L. Wei is currently a Lecturer with Department of Mechanical and 

Electrical Engineering, Tangshan University, Tangshan City, Hebei 

Province, China (e-mail: ysuweili@163.com). 

Engineering Letters, 27:3, EL_27_3_06

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 

javascript:;


 

drive system would transfer to the adjacent frame main drive 

system through the strip steel, thus resulting in the 

large-amplitude vibration of the roller through simulating the 

torsional vibration of main drive system of the each frame in 

finite element software [16]. In this paper, we explored the 

coupling relationship between transverse and longitudinal 

vibrations of strip steel with the impact of the torsional 

vibration of main drive system of tandem mill. The main 

drive system of the mill was simplified into a 

two-degree-of-freedom discrete system. Based on the axial 

moving beam theory [17], the strip steel was simplified into 

an axially moving Euler beam continuum, and a 

discrete-continuous coupled vibration model was 

established. Moreover, the modified iteration method and the 

Kantorovich averaging method were used to solve the 

discrete-continuous coupled differential equations [18]. The 

results can provide the important theoretical basis for 

controlling and analyzing the strip steel vibrations in the 

continuous rolling process.  

II. MECHANICAL AND MATHEMATICAL MODELS 

The main drive system of each frame in tandem mills can 

be regarded as a spring-mass discrete system composed of 

some rigid inertial elements and elastic elements. Then, the 

main drive system can be simplified into a 

2-degree-of-freedom discrete model. The rotational inertia of 

each equivalent rotor are 1j  and 2j , respectively. The 

connecting shaft is equivalent to an elastic component and 

the torsional stiffness of each shaft are 1k  and 2k , 

respectively, as shown in Fig. 1. The strip steel is an elastic 

continuum whose width is much smaller than the length, and 

its bending stiffness is far less than the tensile stiffness. 

Based on the theory of axially moving beams, the strip steel is 

equivalent to an isotropic Euler beam continuum, and the 

strip steel and the main drive system of each frame are linked 

by the rollers. It is hypothesized that there is no relative 

movement between the rollers and that the strip steel and the 

upper and lower rollers are symmetrical, as shown in Fig. 2. 

The transverse displacement and longitudinal displacement 

are respectively  0 0, ,w x y t  and  0 0, ,u x y t ; the rolling 

speed is 0v ; the length of the strip steel between two adjacent 

frames is l ; The left and right tensions of strip steel are 

respectively 1P  and 2P   (let 1 2 0P P P  ). 

According to the Hamilton principle, the mathematical 

model of the strip steel vibrations with the impact of the 

torsional vibration of main drive system is established. The 

kinematic energy 
1T  of axially moving Euler beam can be 

written as 

0 0

2 2

1 0 , 0 , , 0 , 0
0

1
[( ) ( ) ]d

2

l

t x t xT A v u v u w v w x                    (1) 

where   is the density of strip steel; A  is the 

cross-sectional area of Euler beam; ,tu is the first-order 

partial derivative of 
0 0( , , )u x y t  with respect to t ; ,tw  is the 

first-order partial derivative of 
0 0( , , )w x y t  with respect to t ; 

0,xu  is the first-order partial derivative of 
0 0( , , )u x y t  with 

respect to 
0x ; 

0,xw  is the first-order partial derivative of 

0 0( , , )w x y t  with respect to 
0x ; other similar symbols 

represent the same meaning. 

 

 

Fig. 1.  Simplified model of the main drive system of a rolling mill 

 

Fig. 2.  Mechanical model of strip steel and main drive systems 

The potential energy U1 of Euler beam can be written as  

0 0 0 0

2 2 2

1 , , , 0
0

1 1
[ ( ) ]d

2 2

l

x x x xU EA u w EIw x                        (2) 

where E denotes the elastic modulus; I denotes the moment 

of inertia. 

The kinetic energy of roller T2 can be written as 

0

21

2 , 0 ,2
( )

2
t x

j
T u v u

r
                                                             (3) 

where j1 is the roller rotational inertia; r is the roller radius. 

The potential energy U2 of axial tension of Euler beam can 

be written as 

0 0

2

2 0 , , 0
0

1
( )d

2

l

x xU P u w x                                                 (4) 

Then, based on Hamilton equation, we get: 
1

2
1 2 1 2( )d 0

t

t
T T U U t                                                            

(5) 

After substituting Eqs. (1-4) into Eq. (5), the motion 

equations of strip steel with the influence of main drive 

system can be obtained as follows: 

0 0 0 0 0 0, 0 , 0 , , ,( ) 2 0tt x x x t x x xAu Av EA u Av u EAw w        (6) 

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2

, , 0 0 ,

2

0 , , , , , , ,

( )

3
2 ( ) 0

2

tt x x x x x x

x t x x x x x x x x x

Aw EIw Av P w

Av w EA w u u w w w

 



  

    
   

(7) 

The boundary of the main drive system can be written as 

When 
0 0x  , 

     
0, 0xEAru P r j k                                               (8) 

When 
0x l , 

     
0, 0xEAru P r j k       (9)

       
0 0 0 0, ,0 = = 0 = =0x x x xw w l w w l (10)

       

max

2 2

2 2

0, 0, , ,
0

mw

w t w t w l t w l t
k k

x xx x



   

   
  
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(11) 

where   1

2

0

0

j
j

j

 
  
 

;   1 1

1 1 2

k k
k

k k k

 
  

  
;   1

2

=





 
 
 

; 

  1

2

=





  
 
  

. 

Let 
0 0 0( )cosw x t  , 

2

0 0 0( ) cosu x t   can be got 

from Eq. (6). Then, after substituting w  and u into Eqs. 

(7-11), the Kantorovich averaging method is applied to the 

interval 
0[0, 2π ]  and the motion equations are 

transformed as: 

0 0 0 0 0

2

0 0, 0, 0,( ) 0x x x x xAv EA EA                                      (12) 

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2 2

0, 0 0 0, 0 0

2

0, 0, 0, 0, 0, 0,

( )

3 3
( ) 0

4 2

x x x x x x

x x x x x x x x x

EI Av P A

EA

     

     

  

   
            (13) 

The boundary of the main drive system can be written as 

when
0 0x  , 

0 0

0 0 0 0 0 0

2 2 1 2

0 0

1 2

2 21 1 1 2 1 2

0 0, 0 0

1 2

4 2 2 41 2

0 0, 0 0 0, 0 0

1 2

4

3 ( )

4
( )

( ) 3

16
( 8 )

( ) 3

x x

x x x x x x

k k
P r EAr

k k

j k j k k j
v

k k

j j
v v

k k



  

    

 


  
  

 

  


             (14) 

when 
0x l ,   

0 0

0 0 0 0 0 0

2 2 1 2

0 0

1 2

2 21 1 1 2 1 2

0 0, 0 0

1 2

4 2 2 41 2

0 0, 0 0 0, 0 0

1 2

4

3 ( )

4
( )

( ) 3

16
( 8 )

( ) 3

x x

x x x x x x

k k
P r EAr

k k

j k j k k j
v

k k

j j
v v

k k



  

    

  


  
  

 

  


               

(15) 

0 00 0 0, 0,(0) ( ) (0) ( ) 0x xl l                                         (16) 

0 0

1
( )
2

m                                                                           (17) 

For the convenience of calculation, the dimensionless 

quantities are introduced as follows: 

0x
x

l
 ; 0

l


  ; 0

l


  ; 0v v

E


 ; 

2

0P l
P

EI
 ; 

4

0

Al

EI


  ; 

2Al
S

I
 ;

2

i

i

j
J

Ar l
  1,2i  ; 

3

i

i

k l
K

EAr
  1,2i  . 

Then, the dimensionless forms of Eqs. (12-17) can be 

respectively obtained: 
2

, , ,( 1) 0xx x xxv                                                           (18) 

2 2

, ,

2

, , , , , ,

3 3
( ) 0

4 2

xxxx xx

xx x x xx x xx

Sv

S

   

     

 

   
                                 (19) 

The boundary of the main drive system can be written as 

when
0 0x  , 

2
21 2 1 1 1 2 1 2

, ,

1 2 1 2

2 2 4
41 2

, ,

1 2

4 4
( )

3 3

8 16
( )

( ) 3

x xx

xxxx xx

K K r J K J K K JP
v

S K K K K S

J J v
v

K K r S S


   

 
  

  
    

  

  


 

                     (20) 

when 
0x l , 

2
21 2 1 1 1 2 1 2

, ,

1 2 1 2

2 2 4
41 2

, ,

1 2

4 4
( )

3 3

8 16
( )

( ) 3

x xx

xxxx xx

K K r J K J K K JP
v

S K K K K S

J J v
v

K K r S S


   

 
  

  
     

  

  


 

                      (21) 

, ,(0) (1) (0) (1) 0x x                                               (22) 

1
( )
2

m                                                                             (23) 

III. SOLUTION OF VIBRATION EQUATIONS 

Due to the difficulty of solving the mathematical model, 

the modified iteration method is adopted to solve Eqs. 

(18-23). 

A. First-order approximate solution 

Firstly, all the nonlinear terms in Eq. (19) are omitted and 

the equations can be simplified as: 
2

1, 1 0xxxx                                                                    (24) 

The series solution of Eq. (24) is: 

         1 0 0 1 0 2 0 3 0x a M x a N x a I x a K x                   (25) 

where,  
2

4

0

0

( )

(4 )!

n
n

n

M x
n





 ; 
2

4 1

0

0

( )

(4 1)!

n
n

n

N x
n









 ;  

2
4 2

0

0

( )

(4 2)!

n
n

n

I x
n









 ; 
2

4 3

0

0

( )

(4 3)!

n
n

n

K x
n









 . 

Substituting  1 x  into Eqs. (22-23) gives 
1=16.71 . 

The coefficients of Eq. (25) are respectively:  

0 0a  ; 1 1 ma   ; 
2 0a  ; 

3 2 ma   ; 

where,  0
1

0 0 0 0

(1)

1 1
(1) ( ) ( ) (1)

2 2

K

N K N K








;  

0

2

0 0 0 0

(1)

1 1
(1) ( ) ( ) (1)

2 2

N

N K N K

 



. 

Thus, 

 
   

2 4 1 2 4 3

1 1

1 1 2

0 04 1 ! 4 3 !

n n n n

m

n n

x x
x

n n

 
   

  

 

 
  

   
                    (26) 

Substituting 
1( )x into Eq. (18) gives 

2

1 1, 1 22

1

2( 1)
x dx c x c

v
   

                                                  (27) 

The coefficients 
1c  and 

2c  can be derived from the 

boundary Eqs. (20-21): 
4

1 2

1 1, 1, 1, 1,2

1 1 2

2 22 1

1, 1, 1, 1,2 2 2

1

1
(3 )

( 1)( )

1 8
d

31 2( 1) 2( 1)

xx xxx x xxxx

x xx x x

x

J J v
c

Q v K K r

Q Q P
x

Sv v v

   

   



  

 


       



; 
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4

1 2
2 1, 1, 1, 1,2 2

1 1 2

2
2 21

2 1, 1, 1, 1,2

1 11

1
(3

( 1) ( )

8 ( 1) 1 4
d

2 3 2 3

xx xxx x xxxx

x xx x x

x

J J v
c

Q v K K r

Q P v P
Q x

S Q SQ

   

   



 

 


    




where,  
2 4

1 2 1 1 1 2 1 2 1 2
1 2

1 2 1 2 1 2

4( ) 16

3 ( ) 3 ( )

K K r K J K J K J J J
Q

K K S K K S r K K

  
  

  
, 

2 2
21 1 2 2 1 2 1 2

2

1 2 1 2

8

( )

J K J K K J J J v
Q v

K K rS K K

 
 

 
. 

B. Second-order modified iterative solution 

In the second-order iteration, substituting 
1( )x and 

1( )x  

into Eq. (19) and omitting the non-linear terms, one gives 
2 2

2, 2 1, 1, 1,xxxx xx x xx                                                 (28) 

where, 2
1

3

4
P Sc Sv    ; 

 

2

2

9

8 1

Sv

v
 


; 

 
,

2 2 (1) 4 (1) 4 2

1

0 0
x

n n

m n n

n n

x A x B x 
 



 

 
  

 
  ; 

 
,

(1) 4 1 (1) 4 1

1

1 0
xx

n n

m n n

n n

x C x D x 
 

 

 

 
  

 
  . 

where, (1) 2
0 1A  ; 

   
1 1

2 2 2 2 21
(1) 1 1 2 1

1 1 1 10 04 !(4 4 )! 4 2 !(4 4 2)!

( 1,2...)

n nn n

n

n n

A
n n n n n n

n

    

 

 
   



 
;

 
1

2
(1) 1 2 1

1 10

2
( 0,1...)

4 !(4 4 2)!

nn

n

n

B n
n n n

  



 
 

 ; 

 
2

(1) 1 1 1,2...
(4 1)!

n

nC n
n

 
 


;  

 
2

(1) 2 1 0,1...
(4 1)!

n

nD n
n

 
 


. 

Then, the solution of Eq. (28) is written as: 

 
   

2 4 1 2 4 3

2 1 2

0 0

4 1 4 1

1 0

3 4 1 4 1 4 3

1 0 0

4 1 ! 4 3 !

n n n n

m

n n

n n
m n n
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Substituting  2 x into Eqs. (22-23) gives: 

0A                                                                                   (30) 

where,  
T

1 2 1   ;  
11 12 13

21 22 23

31 32 33

a a a

A a a a

a a a

 
 


 
  

; 

 

2

11

0 4 1 !

n

n

a
n








 ;
 

4 12

21

0

1

4 1 ! 2

nn

n

a
n






 
  

  
 ;

 

2

31

1 4 1 !

n

n

a
n








 ;
 

2

12

0 4 3 !

n

n

a
n








 ; 

 

4 32

22

0

1

4 3 ! 2

nn

n

a
n






 
  

  
 ;

 

2

32

0 4 1 !

n

n

a
n








 ; 

2

13

1 0 1 0 0

n n m n n n

n n n n n

a A B C D E
    

    

  
       
   
     ; 

4 1 4 1

23

1 0

4 1 4 1 4 3

2

1 0 0

1 1

2 2

1 1 1
1

2 2 2

n n

n n

n n

n n n

m n n n

n n n

a A B

C D E

  

 

    

  

    
          

      
         

       

 

  

; 

    

    

  

33

1 0

2

1 0

0

4 1 4 2 4 1 4

4 1 4 2 4 1 4

4 3 4 2

n n

n n

m n n

n n

n

n

a n n A n nB

n n C n nD

n n E



 

 

 

 





 
     
 


    




   



 

 



. 

The analytic expression of vibration frequency 2  is 

obtained by det 0A  , then, the second-order modified 

iterative solution is determined. 

IV. CALCULATION CASE AND DISCUSSION 

GL-E36 strip steel between F2 and F3 frames of a mill is 

selected to simulate the rolling process by Matlab. The main 

parameters are listed as follows. The thickness of strip steel h 

is 18 mm; the dimensionless tension P  is 41 10 ; the 

rotational inertia of each equivalent rotor is 
1 800J  , 

2 600J  ; the torsional stiffness of each shaft section is 

4

1 6 10K   , 
4

2 8 10K   . The influences of the amplitude 

m  on the vibration frequency under the dimensionless axial 

velocities of 32 10 , 36 10 , 310 10 , and 
314 10  is 

displayed in Fig. 3. The vibration frequency of strip steel 

rises with the increase of the amplitude, and the vibration 

performance shows positive correlation. Moreover, when the 

axial velocity v  is smaller, the amplitude has the greater 

impact on the vibration frequency. When the axial velocity 

continues to increase, the curve gradually tends to be flat. 

This phenomenon indicates that the greater the strip rolling 
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speed is, the smaller the influence of the amplitude of the 

strip steel on the vibration frequency is. The higher rolling 

speed within a certain range will also increase economic 

benefits in production practices. 

Fig. 4 displays the dimensionless amplitude-frequency 

response curves under the different tensions of strip steel. 

The dimensionless axial velocity 2=1 10v  ; the rotational 

inertia of each equivalent rotor is 
1 800J  , 

2 600J  ; the 

torsional stiffness of each shaft section is 
4

1 6 10K   , 

4

2 8 10K   ; the dimensionless tension P  are respectively 

41 10 , 42 10 , 43 10 and 44 10 . The vibration frequency 

rises gradually with the increase of the amplitude, and the 

response curves intersect at the point 0.023m  . Under the 

lower amplitude condition, the tension of strip steel shows 

the insignificant effect on the vibration frequency. When 

0.023m  , the tension influences the vibration frequency 

greatly. In addition, with the increase of the tension, the 

rising trend of amplitude-frequency curves decreases 

obviously. That is to say, the larger the tension is, the more 

stable the vibration of strip steel is. 

In theoretical modeling, equivalent rotor 1 of the main 

drive system is the closest to the strip steel. Therefore, the 

influence of the rotational inertia on the strip steel vibrations 

cannot be neglected. When the rotational inertia of equivalent 

rotor 1 is changed, it will show a restraint effect on various 

factors of the strip steel vibrations.  
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Fig. 3.  Dimensionless amplitude-frequency response curves under different 

axial speeds 
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Fig. 4.  Dimensionless amplitude-frequency response curves under different 

tensions 

 

Fig. 5 shows the relationship between the frequency and 

the tension of strip steel under different conditions of 

rotational inertia 
1J . As shown in Fig. 5, the dimensionless 

amplitude is 0.06m  ; the dimensionless axial velocity of 

strip steel 2=1 10v  ; the dimensionless rotational inertia of 

the equivalent rotor 2 
2 600J  ; the dimensionless torsional 

stiffness of each shaft section is 
4

1 6 10K   , 
4

2 8 10K   . 

The influence of the tension of strip steel on the vibration 

frequency under the rotational inertia 
1J  of 200, 400, 600 

and 800 is illustrated. The vibration frequency decreases with 

the increase in the tension of strip steel. When 42 10P   , 

the tension has the great effect on the vibration frequency; 

when the tension continues to increase, the vibration of strip 

steel tends to be stable. In addition, when the rotational 

inertia increases, the vibration frequency increases gradually, 

but the increasing degree decreases gradually. When the 

rotational inertia increases to a certain value, the boundary of 

strip steel is close to the fixed condition. That is to say, when 

the rotational inertia is large, the influence of the change in 

the rotational inertia on the P   relationship curves is 

gradually weakened. 
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Fig. 5.  Relationship between tension and frequency under different 

rotational inertias 
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Fig. 6.  Relationship between velocity and frequency under different 

rotational inertias 

 

Fig. 6 shows the relationship curves between the 

frequency and the axial velocity under different conditions of 

rotational inertia 
1J . In Fig. 6, the dimensionless amplitude 
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0.06m  ; the dimensionless rotational inertia of equivalent 

rotor 2 
2 600J  ; the dimensionless torsional stiffness of 

each shaft section is 
4

1 6 10K   , 
4

2 8 10K   . The 

influence of axial velocity on vibration frequency, under the 

rotational inertias 
1J  of 200, 400, 600 and 800 is shown. 

With the increase of the axial velocity, the vibration 

frequency of strip steel decreases gradually. When 
32 10v   , the downward trend of the relationship curves 

v   is obvious, and the axial velocity has a great effect on 

the vibration frequency. When the velocity continues to 

increase, the vibration frequency curves gradually show the 

consistent trend. The declining trend of the relationship 

curves v   is more significant when the rotational inertia is 

smaller. In other words, the smaller rotational inertia near the 

roller end has the greater impact on the v   curves. 

V. CONCLUSION 

The motion state of the strip steel and the main drive 

systems during the rolling process was simulated in the study. 

The torsional vibration of the main drive system was 

simplified as a two-degree-of-freedom discrete model, and 

the strip steel vibrations were simplified as a transverse and 

longitudinal vibrations model of Euler beam. The mechanical 

model and mathematical model of discrete-continuous 

coupled model were then established based on roller 

coupling. Then, the analytical solution of the coupled 

vibration equations were solved by the modified iteration 

method and the Kantorovich averaging method.  

The amplitude-frequency responses of the strip steel 

vibration were analyzed based on the consideration of the 

different axial velocities and tensions of strip steel. The 

influences of axial velocity and tension of strip steel on the 

vibration frequency were discussed under different rotational 

inertias near the roller end. The larger rotational inertia had 

the greater impact on the P   curves and the smaller effect 

on the v   curves. Furthermore, with the infinite increase 

of the related vibration factors, the curves tend to be flat and 

the strip steel boundary tends to be fixed.  
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