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Abstract—This paper considers the problem of exponential
stabilization and L2-gain analysis for a class of nonlinear
switched uncertain systems with mixed time-varying delays
and exogenous disturbance.The parameter uncertainties with
unknown time-varying matrix and the mixed time delays
with upper bound are firstly given. A novel multi-Lyapunov-
Krasovskii functional dependent on the size of time delay
is constructed blue by utilizing delay-dependent Lyapunov
stability theory. Subsequently, based on Jensen’s inequality,
Schur complement lemma and a lower bound on the average
dwell time of the switching signal, some sufficient conditions
are presented to ensure the exponential stability with weighted
L2-gain performance of the nonlinear uncertain switched sys-
tems under the average dwell time (ADT) method. Finally, a
numerical example and a practical example of river pollution
control are given to illustrate the effectiveness of the approach
proposed in this paper.

Index Terms—Switched uncertain systems, Multi-Lyapunov-
Krasovskii functional, L2-gain, Mixed time delays, Average
dwell time.

I. INTRODUCTION

AS we all know, switched systems belong to a class im-
portant and typical of hybrid systems in control theory

and application fields, which is composed of a family of
continuous-time or discrete-time subsystems and a switching
scheme that orchestrates the switching among the subsystems
to ensure stability and the required system performance. Over
the past several decades, switched systems have attracted
considerable attention of researchers and engineers due main-
ly to the wide range of applications. For instance, power
system, flight control system, artificial intelligence system,
communication system, networked control system, power
electronic and automatic highway system can be modeled as
multiple switching subsystems for easy research and analysis
in some special cases [1-4] and the references therein. Sev-
eral important advances and significant achievements have
been made regarding the issue of switched systems [5-
7] in recent years. With the development of research, we
understand that the switching scheme determines switching
from one mode to another, which is the key component of
switched systems. In view of this, switched systems can be
generally divided into two categories: switched systems with
uncontrolled switching scheme and switched systems with
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controlled switching scheme. In the former, the occurrence of
switching among the subsystems cannot be controlled, e.g.,
[8] deals with the Markovian switching with uncontrolled
switching scheme. In the latter, the average dwell time
(ADT) method is an available scheme to obtain a satisfied
performance by designing the maximum switching numbers
over a operating interval. Recently, the (ADT) method has
been frequently used in many achievements. In this paper, we
also use the method to solve the switching problem between
subsystems.

Time delay is regarded as one of the most essential
factors influencing stability and undesirable performance of
a dynamical system, which leads frequently to receive signal
delay[9], data out of order[10], etc. Taking into account the
actual situation, the situation of time delay has appeared in
many important achievements and results in recent years.
For example, [11] used a Riccati type Lyapunov functional
to study a switching system composed of a finite number
of linear delay differential equations. [12] considered the
stability problem for a class of linear switched systems with
time-varying delay in the sense of Hurwitz convex combina-
tion, to name a few. However, in the actual engineering field,
there are often multiple time delays in control systems, i.e.,
the emergence of mixed time delays. To address this issue,
[13] studies the problem of H2 and H∞ mixed switching
control of uncertain discrete switched systems with mixed
time delays, and the method of dealing with time delay is
also given. By following this idea, in [14], combined with the
feature of mode-dependent ADT switching, the problem of
reachable set estimation and synthesis for a class of discrete-
time switched linear systems with time delay and bounded
peak disturbance are considered. Parameter uncertainties and
nonlinear are often coexisting in some practical systems,
which are often give rise to instability and oscillation. In
[15], a class of discrete-time switched nonlinear systems
with time delay is concerned, and system stability with
considering time-delay is extended to nonlinear switched
systems. Moreover, [16] applies a class of nonlinear switched
systems with time-varying delay to river pollution control
system. Based on the above discussion, these studies have
stimulated the research in this paper, which provide research
foundation.

Physical systems are often subject to many external distur-
bances during operation. And these factors are uncertain and
random. The impact of exogenous disturbance phenomena
on the system can not be ignored, which is confirmed by
a lot of literatures, see, e.g. [17-20]. The mean square
stability and exponential mean square stability of multi-
variable switched stochastic systems are investigated in [21].
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The problem of adaptive tracking control for a class of
switched stochastic nonlinear systems in nonstrict-feedback
form with unknown nonsymmetric actuator dead-zone and
arbitrary switchings is the focus of research in [22]. On the
other hand, L2-gain analysis of switched nonlinear systems
is an important issue in engineering applications, and has
also been widely related to many kinds of dynamic systems
with different performance [23,24]. In recent years, many
important results on L2-gain analysis and controller design
of switched systems have emerged. In [25], the L2-gain
analysis of switched linear systems with time-varying delay
is investigated. The research field is also constantly expand-
ing, such as delayed systems with missing measurements
[26] and uncertain switched system [27]. To the best of our
knowledge, many research results on the stability and L2-
gain gain performance of linear switched systems. However,
at present, it is noted that few studies have reported the study
of L2-gain control problems for a class of nonlinear switched
uncertain systems with mixed time-varying delays, and which
constitutes the motivation of the present study.

Different from the existing results, this article focus on the
study of the exponential stabilization and L2-gain analysis
of uncertain switched systems. In order to get better results,
the author considers the actual working characteristics of the
system and reduces the conservatism as much as possible.
The distinguish feature of this paper lies in two aspects.
(i) The parameter uncertainties with unknown time-varying
matrix and the mixed time delays with upper bound are
presented and constructing a novel Lyapunov-Krasovskii
functional related to the size of mixed time delays. (ii) The
stability of time-delay nonlinear switched uncertain systems
is classified by the iterative relationship between subsystems,
and the sufficient conditions for exponential stabilization of
the system under arbitrary switching are given. This part is
also the main idea of our article.

This paper studies the problem of exponential stabilization
and L2-gain for a class of switched nonlinear uncertain
systems with mixed delays. The sufficient condition for the
exponential stabilization with weighted L2-gain performance
are derived. The remainder of the paper is organized as
follows. In Sections 2, the problem description and prelimi-
naries are presented and some necessary lemmas are shown.
Section 3 is devoted to derive the results on exponential
stabilization and L2-gain analysis for a class of switching sig-
nals with average dwell time by considering multi-Lyapunov-
Krasovskii functional. In Section 4, numerical examples are
carried out. The paper is concluded in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, a class of switched nonlinear stochastic
systems with mixed delay is considered, which is represented
as follows:

ẋ(t) = Â1σ(t)(t)x(t) + Â2σ(t)(t)x(t− h(t))

+Bσ(t)fσ(t)(t, x(t), x(t− τ(t)))

+ Cσ(t)ω(t)+Eσ(t)u(t),

x(t) = φ(s),s ∈ [−max(hM , τM ),0],

z(t) = Dσ(t)x(t) + Fσ(t)ω(t);

(1)

where x(t) ∈ Rn, ω(t) ∈ Rq , φ(s) ∈ Rn and u(t) ∈ Rm

denote the state vector, exogenous disturbance, initial con-

dition and the control input, respectively. z(t) ∈ Rn is
the measured output, the switching signal σ(t) : [0,∞] →
N = {1, 2, . . . , n} is a piecewise continuous (from the right)
function, where n is the number of subsystems. Specifically,
denote, Σ : {(t0, σ(t)), · · · , (tk, σ(t)), · · · , k = 0, 1, 2, · · · },
where t0 is the initial switching instant and tk denotes the
kth switching instant.

When t ∈ [tk, tk+1), then, the ith subsystem is activated
and σ(tk) = i. Ā1i(t), Ā2i(t) (i ∈ N) is matrix with
parameter uncertainties, which satisfies

Â1i(t) = A1i +∆A1i(t), Â2i(t) = A2i +∆A2i(t),

[∆A1i(t) ∆A2i(t)] = HiFi(t)[M1i M2i],
(2)

Here, ∆A1i(t),∆A2i(t) is the term with parameter uncer-
tainty. Hi,M1i,M2i are matrices with appropriate dimen-
sion. Fi(t) is an unknown time-varying matrix with Lebesgue
measurable bounded elements Fi

T (t)Fi(t) ≤ I . For any
i ∈ N,Ai, Bi, Ci, Di, Fi are constant matrices. h(t) and τ(t)
denote the time-varying delay satisfying

0 ≤ h(t) ≤ hM , ḣ(t) ≤ h < 1;

0 ≤ τ(t) ≤ τM , τ̇(t) ≤ τ < 1.
(3)

fi(t, x(t), x(t − τ(t))) is an nonlinear perturbation func-
tion, which satisfies

fi
T (t, x(t), x(t− τ(t)))fi(t, x(t), x(t− τ(t)))

≤ xT (t)V T
i Vix(t) + xT (t− τ(t))ΛT

i Λix(t− τ(t)),
(4)

where Vi,Λi are known real constant matrices.
Remark 1. [16] investigates the exponential stabilization
for a class of switched nonlinear uncertain systems with
time-varying delay. But multiple time delays and exogenous
disturbance are not considered. In this paper, the parameter
uncertainties with unknown time-varying matrix and the
mixed time delays with upper bound are involved. Compared
with [16], the switched systems in this paper is more com-
prehensive and practical in engineering.

For system (1), we consider the state feedback given by

u(t) = Kσ(t)x(t). (5)

For convenience of discussion, we denote Ā1i = A1i+EiKi.
Then, the closed loop system of system (1) is denoted as:

ẋ(t) = (Ā1i +HiFi(t)M1i)x(t)

+ (A2i +HiFi(t)M2i)x(t− h(t))

+Bifi(t, x(t), x(t− τ(t))) + Ciω(t),

x(s) = φ(s),s ∈ [−max(hM , τM ),0],

z(t) = Dix(t) + Fiω(t);

(6)

In order to prove the main conclusions of this paper, the
following definitions and lemmas are introduced.

Definition 1.([25]) Nσ(t, T ) is the switching number of
σ(t) on an interval (t, T ). For any T > t ≥ 0, if

Nσ(t, T ) ≤ N0 + (T − t)/τα, (7)

holds for given N0 ≥ 0, τα ≥ 0, then the constant τα is
called the average dwell time. In this paper, N0 = 0.
Remark 2. Average dwell time (ADT) method is an available
scheme to obtain a satisfied performance by designing the
maximum switching numbers over a operating interval. The
concept of ”average dwell time” plays a key role in switched
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systems, and has been used in many control problems,
e.g., asymptotic behavior, asynchronous switching, L2 gain
analysis, H∞ control and dissipativity.

Definition 2.([28]) The equilibrium x∗ = 0 of system (1)
is said to be exponentially stable under any switching signal
σ(t), if the solution x(t) of system(1) satisfies that

∥x(t)∥ ≤ω sup
−max(−hM ,τM )≤θ≤0

∥x(t0 + θ)∥ e−λ(t−t0),

∀t ≥ t0, ω ≥ 1, λ > 0,
(8)

Definition 3.([29]) For α > 0 and γ > 0, the switched
system (1) is said to have weighted L2-gain γ, if under zero
initial condition φ(t) = 0, t ∈ [−hM , 0], it holds that∫ ∞

0

e−αszT (s)z(s)ds ≤ γ2

∫ ∞

0

ωT (s)ω(s)ds

Lemma 1.([30]) For any symmetric and positive definite
constant matrix M ∈ Rn×n and scalar r > 0, if there exists
a vector function ω : [0, r] → Rn, then

(

∫ γ

0

ω(s)ds)TM(

∫ γ

0

ω(s)ds) ≤ γ(

∫ γ

0

ωT (s)Mω(s)ds).

Lemma 2.([31]) Given constant matrices S1, S2, S3,
where S1 = ST

1 and S3 = ST
3 > 0, then if and only if[

S1 S2

ST
2 −S3

]
< 0.

Lemma 3.([31]) U, V,W and X are real matrices, and
XT = X . If V TV ≤ I, then X+UVW+WTV TUT < 0. if
and only if there exists scalar ε > 0 such that X+ εUUT +
ε−1WTW < 0.

III. MAIN RESULTS

In this section, the stability and L2-gain analysis of the
switched nonlinear systems (1) is shown in detail.

A. Stability analysis

Theorem 1. For given positive constants α, hM , τM and
µ ≥ 1, if there exist positive constant εi and symmetric and
positive definite matrices Pi, Q1i, Q2i, R1i, R2i,Ki such that
the following matrix inequalities hold for all i, j ∈ M, i ̸= j,

Pi ≤ µPj , Q1i ≤ µQ1j , Q2i ≤ µQ2j ,

R1i ≤ µR1j , R2i ≤ µR2j ,
(9)

Ξi =



ϕi
11 PiA2i 0 PiBi 0 0 PiHi εiM

T
1i

∗ ϕi
22 0 0 0 0 0 εiM

T
2i

∗ ∗ ϕi
33 0 0 0 0 0

∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ ϕi

55 0 0 0
∗ ∗ ∗ ∗ ∗ ϕi

66 0 0
∗ ∗ ∗ ∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εiI


< 0

(10)
where
ϕi
11 = PiĀ1i + ĀT

1iPi +Q1i +Q2i + h2
MR1i + τ2MR2i

+ αPi + V T
i Vi,

ϕi
22 = −(1− h)e−αhMQ1i, ϕ

i
55 = −e−αhMR1i,

ϕi
33 = ΛT

i Λi − (1− τ)e−ατMQ2i, ϕi
66 = −e−ατMR2i.

then system (1) is exponentially stabilizable under the feed-
back control (5) for any switching signal with the average
dwell time satisfying

τa > τ∗a =
lnµ

α
(11)

Proof: When t ∈ [tk, tk+1), i.e. the ith subsystem is
activated, the Lyapunov-Krasovskii functional is constructed
as follows:

V (t) =xT (t)Pσ(t)x(t) +

∫ t

t−h(t)

eα(s−t)xT (s)Q1σ(t)x(s)ds

+ hM

∫ 0

−hM

∫ t

t+θ

eα(s−t)xT (s)R1σ(t)x(s)dsdθ

+

∫ t

t−τ(t)

eα(s−t)xT (s)Q2σ(t)x(s)ds

+ τM

∫ 0

−τM

∫ t

t+θ

eα(s−t)xT (s)R2σ(t)x(s)dsdθ,

(12)
Derived V (t) along the trajectory of the system

V̇ (t) =2xT (t)Piẋ(t) + xT (t)Q1ix(t) + xT (t)Q2ix(t)

− (1− τ̇(t))e−ατ(t)xT (t− τ(t))Q2ix(t− τ(t))

+ h2
MxT (t)R1ix(t) + +τ2MxT (t)R2ix(t)

− α

∫ t

t−h(t)

eα(s−t)xT (s)Q1ix(s)ds

− hM

∫ 0

−hM

eαθxT (t+ θ)R1ix(t+ θ)dθ

− α

∫ t

t−τ(t)

eα(s−t)xT (s)Q2ix(s)ds

− τM

∫ 0

−τM

eαθxT (t+ θ)R2ix(t+ θ)dθ

− αhM

∫ 0

−hM

∫ t

t+θ

eα(s−t)xT (s)R1ix(s)dsdθ

− (1− ḣ(t))e−αh(t)xT (t− h(t))Q1ix(t− h(t))

− ατM

∫ 0

−τM

∫ t

t+θ

eα(s−t)xT (s)R2ix(s)dsdθ

≤xT (t)[PiĀ1i + ĀT
1iPi +Q1i +Q2i + h2

MR1i + τ2MR2i

+ (HiFi(t)M1i)
TPi + PiHiFi(t)M1i]x(t)

+ xT (t− h(t))(AT
2iPi + (HiFi(t)M2i)

TPi)x(t)

+ xT (t)(PiA2i + PiHiFi(t)M2i)x(t− h(t))

+ xT (t)PiBifi(t, x(t), x(t− τ(t)))

+ fT
i (t, x(t), x(t− τ(t)))BT

i Pix(t)

− (1− h)e−αhMxT (t− h(t))Q‘1ix(t− h(t))

− (1− τ)e−ατMxT (t− τ(t))Q2ix(t− τ(t))

− α

∫ t

t−h(t)

eα(s−t)xT (s)Q1ix(s)ds

− α

∫ t

t−τ(t)

eα(s−t)xT (s)Q2ix(s)ds

− τM

∫ t

t−τM

e−ατMxT (s)R2ix(s)ds

− hM

∫ t

t−hM

e−αhMxT (s)R1ix(s)ds
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− αhM

∫ 0

−hM

∫ t

t+θ

eα(s−t)xT (s)R1ix(s)dsdθ

− ατM

∫ 0

−τM

∫ t

t+θ

eα(s−t)xT (s)R2ix(s)dsdθ.

(13)

Inequality (4) can be deformed as follows

xT (t)V T
i Vix(t) + xT (t− τ(t))ΛT

i Λix(t− τ(t))

− fT
i (t, x(t), x(t− τ(t)))fi(t, x(t), x(t− τ(t))) ≥ 0.

(14)
According Lemma 1, we get

− hM

∫ t

t−hM

e−αhMxT (s)R1ix(s)ds

≤ −e−αhM

(∫ t

t−hM

x(s)ds

)T

R1i

(∫ t

t−hM

x(s)ds

)
;

− τM

∫ t

t−τM

e−ατMxT (s)R2ix(s)ds

≤ −e−ατM

(∫ t

t−τM

x(s)ds

)T

R2i

(∫ t

t−τM

x(s)ds

)
.

(15)
Combining equation (14) with (15), it is easy to obtained

V̇ (t) + αV (t)

≤xT (t)[PiĀ1i + ĀT
1iPi +Q1i +Q2i + h2

MRi

+ V T
i Vi + αPi]x(t) + xT (t)PiBifi(t, x(t), x(t− τ(t)))

+ xT (t− τ(t))(ΛT
i Λi − (1− τ)e−ατMQ2i)x(t− τ(t))

− (1− h)e−αhMxT (t− h(t))Q‘1ix(t− h(t))

− fT
i (t, x(t), x(t− τ(t)))fi(t, x(t), x(t− τ(t)))

+ fT
i (t, x(t), x(t− τ(t)))BT

i Pix(t)

+ xT (t− h(t))(AT
2iPi + (HiFi(t)M2i)

TPi)x(t)

+ xT (t)(PiA2i + PiHiFi(t)M2i)x(t− h(t))

− e−αhM

(∫ t

t−hM

x(s)ds

)T

R1i

(∫ t

t−hM

x(s)ds

)
− e−ατM

(∫ t

t−τM

x(s)ds

)T

R2i

(∫ t

t−τM

x(s)ds

)
(16)

Then,
V̇ (t) + αV (t) ≤ ϕT (t)Ξ̄iϕ(t), (17)

where

ϕ(t) = [xT (t) xT (t− h(t)) xT (t− τ(t))

fT
i (t, x(t), x(t− τ(t)))

(∫ t

t−hM
x(s)ds

)T(∫ t

t−τM
x(s)ds

)T

]T ,

Ξ̄i =


ϕ̄i
11 ϕi

12 0 PiBi 0 0
∗ ϕi

22 0 0 0 0
∗ ∗ ϕi

33 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ϕi

55 0
∗ ∗ ∗ ∗ ∗ ϕi

66

 ,

ϕ̄i
11 = PiĀ1i + ĀT

1iPi +Q1i +Q2i + h2
MR1i + τ2MR2i

+ αPi + V T
i Vi + PiHiFi(t)M1i + (HiFi(t)M1i)

TPi,

ϕi
12 = PiA2i + PiHiFi(t)M2i.

By lemma 2 and 3, we can get Ξ̄i < 0. Therefore,

V̇ (t)− αV (t) ≤ 0. (18)

When t ∈ [tk, tk+1), simultaneously integrating from tk
to t on both sides of the above formula, we can get

V (t) = Vσ(t)(t) ≤ e−α(t−tk)Vσ(tk)(tk), tk ≤ t < tk+1.
(19)

Using (9), (19) and k = Nσ(t, t0) ≤ (t−t0)/τa, we obtain

V (t) ≤ e−α(t−tk)µVσ(tk−)(tk
−)

≤ · · · ≤ e−α(t−t0)µkVσ(t0−)(t0
−)

≤ e−(α−lnµ/τa)(t−t0)Vσ(t0)(t0).

(20)

Recalling (12), it is clear that

V (t) ≥ a∥x(t)∥2,
V (t0) ≤ b sup

−max(hM,τM )≤θ≤0

∥x(t0 + θ)∥2, (21)

where
a = min

i∈N
λmin(Pi),

b = max
i∈N

λmax(Pi) + hM max
i∈N

λmax(Q1i)

+τM max
i∈N

λmax(Q2i) + 0.5h3
M max

i∈N
λmax(R1i)

+0.5τ3M max
i∈N

λmax(R2i).

Hence,

∥x(t)∥ ≤
√

b

a
sup

−(hM,τM )≤θ≤0

∥x(t0 + θ)∥ e− 1
2 (α−lnµ/τa)(t−t0).

(22)
By Definition 2, system (1) is exponentially stability.
Remark 3. In [12], based on Lyapunov stability theory, linear
switched systems with time-varying delay is addressed by av-
erage dwell time (ADT) method, and some delay-dependent
sufficient conditions are presented to ensure the exponential
stability of linear switched systems. However, this paper con-
siders the problem of exponential stabilization and L2-gain
analysis for a class of nonlinear switched uncertain systems
with mixed time-varying delays and exogenous disturbance.
Specifically, when ω(t) = 0 and f(t, x(t), x(t− τ(t))) = 0,
[12] can be seen as a special case of this paper.

B. L2-gain analysis

The exponential stabilization with L2-gain performance
for the system (1) is shown in this section.

Theorem 2. For given positive constants α, γ, hM and
τM , if there exist symmetric and positive definite matrices
Pi, Q1i, Q2i, R1i, R2i and Ki, such that the following matrix
inequalities hold for all i, j ∈ M ,

Pi ≤ µPj , Q1i ≤ µQ1j , Q2i ≤ µQ2j ,

R1i ≤ µR1j , R2i ≤ µR2j ,
(23)

Ξ̃i =



ϕ̃i
11 PiA2i 0 PiBi 0 0 ϕi

17 PiHi εiM
T
1i

∗ ϕi
22 0 0 0 0 0 0 εiM

T
2i

∗ ∗ ϕi
33 0 0 0 0 0 0

∗ ∗ ∗ −I 0 0 0 0 0
∗ ∗ ∗ ∗ ϕi

55 0 0 0 0
∗ ∗ ∗ ∗ ∗ ϕi

66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ϕi

77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −εiI


< 0

(24)
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where

ϕi
11 = PiĀ1i + ĀT

1iPi +Q1i +Q2i

+ h2
MR1i + τ2MR2i + αPi + V T

i Vi +DT
i Di,

ϕi
77 = FT

i Fi − γ2I, ϕi
17 = PiCi +DT

i Fi,

then the system (1) is exponentially stabilizable and has
weighted L2-gain γ under the feedback control (5) for any
switching signal with the average dwell time τa > τ∗a = lnµ

α .
Proof: When t ∈ [tk, tk+1), we choose Lyapunov-

Krasovskii functional as (12). We have

V̇ (t) + αV (t) + zT (t)z(t)− γ2ωT (t)ω(t)

≤ xT (t)[PiĀ1i + ĀT
1iPi +Q1i +Q2i + PiHiFi(t)M1i

+ h2
MRi + (HiFi(t)M1i)

TPi + τ2MRi + V T
i Vi + αPi

+DT
i Di]x(t) + fT

i (t, x(t), x(t− τ(t)))BT
i Pix(t)

+ xT (t− τ(t))(ΛT
i Λi − (1− τ)e−ατMQ2i)x(t− τ(t))

+ xT (t)PiBifi(t, x(t), x(t− τ(t)))

+ xT (t− h(t))(AT
2iPi + (HiFi(t)M2i)

TPi)x(t)

+ xT (t)(PiA2i + PiHiFi(t)M2i)x(t− h(t))

+ ωT (t)(FT
i Fi − γ2I)ω(t)

+ ωT (t)(CT
i Pi + FT

i Di)x(t) + xT (t)(PiCi +DT
i Fi)ω(t)

− (1− h)e−αhMxT (t− h(t))Q‘1ix(t− h(t))

− fT
i (t, x(t), x(t− d(t)))fi(t, x(t), x(t− d(t)))

− e−αhM

(∫ t

t−hM

x(s)ds

)T

R1i

(∫ t

t−hM

x(s)ds

)
− e−ατM

(∫ t

t−τM

x(s)ds

)T

R2i

(∫ t

t−τM

x(s)ds

)
.

Defined
ϕ̄(t) = [xT (t) xT (t− h(t)) xT (t− τ(t))

fT
i (t, x(t), x(t− τ(t)))

(∫ t

t−hM
x(s)ds

)T(∫ t

t−τM
x(s)ds

)T

ωT (t)]T .

Therefore,

V̇ (t) + αV (t) + zT (t)z(t)− γ2ωT (t)ω(t) ≤ ϕ̄T (t)Ξ̂iϕ̄(t).

where

Ξ̂i =



ϕ̂i
11 ϕi

12 0 PiBi 0 0 ϕi
17

∗ ϕi
22 0 0 0 0 0

∗ ∗ ϕi
33 0 0 0 0

∗ ∗ ∗ −I 0 0 0
∗ ∗ ∗ ∗ ϕi

55 0 0
∗ ∗ ∗ ∗ ∗ ϕi

66 0
∗ ∗ ∗ ∗ ∗ ∗ ϕi

77


ϕ̂i
11 =PiĀ1i + ĀT

1iPi +Q1i +Q2i + h2
MR1i

+ τ2MR2i + αPi + V T
i Vi +DT

i Di

+ PiHiFi(t)M1i + (HiFi(t)M1i)
TPi.

By lemma 2 and 3, Ξ̂i < 0 is equivalent with Ξ̃i < 0. So,

V̇ (t) + αV (t) + zT (t)z(t)− γ2ωT (t)ω(t) ≤ 0. (25)

When t ∈ [tk, tk+1), simultaneously integrating from tk
to t on both sides of the above formula, we can get

V (t) ≤ e−α(t−tk)V (tk)−
∫ t

tk

e−α(t−s)Λ(s)ds. (26)

where Λ(t) = zT (t)z(t)− γ2ωT (t)ω(t).
Considering equations (9) and (26), we have

V (t) ≤ e−α(t−tk)V (tk)−
∫ t

tk

e−α(t−s)Λ(s)ds

≤ µkV (t0)e
−αt − µk

∫ t1

0

e−α(t−s)Λ(s)ds

− µk−1

∫ t2

t1

e−α(t−s)Λ(s)ds

− · · · − µk−1

∫ t

tk

e−α(t−s)Λ(s)ds

≤ e−αt+Nσ(0,t) lnuV (t0)−
∫ t

0

e−αt+Nσ(s,t) lnuΛ(s)ds.

(27)
Then,

0 ≤ −
∫ t

0

e−α(t−s)+Nσ(s,t) lnuΛ(s)ds. (28)

Using e−Nσ(0,t) lnµ to pre-multiply and post-multiply the
left term of (28), we have∫ t

0

e−α(t−s)−Nσ(0,s) lnuzT (s)z(s)ds

≤
∫ t

0

e−α(t−s)−Nσ(0,s) lnuγ2ωT (s)ω(s)ds.

(29)

When Nσ(0, s) ≤ s
τa
, τa > τ∗a = lnu

α , it easy to obtain
Nσ(0, s) lnu ≤ αs. So,∫ t

0

e−α(t−s)−αszT (s)z(s)ds ≤
∫ t

0

e−α(t−s)γ2ωT (s)ω(s)ds.

(30)
Integrating the above formula from 0 to ∞, then∫ ∞

0

e−αszT (s)z(s)ds ≤
∫ ∞

0

γ2ωT (s)ω(s)ds.

The proof is completed.
Remark 4. In this paper, a novel multi-Lyapunov-

Krasovskii functional dependent on the size of time de-
lay is constructed by utilizing delay-dependent Lyapunov
stability theory. Nevertheless, a common Lyapunov func-
tional(CLF) is often employed to characterize stability in
some results. For example, [9] deals with the stabilization of
switched linear systems with time-varying delay in switching
occurrence detection by a common Lyapunov functional
(CLF) under online and offline feedback mechanisms. But,
a common Lyapunov functional approach might become
too conservative when stabilization of switched systems
is addressed in certain circumstances. Therefore, multiple
Lyapunov-Krasovskii functional plays an important role in
switched system analysis and control synthesis. Compared
with [9], the conservativeness of our results is lower.

IV. NUMERICAL EXAMPLES

The following a numerical example and a practical exam-
ple are presented to confirm the effectiveness of the proposed
approach.
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Example 1. Consider system (1) composed of two sub-
systems with the following parameters:

A11 =

[
−2.2 0
0 −2.3

]
, A21 =

[
−1.2 0
0.3 −1.8

]
,

A12 =

[
−2.4 0
0 −2.5

]
, A22 =

[
−1.5 0
0.1 −1.2

]
,

B1 =

[
0.3 0
0 0.2

]
, B2 =

[
0.2 0
0 0.3

]
.

C1 =

[
−0.4 0.1
0 −0.2

]
, C2 =

[
−0.2 0.1
0 −0.4

]
,

D1 =

[
−0.4 0.1
0.1 −0.6

]
, D2 =

[
−0.3 0.1
0.1 −0.3

]
,

F1 =

[
−0.3 0.5
0.3 −0.4

]
, F2 =

[
−0.2 0.4
0.3 −0.3

]
,

V1 =

[
−0.2 0.1
0.2 −0.4

]
, V2 =

[
−0.1 0.1
0.2 −0.2

]
,

Λ1 =

[
−0.4 0.1
0.1 −0.6

]
, Λ2 =

[
−0.4 0.2
0.4 −0.6

]
.

H1 =

[
0.1 0.4
0.2 0.2

]
, H2 =

[
0.3 0.4
0.1 0.1

]
,

M11 =

[
−0.1 0.1
0.1 0.2

]
, M21 =

[
−0.5 0.6
0.2 0.1

]
,

M12 =

[
−0.2 0.1
0.3 0.6

]
, M22 =

[
−0.6 0.5
0.2 0.1

]
,

E1 =

[
0.3
0.4

]
, E2 =

[
0.3
0.2

]
.

Choose α= 0.4, hM = 0.8, τM = 0.5, h = 0.6, τ =
0.2, µ = 1.9, γ = 0.4, ε1 = ε2 = 0.3, h(t) = 0.2+0.6 sin(t),
τ(t) = 0.3 + 0.2 cos(t), then the average dwell time is
τa > 1.61.

Suppose

ω1(t) = (0.1e−2t 0.2 cos t)T , ω2(t) = (0.2 sin t e−3t)T ,

f1(t, x(t), x(t− τ(t))) =

(
0.1(sin(x1(t) + cos t)
0.1 sin(x2(t− τ(t)))

)
,

f2(t, x(t), x(t− τ(t))) =

(
0.2(cos(x1(t) + sin t)
0.2 cos(x2(t− τ(t)))

)
.

By solving (23) and (24), we can get

P1 =

[
1.0986 −0.2581
−0.2581 2.4007

]
,

P2 =

[
4.0239 −2.1765
−2.1765 5.2809

]
,

Q11 =

[
0.8648 0.0638
0.0638 1.8921

]
,

Q21 =

[
0.5830 −0.1727
−0.1727 1.0523

]
,

R11 =

[
0.5967 −0.1600
−0.1600 1.0986

]
,

R21 =

[
0.6637 −0.1506
−0.1506 1.2250

]
,

Q12 =

[
0.8779 −0.3854
−0.3854 0.9377

]
,

Q22 =

[
1.4513 −0.4700
−0.4700 1.6580

]
,

R12 =

[
2.2820 −0.5920
−0.5920 2.3275

]
,

R22 =

[
1.6272 −0.4477
−0.4477 1.9051

]
.

Then, the controller gains are

K1 =
[
0.7825 1.5995

]
, K2 =

[
1.7965 −0.8958

]
.

Switching signal and state response diagrams are shown in
Figure 1 and 2 with the initial state is x(0) = (−1.5, 1.5)T ,
which shown the exponential stabilization with L2-gain
property for the system system (1).
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Fig. 1: The switching law.
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Fig. 2: State response of the closed-loop system.

Example 2. The problem of water pollution is an important
issue facing every country, and its development is of great
significance to social development. In this section, a practical
example of applying switched uncertain systems to water
pollution control systems will be demonstrated.

To facilitate the creation of models for water pollution
control systems, we denote r(t) and q(t) as the concentra-
tions per unit volume of biochemical oxygen demand and
dissolved oxygen, respectively. Simultaneously, let r∗ and q∗

be the expected steady values of r(t) and q(t) in a reach of a
polluted river, respectively. Given by the following definition:

x1(t) = r(t)−r∗, x2(t) = q(t)−q∗, x(t) =
[
xT
1 (t) x

T
2 (t)]

T

As a result, the water pollution dynamic equation for x(t)
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can be expressed as:

ẋ(t) = Â1(t)x(t) + Â2(t)x(t− h(t)) + Eu(t) + ω(t)

+Bf(t, x(t), x(t− τ(t)))
(31)

where

Â1(t) = A1 +∆A1(t), Â2(t) = A2 +∆A2(t),

[∆A1(t) ∆A2(t)] = HF (t)[M1 M2],

A1 =

[
−p1 − ϵ1 − ϵ2 0

−p3 −p2 − ϵ1 − ϵ2

]
,

A2 =

[
ϵ2 0
0 ϵ2

]
, B =

[
ϵ1
1

]
,

pi(i = 1, 2, 3), ϵ1 and ϵ2 are known constants. u(t) =[
uT
1 (t) u

T
2 (t)]

T , ω(t),∆A1(t),∆A2(t) denote the control
variable, disturbance input, uncertainty of river pollution
system, respectively. Moreover, we can learn the engineering
significance of these parameters from [36] and [37]. This
paper assumes that system actuators have good performance
or failure, and according to the actual situation, we know
that at least one actuator can ensure the normal operation
of the river pollution system. In addition, for simulation of
our purposes, we considered disturbance input and nonlinear
term in this paper. As a consequence, the river pollution
system (31) can be modeled as a switched system consisting
of two subsystems:


ẋ(t) =Â11(t)x(t) + Â21(t)x(t− h(t)) + Eu(t) + ω(t)

+Bf(t, x(t), x(t− τ(t))), no failures occur;

ẋ(t) =Â12(t)x(t) + Â22(t)x(t− h(t)) + Eu(t) + ω(t)

+Bf(t, x(t), x(t− τ(t))), failures occur.
(32)

Next, we choose p1 = 1.4, p2 = 0.7, p3 = 1.6, ϵ1 =
0.3, ϵ2 = 0.2, and get that

A1 =

[
−1.9 0
−1.6 −1.2

]
, A2 =

[
0.2 0
0 0.2

]
, E =

[
0.3
1

]
.

Choose

H1 =

[
0.1 0.2
0.2 0.1

]
, H2 =

[
0.2 0.1
0.1 0.2

]
,

M1 =

[
0.1 0.2
0.2 0.3

]
, M2 =

[
0.2 0.1
0.1 0.3

]
,

α = 0.55, hM = 0.7, τM = 0.4, h = 0.5, τ = 0.3, µ =
1.25, γ = 0.4, ε1 = ε2 = 0.3, h(t) = 0.3+0.4 sin(t), τ(t) =
0.2 + 0.1 cos(t), ω(t) = (0.1e−4t 0.2e−5t)T ,

f(t, x(t), x(t− τ(t))) =

(
0.02 sin(x1(t))

0.01 sin(x2(t− τ(t)))

)
,

By solving (23) and (24), we can get

P1 =

[
0.8562 0.1726
0.1726 1.1362

]
,

P2 =

[
1.1553 0.2658
0.2658 1.4221

]
,

Q11 =

[
1.0482 0.1227
0.1227 1.2356

]
,

Q21 =

[
0.9266 0.2639
0.2639 1.1356

]
,

R11 =

[
1.2973 −0.1232
−0.1232 1.0263

]
,

R21 =

[
1.0376 −0.1063
−0.1063 1.3253

]
,

Q12 =

[
1.2368 0.2448
0.2448 1.0792

]
,

Q22 =

[
1.3543 −0.1407
0.1407 1.4857

]
,

R12 =

[
1.3043 −0.2631
−0.2631 1.9331

]
,

R22 =

[
1.3586 −0.3258
−0.3258 1.7263

]
.

Then, the controller gains of switched systems (31) are

K1 =
[
1.3852 2.1275

]
, K2 =

[
0.8225 1.2764

]
.

x1

x2

Fig. 3: State response of the subsystem 1.

Fig.3 describes state response of the subsystem 1 with the
initial condition x(0) = (0.5,−0.5)T , and we can see that
the subsystem 1 is unstable. Simultaneously, Fig.4 describes
state response of the subsystem 2 with the initial condition
x(0) = (0.5,−0.5)T . Through the designed switching signal
and our approach, we can get that the system (32) with
the initial condition x(0) = (0.5,−0.5)T is exponentially
stabilizable for any switching signal under the feedback
control form Fig. 5. As a consequence, this verifies the
effectiveness of our results in the control of river pollution
process.

Remark 5. In Example 2, a practical example of river pol-
lution control is carried out to demonstrate the effectiveness
of the proposed method. According to the actual situation,
we know that the system actuators have good performance or
failure. Based on the switching theory, we can guarantee that
at least one actuator can ensure the normal operation of the
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x1

x2

Fig. 4: State response of the subsystem 2.

x1

x2

Fig. 5: State response of the closed-loop system (32).

river pollution system. Therefore, the river pollution system
(31) can be modeled as a switched system. Moreover, the
disturbance input and nonlinear term are considered in this
paper. Compared with [36] and [37], our approaches have a
larger application range in engineering.

V. CONCLUSIONS

This paper mainly studies the exponential stabilization and
L2-gain analysis of a class of nonlinear switched uncertain
systems with mixed time-varying delays and exogenous
disturbance. Due to the occurrence of parameter uncertainties
and mixed time-varying delays in switched systems, a nov-
el delay-dependent multi-Lyapunov-Krasovskii functional is
constructed to reduce conservation caused by mixed time-
varying delays. Based on Lyapunov stability theory, some
delay-dependent sufficient conditions of exponential stabi-
lization with weighted L2-gain performance for nonlinear
uncertain time-delay switched systems are obtained by utiliz-
ing the average dwell time method under arbitrary switching
signals. Finally, a second-order numerical example and a
practical example of river pollution control are carried out,
which is solved by Matlab simulation. At the same time, the

result of state response diagram for the switched systems are
provided to show the effectiveness of the method.

Through the research of this paper, it is important to derive
a less conservative condition for exponential stabilization and
L2-gain disturbance attenuation performance for nonlinear
switched systems with delay, and expand theoretical to other
fields[32-35]. As a part of future work, the optimization
of uncertainties and reduction of conservation is my next
research plans.
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