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Abstract—Existing theoretical researches about data 

envelopment analysis (DEA) cross-efficiency evaluation pay 

more attention to the calculation of DEA cross-efficiency 

matrix than aggregation process. The most commonly used 

aggregation method is to aggregate them with equal weight. 

This paper focuses on the DEA cross-efficiency aggregation 

process and proposes the use of principal component analysis 

to aggregate them. In this study, we view the cross efficiencies 

calculated by the same set of weights determined by each 

DMU as attribute values of different DMUs. The 

cross-efficiency values will transform to be the various 

attribute values of DMUs and then use of principal component 

analysis aggregates cross-efficiencies to provide the ultimate 

weighted average cross-efficiency for each DMU. Finally, two 

numerical examples are illustrated to show that the proposed 

method is suitable to aggregate cross-efficiencies.   

Index Terms—DEA Cross-efficiency evaluation, 

Cross-efficiency aggregation, Principal component analysis 

I. INTRODUCTION 

O improve the discrimination power of the DEA 

traditional models, DEA cross-efficiency evaluation 

has been proposed as an extension to DEA [1]. Unlike DEA 

traditional models, which use a self-evaluation mode, DEA 

cross-efficiency evaluation employs both self-evaluation 

and peer-evaluation mode instead. In DEA cross-efficiency  
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evaluation, each DMU will obtain a self-evaluated 

efficiency value determined by its own most favorable 

weights and 1n peer-evaluated efficiencies using the 

optimal sets of weights of other 1n  DMUs. Then, all 

these n  efficiencies for each DMU are averaged into a 

value to arrive at its cross-efficiency score. Cross-efficiency 

evaluation made some significant contributions to DEA. 

Firstly, it can produce a unique rank order to DMUs [2]. 

Secondly, it can eliminate unrealistic weight schemes 

without incorporating weights restrictions [3]. Thirdly, it 

effectively discriminates the good and poor performers 

among the DMUs [4]. Due to these advantages, it has been 

widely applied in many areas such as measuring 

economic-environmental disparities for regional 

development in China [5] and so on. 

However, the optimal set of weights solution in DEA 

traditional models for each DMU is usually not unique that 

will damage the use of DEA cross-efficiency evaluation 

[1,6]. To deal with the problem of non-uniqueness of 

optimal weights for DMUs, Sexton, Silkman, and Hogan 

proposed to use secondary goal models [1]. Inspired by the 

idea, many secondary goal models were introduced. The 

rank models are to optimize the rank order of the DMU 

under evaluation [7, 8]. In reality, each input or output is 

critical in the production process, so the weights 

dissimilarity level should be not very large of different 

inputs or outputs. Based on this idea, the weight-balanced 

models are proposed to lessen large differences in weighted 

data [9]. Among all the secondary goal models, the 

aggressive and benevolent models are most widely used. 

The aggressive (benevolent) model minimizes (maximizes) 

the average cross-efficiency value of other DMUs while 

keeping efficiency value of DMU under evaluation on its 

CCR efficiency level [10]. 

The existing researches on DEA cross-efficiency 
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evaluation are mainly focused on calculation of 

cross-efficiency matrix. Little attention has been paid to  

the aggregation process of cross-efficiencies. The most 

commonly used method is to aggregate them with equal 

weights. However, this method does not consider the 

difference among cross-efficiencies, so the ultimate average 

cross-efficiency results sometimes cannot reflect the actual 

performances of DMUs fairly [11]. Our literature review 

reveals that few researchers proposed non-equal weights 

methods considering their difference in their aggregation. 

Wu et al. argued that average cross-efficiency using equal 

weights is not good enough because it is not a Pareto 

solution. Recognizing this shortcoming, they eliminate the 

average assumption for determining the ultimate cross 

efficiency scores, and DMUs are regarded as the players in 

a cooperative game to generate the weights to determine the 

ultimate cross efficiency scores in light of nucleolus 

solution or Shapley values in cooperative game [12, 13]. 

Besides these, they proposed the methods based on 

information entropy theory to determining the ultimate 

cross efficiency scores [14, 15]. However, except for the 

abstract reason that average cross-efficiency with equal 

weights is not a Pareto solution, Wu’s methods did not 

provide any concrete reasons why the cross-efficiencies 

should be aggregated by different weights [11]. Wang et al. 

argue that using equal weights for cross-efficiency 

aggregation has a significant shortfall that the weights 

allocated to self-evaluated efficiencies are only 1/ n  and 

the self-evaluated efficiencies fail to play a sufficient role 

in final overall assessment. To address this issue, they 

propose the use of ordered weighted averaging (OWA) 

operator for cross-efficiency aggregation, where the 

self-evaluated efficiencies can be weighted to play a 

significant role in ultimate cross-efficiency in terms of 

decision maker’s optimism level [16]. The shortfalls of this 

method are that weights are determined by the orness 

degree  (decision maker’s optimism level), and different 

orness degree values will lead to different results [15]. 

Especially, it is difficult to measure the optimism level 

(orness degree value) of the decision maker in practice. 

Besides, Wang et al. consider that the cross-efficiency 

matrix is determined by n  sets of weights. N  sets of 

weights are from different ideas and are thus of different 

importance, so cross-efficiencies corresponding to different 

set of weights will be allocated to different weight to reflect 

their importance [11]. Based on this idea, they introduce 

three alternative approaches to determine the relative 

importance weights for cross-efficiency aggregation. 

However, the n  sets of weights are determined by a given  

secondary goal model and the viewpoint of given  

secondary goal model is fixed, so the n  sets of weights 

are from same viewpoint. Lianlian Song and Fan Liu [17] 

prove that the weights generated by use of Shannon entropy  

for cross-efficiency aggregation [15] will break Zeleny’s 

rule that if all available alternatives scores are about equal 

with respect to a given attribute, then such an attribute will 

be judged by unimportant by most decision makers. Such 

an attribute does not help in making a decision [18]. To 

address this issue, they propose a variance coefficient 

method based on the Shannon entropy to improve Wu’s 

method. However, they still did not give any concrete 

reasons why the cross-efficiencies should be aggregated by 

different weights.  

To overcome these shortfalls, we suggest the use of 

principal component analysis for cross-efficiency 

aggregation. The proposed method views the 

cross-efficiency calculated by the same set of weights as an 

attribute. The cross-efficiency values will transform to be 

the different attribute values of DMUs. Because the 

attributes play different roles to reflect the system 

information (evaluated objects information), so they should 

be allocated different weights while aggregating them. In 

this paper, we use principal component analysis to generate 

the relative importance weights for determining the 

ultimate cross-efficiency for each DMU.  

The rest of paper is organized as follows: Section 2 gives 

a brief introduction to cross-efficiency evaluation. The 

cross-efficiency aggregation based on principal component 

analysis is shown in Section 3. Section 4 presents two 

illustrative examples and conclusions are made in Section 

5. 

II. CROSS-EFFICIENCY EVALUATION AND AGGREGATION 

n  DMUS are to be evaluated where m  inputs are 

consumed to produce s  outputs. The inputs and outputs 

value of ( 1, , )jDMU j n  are denoted by 

( 1, , )ijx i m  and ( 1, , )rjy r s  . The CCR efficiency 

of kDMU  can be measured by the following model: 
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Where  1 ,k nDMU DMU DMU is the decision- 

making unit ( DMU ) under evaluation, ( 1, , )ikv i m and 

( 1, , )rku r s  are the inputs and outputs weights. If 

( 1, , )rku r s   and ( 1, , )ikv i m    are the optimal 

solution to the above CCR model, the 
1

s

kk rk rkr
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will be the CCR efficiency value of kDMU .  If kk 
 is 

equal to 1, the kDMU  is referred to be CCR efficient; 

Otherwise, it will be non-CCR efficient. 

1 1
/

s m

jk rk rj ik ijr i
u y v x  

 
   is viewed as the 

cross-efficiency of jDMU  evaluated by the weights 

determined by kDMU , 1, , ,j n j k  . 

CCR model (1) is solved for each of n  DMUS 

respectively. Each DMU will obtain a set of weights that is 

most favorable to itself. Based on n  sets of weights, n  

cross-efficiencies shown in table I including one 

self-evaluated efficiency value and 1n   peer-evaluated 

efficiency values will be generated for each DMU. The 

traditional way to aggregate them is to simply aggregate 

them with equal weights. However, average 

cross-efficiency (ACE) did not consider the difference 

among cross-efficiencies, and ACE results sometimes 

cannot reflect the actual performances of DMUs fairly. To 

eliminate the shortfall of ACE, the cross-efficiencies should 

be weighted before aggregation. The ultimate efficiency 

score for each DMU will become weighted average 

cross-efficiency (WACE) score: 

1
, 1, , , (2)

n

i k ikk
w i n 


 

where 1, , nw w are weights, satisfying 0( 1, , )kw k n  . 

It is noticed that the optimal solution for CCR model 

maybe not unique that will damage the use of 

cross-efficiency evaluation. To handle this problem, many 

secondary goal models were proposed. Among them, 

aggressive and benevolent secondary goals are most widely 

used. Their formulations are as follow respectively:  
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 However, the unique set of weights selected by aggressive 

formulation usually contains many zero weights where 

some inputs or outputs information are ignored while 

calculating cross-efficiencies. To avoid this, we will use the 

cross-efficiency matrix determined by benevolent 

formulation to aggregate, but the proposed aggregation 

method is also applicable to cross-efficiencies determined 

by aggressive and other formulations. 

TABLE I 

CROSS-EFFICIENCY MATRIX AND WACE 

DMUs 
Target  DMU Weighted Average 

Cross-efficiency (WACE) 1 2  n  

1 11  
12   

1n  
11

n

k kk
w 

  

2 21  
22   

2n  
21

n

k kk
w 

  

      

n  
1n  

2n   nn  
1

n

k nkk
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III. DETERMINATION OF ULTIMATE CROSS-EFFICIENCY USING 

PRINCIPAL COMPONENT ANALYSIS 
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To provide the WACE for each DMU, the main issue is 

to determine the non-equal weights for cross-efficiency 

aggregation. This paper proposes the use of principal 

component analysis to determine them. The proposed 

method views the cross-efficiencies calculated by the 

same set of weights as an attribute values of DMUs. The 

cross-efficiencies will transform to be attribute values of 

DMUs. Because of their importance difference, they 

should be given different weights. Because the different 

attributes usually are linear correlated, it cause the 

difficulty to aggregate them. The principal component 

analysis is a commonly used evaluation method to handle 

linear correlated multiple attributes. It provides a 

comprehensive evaluation value for evaluated objects 

through transforming the linear correlated multiple 

attributes to some principal components that are linear 

uncorrelated each other. The calculation procedure of 

using principal component analysis is as follows. Step 1 

standardizes the original attributes values. Step 2 

calculates the correlation matrix R . Step 3 calculates 

the characteristic roots ( 1,... n  ) of R  and component 

matrix. Step 4 selects the principal component whose 

characteristic root is more than 1. Step 5 determines the 

formulation of the selected principal components through 

their characteristic roots and factor loadings to original 

attributes shown in the component matrix. Step 6 

provides the comprehensive results for evaluated objects 

after setting the individual variance contribution rate to 

be the weight of the selected principal components.  

IV. NUMERICAL EXAMPLES 

In this part, two numerical examples are illustrated to 

show how the cross-efficiencies will be aggregated using 

principal component analysis.  

Example 1: Five DMUs are evaluated where two inputs 

are consumed to produce one output [11]. The output is 

normalized. It clearly shows that four of them are CCR 

efficient and efficient DMUs cannot be distinguished 

further from table II. To handle this question, DEA 

cross-efficiency evaluation is an alternative. Table III and 

IV show the unique set of weights selected by benevolent 

model and corresponding cross-efficiencies matrix. The 

cross-efficiencies are aggregated by equal weights in table 

IV but the ACE results ignore the difference among 

cross-efficiencies. If we view the cross-efficiencies 

calculated by the same set of weights as an attributes values 

of DMUs, the ACE treatment simply considers that all 

attributes can reflect the system information (evaluated 

objects information) equally. This straightforward and 

rough treatment is to be questioned easily. The table V and 

VI show the OWA operator weights for cross-efficiency 

aggregation and corresponding aggregation results. They 

clearly show that different optimism level of DM leads to 

different results. At the same time, it is difficult to measure 

actual optimism level of DM. In the next, we will provide 

the weights for cross-efficiency aggregation through 

principal component analysis. This method views the 

cross-efficiency determined by the same set of weights as 

an attribute. The cross-efficiencies will be transformed to 

be attributes values for DMUs. Because the attributes play 

different roles to reflect the system information (evaluated 

objects information), so they should be allocated different 

weights while aggregating them. We view the 

cross-efficiencies calculated by the set of weights 

determined by DMU1, DMU2, DMU3, DMU4, DMU5 as 

attributes 1 2 3 4 5, , , ,x x x x x values. The cross-efficiency 

matrix in table IV will be transformed to attributes values 

shown in table VII. We can obtain the standard attributes 

values, the correlation matrix R shown in table VIII, the 

characteristic roots ( 1,... n  ) of R  and component matrix 

shown in table IX through calculation software SPSS. From 

the correlation matrix R , it clearly shows that the 

attributes have a high correlation coefficient each other, and 

this numerical example is suitable for the use of principal 

component analysis. Through the selection criterion whose 

characteristic root (variance) is more than 1, we select two 

principal components 1 2,F F  whose characteristic roots 

are 2.718, 2.232 respectively. Though the component 

matrix and the characteristic roots of two principal 

components, we can attain the formulation of 1 2,F F . The 

coefficient of iF  to ix  is calculated by / iV   (V  is 

iF ’s factor load to ix  shown in the component matrix). 

Through the formulation, we can attain that: 

1 2 3 41 5-0.4076 0.2384 0.2384  0.5999 0.5999 ,x x x x xF    

1 2 3 4 52 0.4826 0.6145 0.6145 -0.0803 -0.0803x x xF x x  .  

The ultimate cross-efficiency for each DMU shown in 

table X is attained through the formulation: 

1 20.54361 0.44647C F F  , where 0.54361 and 0.44647 a-
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re the individual variance contribution rate of 
1F  and 

2F . 

It also means that the weights allocated to 
1 2 3 4 5, , , ,x x x x x

(different cross-efficiencies) are -0.0061, 0.4040, 0.4040, 

0.2903, 0.2903 respectively that reflects their different roles 

in reflecting the system information. From table X where 

the attributes values (cross-efficiencies) are standardized, it 

shows that the rank is different from ACE results. Quite 

evidently, the rank between DMU2 and DMU3 is reversed. 

The rank between DMU1 and DMU5 is also reversed. 

Meantime, the aggregation result by PCA is fixed and 

unique.  

TABLE II 

DMUS WITH TWO INPUTS AND ONE NORMALIZED OUTPUT 

AND THEIR CCR EFFICIENCIES 

DMUS Input1 Input2 Output CCR-efficiency 

1 2 12 1 1 

2 2 8 1 1 

3 5 5 1 1 

4 10 4 1 1 

5 10 6 1 0.75 

TABLE III  

INPUTS AND OUTPUTS WEIGHTS DETERMINED BY EACH DMU 

THROUGH BENEVOLENT FORMULATION (4) 

DMUS Input1 Input2 Output 

1 0.037037 0 0.074074 

2 0.018519 0.018519 0.185185 

3 0.018519 0.018519 0.185185 

4 0.005747 0.028736 0.172414 

5 0.006098 0.030488 0.182927 

TABLE IV 

BENEVOLENT CROSS-EFFICIENCY MATRIX AND AVERAGE 

CROSS-EFFICIENCY RESULTS 

DMUS 
Target DMU 

ACE Rank 
1 2 3 4 5 

1 1.00 0.71 0.71 0.48 0.48 0.68 4 

2 1.00 1.00 1.00 0.72 0.72 0.89 1 

3 0.40 1.00 1.00 1.00 1.00 0.88 2 

4 0.20 0.71 0.71 1.00 1.00 0.72 3 

5 0.20 0.63 0.63 0.75 0.75 0.59 5 

Example 2: Efficiency evaluation of 7 colleges in one 

university with three inputs and three outputs [20]. It 

clearly shows that six of them are CCR efficient from table 

XI and they cannot be distinguished further though CCR 

model. DEA cross-efficiency evaluation can give a unique 

rank order for each DMU. Table XII shows the benevolent 

cross-efficiency matrix and average cross efficiency (ACE) 

which shows DMU6 performs best. Table XIII and XIV 

show the OWA operator weights and aggregation results. 

They still show that different optimism level of DM leads 

to different results. 

Considering the different roles of cross-efficiencies in 

reflecting system information (evaluated objects 

information), we use principal component analysis to 

aggregate cross-efficiencies. The results are shown in table 

XV where the attributes values (cross-efficiencies) are 

standardized. It is clearly shown that the rank of DMU1 

and DMU2 and DMU7 is different from their ranks based 

on ACE. Different from the non-uniqueness by OWA 

operator, the aggregation results are unique by PCA. 

TABLE V 

OWA OPERATOR WEIGHTS FOR CROSS-EFFICIENCY 

AGGREGATION 

Ranked 

Position 

Optimism Level of DM 

=1 =0.9 =0.8 =0.7 =0.6 =0.5 

1st 1 0.6333 0.4600 0.3600 0.28 0.2 

2nd 0 0.3333 0.3200 0.2800 0.24 0.2 

3rd 0 0.0333 0.1800 0.20 0.2 0.2 

4th 0 0 0.0400 0.12 0.16 0.2 

5th 0 0 0 0.04 0.12 0.2 

TABLE VI 

CROSS-EFFICIENCY AGGREGATION BY OWA OPERATOR 

WEIGHTS 

DMUS 
Optimism Level of DM 

=1 =0.9 =0.8 =0.7 =0.6 =0.5 

1 1 0.8875 0.8365 0.7803 0.7298 0.6793 

2 1 1 0.9886 0.9543 0.9200 0.8857 

3 1 1 1 0.9760 0.9280 0.8800 

4 1 0.9904 0.9371 0.8766 0.8011 0.7257 

5 0.75 0.7458 0.7225 0.6880 0.6390 0.5900 

TABLE VII  

THE 5 ATTRIBUTES VALUE OF DMUS 

DMUS 
Attributes 

1x  
2x  

3x  
4x  

5x  

1 1.0000 0.7143 0.7143 0.4839 0.4839 

2 1.0000 1.0000 1.0000 0.7143 0.7143 

3 0.4000 1.0000 1.0000 1.0000 1.0000 

4 0.2000 0.7143 0.7143 1.0000 1.0000 

5 0.2000 0.6250 0.6250 0.7500 0.7500 

V. CONCLUSIONS 

To improve the discrimination power of DEA traditional 

models, DEA Cross-efficiency evaluation was proposed. T-

Engineering Letters, 27:3, EL_27_3_16

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



TABLE VIII 

CORRELATION MATRIX 

 1x  
2x  

3x  
4x  

5x  

1x  1.000 0.387 0.387 -0.737 -0.737 

2x  0.387 1.000 1.000 0.274 0.274 

3x  0.387 1.000 1.000 0.274 0.274 

4x  -0.737 0.274 0.274 1.000 1.000 

5x  -0.737 0.274 0.274 1.000 1.000 

 

TABLE IX 

COMPONENT MATRIX 

 
Components 

1 2 

1x  -0.672 0.721 

2x  0.393 0.918 

3x  0.393 0.918 

4x  0.989 -0.120 

5x  0.989 -0.120 

TABLE X 

CROSS-EFFICIENCY AGGREGATION THOUGH PRINCIPAL COMPONENT ANALYSIS 

DMUs 1x  
2x  

3x  
4x  

5x  
1F  

2F  WACE Rank 

1 1.0735 -0.5460 -0.5460 -1.4057 -1.4057 -2.3845 0.0728 -1.2637 5 

2 1.0735 1.0719 1.0719 -0.3464 -0.3464 -0.3421 1.8911 0.6584 2 

3 -0.3904 1.0719 1.0719 0.9672 0.9672 1.8307 0.9736 1.4299 1 

4 -0.8783 -0.5460 -0.5460 0.9672 0.9672 1.2581 -1.2502 0.1257 3 

5 -0.8783 -1.0517 -1.0517 -0.1823 -0.1823 -0.3622 -1.6871 -0.9501 4 

he scholars mainly focused on the calculation of 

cross-efficiency matrix but pay little attention to 

cross-efficiency aggregation process. They simply 

aggregate them with equal weights to provide the average 

cross-efficiency score for each DMU. However, this 

treatment to cross-efficiencies did not consider their 

difference and that will result in ultimate efficiency score 

for each DMU cannot reflect the true performance of DM- 

Us fairly. To eliminate the shortfall, cross-efficiencies need 

to be weighted before aggregation. In this paper, we view 

the cross-efficiencies calculated by the same set of weights 

as an attribute values of DMUs. Because different attributes 

will play a distinguished role to reflect the whole system 

information (evaluated objects information), so the 

attributes values (cross-efficiencies) should be weighted 

differently while aggregating them. In this paper, we 

propose the use of principal component analysis to generate 

distinguished weights for cross-efficiency aggregation.  

Compared with other non-equal weights determination 

methods of Wu et al. [12-15], Wang et al. [11], Lianlian 

Song and Fan Liu [17], our proposed approach is more 

reasonable and clearer in modeling mechanism where we p- 

TABLE XI 

DATA AND CCR-EFFICIENCY FOR 7 ACADEMIC COLLEGES IN A 

UNIVERSITY 

DMUs 
Inputs Outputs 

CCR-efficiency 

1x  
2x  

3x  
1y  

2y  
3y  

1 12 400 20 60 35 17 1 

2 19 750 70 139 41 40 1 

3 42 1500 70 225 68 75 1 

4 15 600 100 90 12 17 0.8197 

5 45 2000 250 253 145 130 1 

6 19 730 50 132 45 45 1 

7 41 2350 600 305 159 97 1 

TABLE XII 

BENEVOLENT CROSS-EFFICIENCY MATRIX AND ACE OF ACADEMIC COLLEGES IN A UNIVERSITY 

DMUs 
Target DMU 

ACE Rank 
1 2 3 4 5 6 7 

1 1.0000 0.9219 1.0000 0.6875 1.0000 1.0000 1.0000 0.9442 3 

2 0.9812 1.0000 0.8510 1.0000 0.8461 0.9812 0.9812 0.9486 2 

3 0.7690 0.7719 1.0000 0.7349 0.6651 0.7690 0.7690 0.7827 6 

4 0.6411 0.7013 0.4542 0.8197 0.4135 0.6411 0.6411 0.6160 7 

5 0.9382 0.8990 0.4950 0.7650 1.0000 0.9382 0.9382 0.8534 5 

6 1.0000 1.0000 1.0000 0.9506 0.9104 1.0000 1.0000 0.9801 1 

7 1.0000 1.0000 0.2941 1.0000 1.0000 1.0000 1.0000 0.8992 4 
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TABLE XIII 

OWA OPERATOR WEIGHTS FOR CROSS-EFFICIENCY 

AGGREGATION 

Ranked 

Position 

Optimism Level of DM 

=1 =0.9 =0.8 =0.7 =0.6 =0.5 

1st 1 0.5333 0.36 0.2714 0.2071 0.1428 

2 0 0.3333 0.28 0.2285 0.1857 0.1428 

3 0 0.1333 0.2 0.1856 0.1643 0.1428 

4 0 0 0.12 0.1427 0.1429 0.1428 

5 0 0 0.04 0.0998 0.1215 0.1428 

6 0 0 0 0.0569 0.1001 0.1428 

7 0 0 0 0.014 0.0787 0.1428 

TABLE XIV 

 CROSS-EFFICIENCY AGGREGATION BY OWA OPERATOR 

WEIGHTS 

DMUS 
Optimism Level of DM 

=1 =0.9 =0.8 =0.7 =0.6 =0.5 

1 1 1 1 1 0.9679 0.9442 

2 1 0.9974 0.9932 0.9802 0.9652 0.9486 

3 1 0.8931 0.8530 0.8281 0.8060 0.7827 

4 0.8197 0.7563 0.7223 0.6888 0.6528 0.6160 

5 1 0.9711 0.9589 0.9340 0.8943 0.8534 

6 1 1 1 0.9948 0.9883 0.9801 

7 1 1 1 0.9890 0.9447 0.8992 

TABLE XV 

 CROSS-EFFICIENCY AGGREGATION THOUGH PRINCIPAL COMPONENT ANALYSIS 

DMUs 1x  
2x  

3x  
4x  

5x  
6x  

7x  
1F  

2F  WACE Rank 

1 0.67 0.19 0.89 -1.25 0.75 0.67 0.67 1.10 1.67 1.10 2 

2 0.54 0.84 0.41 1.14 0.06 0.54 0.54 1.36 -0.44 0.89 4 

3 -0.95 -1.06 0.89 -0.89 -0.76 -0.95 -0.95 -2.16 1.09 -1.35 6 

4 -1.84 -1.65 -0.90 -0.24 -1.90 -1.84 -1.84 -4.07 -0.88 -3.08 7 

5 0.24 -0.01 -0.77 -0.66 0.76 0.24 0.24 0.45 0.005 0.323 5 

6 0.67 0.84 0.89 0.76 0.35 0.67 0.67 1.62 0.23 1.20 1 

7 0.67 0.84 -1.43 1.13 0.75 0.67 0.67 1.71 -1.67 0.92 3 

rovide the concrete reasons why cross-efficiencies should 

be allocated different weights for aggregation. Meanwhile, 

using our proposed method it does not need to measure the 

optimism level of decision maker and the results are fixed. 

Although the proposed method has many advantages, it is 

only applicable to the situations where there exists 

correlation relation among cross-efficiencies. Finally, the 

proposed approach further enriches DEA cross-efficiency 

aggregation theory. 
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