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Abstract—A nonautonomous discrete competitive system with
time delays is considered in this work. By using some analytical
techniques, sufficient conditions on the coefficients are given to
guarantee that one of the species will be driven to extinction
while the other one will stabilize at a certain solution of a
nonlinear single species model. Finally, numerical simulations
are presented to illustrate the feasibility and effectiveness of the
results.

Index Terms—Discrete competitive system; Permanence; Ex-
tinction; Global attractivity; Delay.

I. INTRODUCTION

IN the last decade, the application of theories of functional
differential equations in mathematical ecology has devel-

oped rapidly. Various delayed models have been proposed
in the study of population dynamics, ecology, and epidemic.
In fact, more realistic population dynamics should take into
account the effect of delay. Also, delay differential equations
may exhibit much more complicated dynamic behaviors than
ordinary differential equations since a delay could cause a
stable equilibrium to become unstable and cause the popula-
tion to fluctuate (see [1]). One of the famous models for dy-
namics of population is the delay Lotka-Volterra competitive
system. Owing to its theoretical and practical significance,
various delay competitive systems have been studied exten-
sively (see [2-8]). Although much progress has been seen
for Lotka-Volterra competitive systems, such systems are not
well studied in the sense that most results are continuous
time versions related. Many authors [9-11] have argued that
the discrete time models governed by difference equations
are more appropriate than the continuous ones when the
populations have non-overlapping generations. Discrete time
models can also provide efficient computational models of
continuous models for numerical simulations. Therefore, the
dynamic behaviors of population models governed by differ-
ence equations have been studied by many authors, see [12-
18] and the references cited therein. Noting that some studies
of the dynamics of natural populations indicate that the
density-dependent population regulation probably takes place
over many generations [19,20], many authors have discussed
the influence of many past generations on the density of
species population and discussed the dynamic behaviors of
competitive, predator-prey, and cooperative systems (see [21-
24]).

Motivated by the above work [19-24], in this paper we
will investigate the following discrete time non-autonomous
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two-species competitive system with delays

x1(n+ 1) = x1(n) exp

[
r1(n)−

m∑
τ=0

a1τ (n)x1(n− τ)

−
m∑

τ=0

c2τ (n)x2(n− τ)

1 + x2(n− τ)

]
,

x2(n+ 1) = x2(n) exp

[
r2(n)−

m∑
τ=0

a2τ (n)x2(n− τ)

−
m∑

τ=0

c1τ (n)x1(n− τ)

1 + x1(n− τ)

]
, (1)

with the initial conditions

xi(−τ) > 0, xi(0) > 0, τ = 0, 1, 2, · · · ,m, i = 1, 2, (2)

where xi(n) represents the density of population xi at the nth
generation, ri(n) is the intrinsic growth rate of population
xi at the nth generation, aiτ (n) measures the intraspecific
influence of the (n−τ)th generation of population xi on the
density of its own population, and cjτ (n) stands for the in-
terspecific influence of the (n−τ)th generation of population
xj on population xi, i, j = 1, 2 and i ̸= j. The coefficients
ri(n), aiτ (n), and ciτ (n), i = 1, 2 are bounded positive
sequences. The exponential form of the equations in system
(1) ensures that any forward trajectory {(x1(n), x2(n))

T } of
system (1) with initial conditions (2) remains positive for all
n ∈ {0, 1, 2, · · · }. For the investigations of some continuous
versions of (1) we refer to [25,26] and the references cited
therein.

Permanence (or extinction) of biotic population is a signif-
icant and comprehensive problem in biomathematics. Up to
now, there are seldom results on the extinction and stability
of species in a discrete population dynamic system, especial-
ly for a population dynamic system with delay. The main
purpose of this paper is to study the extinction and stability
of system (1), and derive some sufficient conditions which
guarantee one of the species will be driven to extinction while
the other one will be globally attractive with any positive
solution of a discrete logistic equation.

For the simplicity and convenience of exposition, through-
out this paper we let Z,Z+, R+ and R2 denote the sets of all
integers, nonnegative integers, nonnegative real numbers and
two-dimensional Euclidian vector space, respectively. Mean-
while, we denote that a∗ = sup

n∈z+

a(n) and a∗ = inf
n∈z+

a(n)

for any bounded sequence {a(n)}.

II. PRELIMINARIES

In this section, we shall develop some preliminary results,
which will be used to prove the main results.
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Lemma 1. ([27]) Assume that {x(n)} satisfies

x(n+ 1) ≥ x(n) exp{r(n)(1− ax(n))}, n ≥ n0,

lim sup
n→+∞

x(n) ≤ x∗ and x(n0) > 0, where a is a positive

constant such that ax∗ > 1 and n0 ∈ N . Then

lim inf
n→+∞

x(n) ≥ 1

a
exp{r∗(1− ax∗)}.

Lemma 2. ([27]) Assume that {x(n)} satisfies x(n) > 0
and

x(n+ 1) ≤ x(n) exp{r(n)(1− ax(n))}

for n ∈ [n1,+∞), where a is a positive constant. Then

lim sup
n→+∞

x(n) ≤ 1

ar∗
exp(r∗ − 1).

Lemma 3. For every solution (x1(n), x2(n))
T of (1) we

have

lim sup
n→+∞

xi(n) ≤ x∗
i , i = 1, 2,

where x∗
i = 1

ai0∗
exp(r∗i − 1).

Proof: Let x̃(n) = (x1(n), x2(n))
T be any positive

solution of system (1). From the first equation of (1),

x1(n+ 1) ≤ x1(n) exp[r1(n)− a10(n)x1(n)

]
= x1(n) exp

[
r1(n)

(
1− a10(n)x1(n)

r1(n)

)]
≤ x1(n) exp

[
r1(n)

(
1− a10∗x1(n)

r∗1

)]
.

By Lemma 2, we have

lim sup
n→+∞

x1(n) ≤
1

a10∗
exp(r∗1 − 1).

Similarly, from the second equation of (1), we have

lim sup
n→+∞

x2(n) ≤
1

a20∗
exp(r∗2 − 1).

This completes the proof.

III. EXTINCTION OF x2 AND STABILITY OF x1

In this section, we study the extinction of x2 but x1 of
system (1).

Theorem 1. Assume that the inequality

lim sup
n→+∞

r2(n)

r1(n)
< lim inf

n→+∞

{
c1τ (n)

a1τ (n)(1 + x∗
1)
,
a2τ (n)

c2τ (n)

}
(3)

holds, then the species x2 will be driven to extinction, that
is, for any positive solution (x1(n), x2(n))

T of system (1),
x2(n) → 0 exponentially as n → +∞.

Proof: Let x̃(n) = (x1(n), x2(n))
T be a solution of

system (1) with initial conditions (2). First we show that
x2(n) → 0 exponentially as n → +∞.

From (1), we have

lnx1(n+ 1)− lnx1(n) = r1(n)−
m∑

τ=0

a1τ (n)x1(n− τ)

−
m∑

τ=0

c2τ (n)x2(n− τ)

1 + x2(n− τ)
,

lnx2(n+ 1)− lnx2(n) = r2(n)−
m∑

τ=0

a2τ (n)x2(n− τ)

−
m∑

τ=0

c1τ (n)x1(n− τ)

1 + x1(n− τ)
. (4)

By inequality (3), we can choose α, β, ε > 0 such that

lim sup
n→+∞

r2(n)

r1(n)
<

α

β
− ε <

α

β

< lim inf
n→+∞

{
c1τ (n)

a1τ (n)(1 + x∗
1)
,
a2τ (n)

c2τ (n)

}
,(5)

then there exists an N1 > 0 such that for all n > N1,

r2(n)β − r1(n)α < −εβr1(n) < −εβr1∗ < 0; (6)
αa1τ (n)(1 + x∗

1)− βc1τ (n) < 0; (7)
αc2τ (n)− βa2τ (n) < 0. (8)

It follows from (4), (6)-(8) that

β(lnx2(n+ 1)− lnx2(n))− α(lnx1(n+ 1)

− lnx1(n))

= (r2(n)β − r1(n)α)

−
m∑

τ=0

(
βa2τ (n)−

αc2τ (n)

1 + x2(n− τ)

)
x2(n− τ)

−
m∑

τ=0

(
βc1τ (n)

1 + x1(n− τ)
− αa1τ (n)

)
x1(n− τ)

≤ r2(n)β − r1(n)α

< −εβr1∗ < 0. (9)

Summating both side of inequality (9) from 0 to n−1, then

β(lnx2(n)− lnx2(0))− α(lnx1(n)

− lnx1(0)) < −εβr1∗n.

So, we can get

x2(n) <

[(
x1(n)

x1(0)

)α

(x2(0))
β

] 1
β

exp(−εr1∗n)

<

[(
x∗
1

x1(0)

)α

(x2(0))
β

] 1
β

exp(−εr1∗n). (10)

Therefore, we have x2(n) → 0 exponentially as n → +∞.
This completes the proof.

Lemma 4. Under the assumption of Theorem 1. Further-
more, assume that

µ = r1∗ −
m∑

τ=1

a∗1τx
∗
1 > 0. (11)

Let x̃(n) = (x1(n), x2(n))
T be any positive solution of

system (1), then there exists a positive constant x1∗ such
that

lim inf
n→+∞

x1(n) ≥ x1∗,
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where

x1∗ =
µ

a∗10
exp

[
(r∗1 −

m∑
τ=1

a∗1τx
∗
1)

(
1− a∗10x

∗
1

µ

)]
is a constant independent of any positive solution of system
(1), i.e., the first species x1 of system (1) is permanent.

Proof: By Lemma 3 and Theorem 1,

lim sup
n→+∞

x1(n) ≤ x∗
1, lim

n→+∞
x2(n) = 0,

for arbitrarily small positive constant ε > 0, there exists an
N2 > 0 such that

x1(n) < x∗
1 + ε, x2(n) < ε

for all n > N2.
From the first equation of (1), for n > N2 +m,

x1(n+ 1) = x1(n) exp

[
r1(n)−

m∑
τ=0

a1τ (n)x1(n− τ)

−
m∑

τ=0

c2τ (n)x2(n− τ)

1 + x2(n− τ)

]
> x1(n) exp

[
r1(n)− a∗10x1(n)

−
m∑

τ=1

a∗1τx
∗
1 −

m∑
τ=0

c∗2τε

]
.

Let ε → 0, then

x1(n+ 1) ≥ x1(n) exp

[
(r1(n)

−
m∑

τ=1

a∗1τx
∗
1)

(
1− a∗10x1(n)

r1(n)−
m∑

τ=1
a∗1τx

∗
1

)]

≥ x1(n) exp

[
(r1(n)

−
m∑

τ=1

a∗1τx
∗
1)

(
1− a∗10x1(n)

µ

)]
,

where µ = r1∗ −
m∑

τ=1
a∗1τx

∗
1. It is easy to check that the

inequality a∗
10x

∗
1

µ > 1 holds. By Lemma 1, we have

lim inf
n→+∞

x1(n) ≥ µ

a∗10
exp

[
(r∗1 −

m∑
τ=1

a∗1τx
∗
1)

(
1− a∗10x

∗
1

µ

)]
, x1∗.

This completes the proof.
Consider the following discrete logistic equation

x(n+ 1) = x(n) exp

[
r1(n)−

m∑
τ=0

a1τ (n)x(n− τ)

]
. (12)

Lemma 5. ([28]) Assume that {r1(n)} and {a1τ (n)}
are bounded positive sequences, then any positive solution
{x(n)} of (12) satisfies

x1∗ < lim inf
n→+∞

x(n) ≤ lim sup
n→+∞

x(n) ≤ x∗
1.

Theorem 2. Under the assumptions of Theorem 1, Lemmas
4 and 5. Furthermore, suppose that there exists a constant
δ > 0 such that

min

{
a10∗,

2

x∗
1

− a∗10

}
−ma∗1 ≥ δ, (13)

where a∗1 = max{a∗1τ : τ = 1, 2, · · · ,m}. Let x̃(n) =
(x1(n), x2(n))

T be any positive solution of system (1), then
the species x2 will be driven to extinction, that is, x2(n) → 0
as n → +∞, and x1(n) → x(n) as n → +∞, where x(n)
is any positive solution of equation (12).

Proof: Let x̃(n) = (x1(n), x2(n))
T be a solution of

system (1) with initial conditions (2). From Lemmas 3 and
4, x1(n) is bounded above and below by positive constants
on [0,+∞). To finish the proof of Theorem 2, it is enough
to show that x1(n) → x(n) as n → +∞, where x(n) is any
positive solution of equation (12).

Let

V1(n) = | lnx1(n)− lnx(n)|, (14)

then

x1(n) = x(n) exp{y(n)}.

From the first equation of (1) and equation (12), we have

lnx1(n+ 1)− lnx1(n) = r1(n)−
m∑

τ=0

a1τ (n)x1(n− τ)

−
m∑

τ=0

c2τ (n)x2(n− τ)

1 + x2(n− τ)
,

lnx(n+ 1)− lnx(n) = r1(n)−
m∑

τ=0

a1τ (n)x(n− τ),

then

V1(n+ 1) = | lnx1(n+ 1)− lnx(n+ 1)|

=

∣∣∣∣ lnx1(n)− lnx(n)

−
m∑

τ=0

a1τ (n)[x1(n− τ)− x(n− τ)]

−
m∑

τ=0

c2τ (n)x2(n− τ)

1 + x2(n− τ)

∣∣∣∣
=

∣∣∣∣ lnx1(n)− lnx(n)− a10(n)[x1(n)− x(n)]

−
m∑

τ=1

a1τ (n)[x1(n− τ)− x(n− τ)]

−
m∑

τ=0

c2τ (n)x2(n− τ)

1 + x2(n− τ)

∣∣∣∣
≤ | lnx1(n)− lnx(n)− a10(n)[x1(n)− x(n)]|

+
m∑

τ=1

a1τ (n)|x1(n− τ)− x(n− τ)|

+
m∑

τ=0

c2τ (n)x2(n− τ)

1 + x2(n− τ)
. (15)

Using the mean value theorem, then

lnx1(n)− lnx(n) =
1

ζ(n)
(x1(n)− x(n)),
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where ζ(n) lies between x1(n) and x(n). Then we have

| lnx1(n)− lnx(n)− a10(n)[x1(n)− x(n)]|
= | lnx1(n)− lnx(n)| − | lnx1(n)− lnx(n)|

+| lnx1(n)− lnx(n)− a10(n)[x1(n)− x(n)]|

= | lnx1(n)− lnx(n)| − 1

ζ(n)
|x1(n)− x(n)|

+

∣∣∣∣ 1

ζ(n)
[x1(n)− x(n)]− a10(n)[x1(n)− x(n)]

∣∣∣∣
= | lnx1(n)− lnx(n)|

−
[

1

ζ(n)
−
∣∣∣∣ 1

ζ(n)
− a10(n)

∣∣∣∣]|x1(n)− x(n)|. (16)

And hence it follows from (15) and (16) that

∆V1(n) = V1(n+ 1)− V1(n)

≤ −
[

1

ζ(n)
−
∣∣∣∣ 1

ζ(n)
− a10(n)

∣∣∣∣]|x1(n)− x(n)|

+
m∑

τ=1

a1τ (n)|x1(n− τ)− x(n− τ)|

+
m∑

τ=0

c2τ (n)x2(n− τ). (17)

Let

V2(n) =
m∑

τ=1

n−1∑
s=n−τ

a1τ (s+ τ)|x1(s)− x(s)|

+
m∑

τ=0

n−1∑
s=n−τ

c2τ (s+ τ)x2(s). (18)

By a direct calculation, it derives that

∆V2(n) = V2(n+ 1)− V2(n)

=

m∑
τ=1

n∑
s=n−τ+1

a1τ (s+ τ)|x1(s)− x(s)|

+
m∑

τ=0

n∑
s=n−τ+1

c2τ (s+ τ)x2(s)

−
m∑

τ=1

n−1∑
s=n−τ

a1τ (s+ τ)|x1(s)− x(s)|

−
m∑

τ=0

n−1∑
s=n−τ

c2τ (s+ τ)x2(s)

=
m∑

τ=1

a1τ (n+ τ)|x1(n)− x(n)|

−
m∑

τ=1

a1τ (n)|x1(n− τ)− x(n− τ)|

+

m∑
τ=0

c2τ (n+ τ)x2(n)

−
m∑

τ=0

c2τ (n)x2(n− τ). (19)

Let

V (n) = V1(n) + V2(n). (20)

Therefore, it follows from (17) and (19) that

∆V (n) = ∆V1(n) + ∆V2(n)

≤ −
[

1

ζ(n)
−

∣∣∣∣ 1

ζ(n)
− a10(n)

∣∣∣∣]|x1(n)− x(n)|

+

m∑
τ=1

a1τ (n+ τ)|x1(n)− x(n)|

+
m∑

τ=0

c2τ (n+ τ)x2(n)

= −
[

1

ζ(n)
−

∣∣∣∣ 1

ζ(n)
− a10(n)

∣∣∣∣− m∑
τ=1

a1τ (n+ τ)

]
×|x1(n)− x(n)|

+
m∑

τ=0

c2τ (n+ τ)x2(n). (21)

From Lemmas 3, 4, 5 and Theorem 1, for arbitrarily small
ε > 0, there exists an N3 > 0 such that

x1∗ − ε < x1(n) < x∗
1 + ε,

x2(n) < ε, x1∗ − ε < x(n) < x∗
1 + ε

for all n > N3 +m. Therefore,

∆V (n) < −
[
min

{
a10∗,

2

x∗
1 + ε

− a∗10

}
−ma∗1

]
×|x1(n)− x(n)|+

m∑
τ=0

c2τ (n+ τ)ε. (22)

Let ε → 0, then

∆V (n) ≤ −
[
min

{
a10∗,

2

x∗
1

− a∗10

}
−ma∗1

]
×|x1(n)− x(n)|

≤ −δ|x1(n)− x(n)|. (23)

Summating both side of (23) from N4 +m to n, we have
n∑

j=N4+m

(V (j + 1)− V (j)) ≤ −δ

n∑
j=N4+m

|x1(j)− x(j)|,

then

V (n+ 1) + δ
n∑

j=N4+m

|x1(j)− x(j)| ≤ V (N4 +m),

and so,
n∑

j=N4+m

|x1(j)− x(j)| ≤ V (N4 +m)

δ
.

It follows from (20) that V (N4 +m) is bounded. Hence,
n∑

j=N4+m

|x1(j)− x(j)| ≤ V (N4 +m)

δ
< +∞,

then

lim sup
n→+∞

n∑
j=N4+m

|x1(j)− x(j)| ≤ V (N4 +m)

δ
< +∞.

This implies that

lim
n→+∞

|x1(n)− x(n)| = 0.

This completes the proof.
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IV. EXTINCTION OF x1 AND STABILITY OF x2

In this section, we study the extinction of x1 but x2 of
system (1). Similar to the proofs in Section 3, we can obtain
the following results.

Theorem 3. Assume that the inequality

lim inf
n→+∞

r2(n)

r1(n)
> lim sup

n→+∞

{
c1τ (n)

a1τ (n)
,
a2τ (n)(1 + x∗

2)

c2τ (n)

}
(24)

holds, then the species x1 will be driven to extinction, that
is, for any positive solution (x1(n), x2(n))

T of system (1),
x1(n) → 0 exponentially as n → +∞.

Lemma 6. Under the assumption of Theorem 3. Further-
more, assume that

η = r2∗ −
m∑

τ=1

a∗2τx
∗
2 > 0. (25)

Let x̃(n) = (x1(n), x2(n))
T be any positive solution of

system (1), then there exists a positive constant x2∗ such
that

lim inf
n→+∞

x2(n) ≥ x2∗,

where

x2∗ =
η

a∗20
exp

[
(r∗2 −

m∑
τ=1

a∗2τx
∗
2)

(
1− a∗20x

∗
2

η

)]
is a constant independent of any positive solution of system
(1), i.e., the first species x2 of system (1) is permanent.

Consider the following discrete logistic equation

x(n+ 1) = x(n) exp

[
r2(n)−

m∑
τ=0

a2τ (n)x(n− τ)

]
. (26)

Lemma 7. ([28]) Assume that {r2(n)} and {a2τ (n)}
are bounded positive sequences, then any positive solution
{x(n)} of (12) satisfies

x2∗ < lim inf
n→+∞

x(n) ≤ lim sup
n→+∞

x(n) ≤ x∗
2.

Theorem 4. Under the assumptions of Theorem 3, Lemmas
6 and 7. Furthermore, suppose that there exists a constant
ρ > 0 such that

min

{
a20∗,

2

x∗
2

− a∗20

}
−ma∗2 ≥ ρ, (27)

where a∗2 = max{a∗2τ : τ = 1, 2, · · · ,m}. Let x̃(n) =
(x1(n), x2(n))

T be any positive solution of system (1), then
the species x1 will be driven to extinction, that is, x1(n) → 0
as n → +∞, and x2(n) → x(n) as n → +∞, where x(n)
is any positive solution of equation (26).

V. NUMERICAL EXAMPLES AND SIMULATIONS

In this section, we give two examples to illustrate the
feasibility of our results.

Example 1. Let m = 1, then system (1) can be written as

x1(n+ 1) = x1(n) exp

[
r1(n)− a10(n)x1(n)

−a11(n)x1(n− 1)

−c20(n)x2(n)

1 + x2(n)
− c21(n)x2(n− 1)

1 + x2(n− 1)

]
,

x2(n+ 1) = x2(n) exp

[
r2(n)− a20(n)x2(n)

−a21(n)x2(n− 1)

−c10(n)x1(n)

1 + x1(n)
− c11(n)x1(n− 1)

1 + x1(n− 1)

]
. (28)

Choose the coefficients

r1(n) = 1− 0.2 sin(n), a10(n) = 0.5− 0.1 cos(n),

a11(n) = 0.05− 0.01 cos(n),

c20(n) = 0.6 + 0.2 sin(n), c21(n) = 0.5 + 0.1 sin(n),

r2(n) = 0.1− 0.05 cos(n), a20(n) = 0.4− 0.2 cos(n),

a21(n) = 0.4− 0.1 sin(n),

c10(n) = 0.6− 0.1 cos(n), c11(n) = 0.5− 0.1 cos(n).

By a direct calculation, we can get

x∗
1 = 3.0535, x∗

2 = 2.1369;

lim sup
n→+∞

r2(n)

r1(n)
= 0.1593 < 0.2500

= lim inf
n→+∞

{
c1τ (n)

a1τ (n)(1 + x∗
1)
,
a2τ (n)

c2τ (n)

}
;

µ = r1∗ −
m∑

τ=1

a∗1τx
∗
1 = 0.7905 > 0;

min

{
a10∗,

2

x∗
1

− a∗10

}
−ma∗1 = 0.4000 > 0;

that is the conditions of Theorem 2 hold, and so species x2

will be driven to extinction while species x1 is asymptotically
to any positive solution of

x(n+ 1) = x(n) exp[r1(n)− a10(n)x(n)

−a11(n)x(n− 1)]. (29)

The solutions of systems (28) and (29) corresponding to
initial values are displayed in Figure 1.
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Fig. 1. Dynamic behaviors of species x1 and x2 in (28) with initial values
x1(0) = 0.1, 2, 5, x1(−1) = 1, and x2(0) = 0.1, 2, 5, x2(−1) = 1,
respectively; x is a solution of equation (29).
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Example 2. Let m = 2, then system (1) can be written as

x1(n+ 1) = x1(n) exp

[
r1(n)− a10(n)x1(n)

−a11(n)x1(n− 1)− a12(n)x1(n− 2)

−c20(n)x2(n)

1 + x2(n)
− c21(n)x2(n− 1)

1 + x2(n− 1)

−c22(n)x2(n− 2)

1 + x2(n− 2)

]
,

x2(n+ 1) = x2(n) exp

[
r2(n)− a20(n)x2(n)

−a21(n)x2(n− 1)− a22(n)x2(n− 2)

−c10(n)x1(n)

1 + x1(n)
− c11(n)x1(n− 1)

1 + x1(n− 1)

−c12(n)x1(n− 2)

1 + x1(n− 2)

]
. (30)

Choose the coefficients

r1(n) = 0.2− 0.1 cos(n), a10(n) = 0.4− 0.2 sin(n),

a11(n) = 0.4− 0.1 sin(n), a12(n) = 0.4− 0.1 sin(n),

c20(n) = 0.6− 0.1 cos(n), c21(n) = 0.5− 0.1 cos(n),

c22(n) = 0.4− 0.1 cos(n),

r2(n) = 0.6− 0.2 sin(n), a20(n) = 0.5− 0.1 cos(n),

a21(n) = 0.05− 0.01 cos(n),

a22(n) = 0.04− 0.01 cos(n),

c10(n) = 0.6 + 0.2 sin(n), c11(n) = 0.5 + 0.1 sin(n),

c12(n) = 0.4 + 0.1 sin(n).

By a direct calculation, we can get

x∗
1 = 2.4827, x∗

2 = 2.0467;

lim inf
n→+∞

r2(n)

r1(n)
= 2.6633 > 2.5463

> lim sup
n→+∞

{
c1τ (n)

a1τ (n)
,
a2τ (n)(1 + x∗

2)

c2τ (n)

}
;

η = r2∗ −
m∑

τ=1

a∗2τx
∗
2 = 0.1749 > 0;

min

{
a20∗,

2

x∗
2

− a∗20

}
−ma∗2 = 0.2572 > 0;

that is the conditions of Theorem 4 hold, and so species x2

will be driven to extinction while species x1 is asymptotically
to any positive solution of

x(n+ 1) = x(n) exp[r2(n)− a20(n)x(n)

−a21(n)x(n− 1)− a22(n)x(n− 2)]. (31)

The solutions of systems (30) and (31) corresponding to
initial values are displayed in Figure 2.

VI. CONCLUSION

This paper studied a nonautonomous discrete competitive
system with delays. It is shown that if the coefficients are
bounded above and below by positive constants and satisfy
certain inequalities, then one of the species will be driven
to extinction while the other one will be globally attractive
with any positive solution of a discrete logistic equation.

This paper provided an effective method for the further
study on permanence and extinction of population dynamic
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Fig. 2. Dynamic behaviors of species x1 and x2 in (30) with initial values
x1(0) = 3, 1, 1.5, x1(−2) = 0.5, x1(−1) = 0.5, and x2(0) = 3, 1, 1.5,
x2(−2) = 0.5, x2(−1) = 0.5, respectively; x is a solution of equation
(31).

systems with time delay, one may see [29-31]. In fact, our
techniques in this paper are applicable to a pure delayed
discrete n-species competitive system. Furthermore, one may
consider a discrete competitive system with infinite delay,
which we leave for future work.
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