
A Framework for Ontology-Driven Similarity
Measuring Using Vector Learning Tricks

Mengxiang Chen, Beixiong Liu, Desheng Zeng and Wei Gao,

Abstract—Ontology learning problem has raised much atten-
tion in semantic structure expression and information retrieval.
As a powerful tool, ontology is evenly employed in various
subjects, such as neuroscience, medical science, pharmacopedia,
chemistry, education and other social science. Ontology simi-
larity measuring plays a vital role in practical implementations
since essential issues of ontology mapping are also similarity
calculating. In ontology function learning, one learns a real
valued score function that assigns scores to each ontology
vertex which corresponds to a concept. Thus, the similarity
between vertices is determined by means of the absolute
value of difference between their corresponding scores. In this
paper, we report the new optimization algorithms for obtaining
ontology function in view of ontology sparse vector learning.
The implementation of ontology algorithms is mainly based on
iterative calculation in which we consider the whole matrix
version of framework and ontology sparse vector are updated
in each iterative. The data results obtained from four simulation
experiments reveal that our newly proposed ontology approach
has high efficiency and accuracy in biology and plant science
with regard to ontology similarity measure, and humanoid
robotics and education science with regard to ontology mapping.

Index Terms—ontology, similarity measure, ontology map-
ping, ontology sparse vector, iterative computation.

I. INTRODUCTION

There was no a clear definition on ontology in computer
science at the beginning. Since 1991, researchers have been
constantly giving and modifying various definitions of ontol-
ogy. Recently, The most well accepted definition is proposed
by Borst in 1997, i.e., “the ontology is a displayed specifica-
tion of the conceptualization of sharing”. It points out several
distinctive features of the ontology, namely that, the ontology
is a shared, conceptual, explicit, formal specification. The
specific meaning is described as follows:
• Ontology is a conceptual model. It implies that ontology
is derived from the relevant concepts of phenomenon in
reality, whose meaning is independent from the specific
environmental state. It describes the relationship between
concepts.
• Explicit. The referred concepts and the constraints on these
concepts are clearly defined, ie there is no ambiguity.
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• Formalization. It means that the defined ontology is
machine readable, not a natural language. Formalization can
accurately describe a concept. Computers help to get a more
accurate understanding of formal content.
• Sharing. The ontology reflects the commonly recognized
knowledge, especially the set of concepts recognized in the
relevant field, which aimed at groups rather than individuals.
It is vital to share this feature, which states the reason why
ontology is used in various areas.

The ontology is generated for the communication between
different individuals, such as sharing, interoperability and so
on. It provides a clear consensus for this exchange and ontol-
ogy can capture knowledge in related fields. By identifying
vocabulary that is commonly recognized in the field (spe-
cific or general), and giving the relationship between these
vocabulary and vocabulary from different levels, it provides
a semantic support for communication between individuals.
In the past, individual communication often lacked semantic
support. The semantic information is not inherent in the
concept itself, but is generated under the designer’s design.
Different designers may give different meanings to the same
concept, and even the same designer may give different
meanings to the same concept under different circumstances.
The relationship between concepts is not clear in which
different perceptions of concepts make it difficult for us to
communicate smoothly in different fields. The incomplete
understanding of the concept also makes the intelligence of
computer processing greatly compromised. With the devel-
opment of ontology technology, these problems are gradually
overcome.

As a conceptual semantic model, ontology has become a
useful tool in computer science and information technology,
which has permeated in intelligence decision making, data
integration, image process, knowledge management, and col-
laboration. Also, it has been widely applied in pharmacology
science, biology science, GIS, medical science and social
sciences (for instance, see Acharya et al. [1], Shahsavani et
al. [2], Horne et al. [3], Sormaz and Sarkar [4], Jayawardhana
and Gorsevski [5], Ledvinka et al. [6], Sacha et al. [7], Reyes-
Alvarez et al. [8], Nadal et al. [9], and Oliva et al. [10]).

Ontology is modelled by a graph structure, directed or
undirected. Each vertex in ontology graph corresponds to a
concept and each (directed or undirected) edge expresses an
owner-member relationship (or potential relations) between
two concepts in its corresponding ontology. Let O be an on-
tology and G be an ontology (directed) graph corresponding
to O. The aim of ontology engineering applications is to get
the similarity computation criterion which is used to judge
the similarities between ontology vertices. Thus, the rele-
vance between ontology concepts is determined in view of
the vertex similarity. Moreover, ontology mapping is used to
deduce the ontology similarity between vertices from multi-
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ontologies which is built as a bridge connecting different
ontologies. Therefore, the problem of ontology mapping can
also be summarized as ontology similarity measuring, and
these can be implemented by the same ontology learning
algorithm.

In view of its powerful performance and good func-
tionality, ontology has been applied in various disciplines
and receives very good effect. Ochieng and Kyanda [11]
demonstrated the spectral partitioning of an ontology which
can generate high quality partitions geared towards matching
between two different ontologies. By means of ontology
techniques, McGarry et al. [12] identified drugs with similar
side-effects which are used in drug repositioning to apply
existing drugs to different diseases or medical conditions,
alleviating to a certain extent the time and cost expended
in drug development. Deepak and Priyadarshini [13] pro-
posed system classifies the ontologies using SVM and a
Homonym LookUp directory. Benavides et al. [14] described
a study of the use of knowledge models represented in
ontologies for building Computer Aided Control Systems
Design (CACSD) tools. Kumar and Thangamani [15] raised
multi-ontology based points of interests and parallel fuzzy
clustering algorithm for travel sequence recommendation
with mobile communication on big social media. Wheeler
et al. [16] implemented an ontology-based knowledge model
to formally conceptualise relevant knowledge in hyperten-
sion clinical practice guidelines, behaviour change models
and associated behaviour change strategies. Haendel et al.
[17] described ontologies and their use in computational
reasoning to support precise classification of patients for
diagnosis, care management, and translational research. Za-
letelj et al. [18] proposed an extensible foundational ontology
for manufacturing-system modelling in which the formal
definitions of the modelling environment itself enable the
definition of the manufacturing system’s elements. Gyrard et
al. [19] considered four ontology catalogs that are relevant
for IoT and smart cities, and demonstrated how can ontology
catalogs be more effectively used to design and develop
smart city applications. Alobaidi et al. [20] proposed novel
automated ontology generation framework consists of five
major modules which allowed mitigating the time-intensity
to build ontologies and achieve machine interoperability.

Specially, different kinds of learning algorithm were in-
troduced in the ontology function learning. Using these
learning methods, each ontology vertex is mapped into a
real number, and the similarity between concepts of ontology
is determined by means the difference between their corre-
sponding real numbers. In the learning setting, we should
mathematicise the ontology information, i..e., for each vertex
in ontology graph, all its information is enclosure in a vector.
By slightly confusing the notations, we denote v by both the
ontology vertex and its corresponding vector. Hence, this
vector is mapped to a real number in terms of ontology
function, therefore these ontology learning algorithms are
kinds of dimensionality reduction techniques.

It has large number of effective ontology learning method
raised and applied in ontology engineering, and several
contributions presented the theoretical analysis of ontolo-
gy learning algorithm from the perspective of statistical
learning theory. Gao et al. [21] analysised the strong and
weak stability of k-partite ranking based ontology learning

algorithm. Gao and Zhu [22] manifested the gradient learning
algorithms for ontology similairty computing and ontology
mapping. Gao et al. [23] presented an ontology sparse vector
learning algorithm for ontology similarity measuring and
ontology mapping via ADAL technology. Gao et al. [24]
proposed the ranking based ontology scheming in terms of
eigenpair computation. Gao et al. [25] raised new ontology
algorithmin light of singular value decomposition and applied
in multidisciplinary. Gao et al. [26] determined the trick
of ontology similarity measuring and ontology mapping
using distance learning. Wu et al. [27] studied the ontology
learning trick using disequilibrium multi dividing method.
Gao and Farahani [28] researched the generalization bounds
and uniform bounds for multi-dividing ontology algorithms
with convex ontology loss function. Gao et al. [29] proposed
partial multi-dividing ontology learning algorithm and ob-
tained some theoretical results from statistical view. Gao and
Xu [30] yielded the stability analysis of learning algorithms
for ontology similarity computation. More related contexts
can be referred to [31], [32], [33], [34]

In this paper, we present the new learning approach for
ontology application. The key tricks of our ontology sparse
iterative algorithm are concerning the designing of update
rules in particular mathematical settings. The rest of this
paper is arranged as follows: first, the notations and the
setting of ontology sparse vector learning are introduced;
then, the detailed ontology iterative algorithms for ontology
sparse vector learning are presented in Section 3; finally, the
proposed ontology algorithms are employed in plant science,
physical education, biology science and humanoid robotics to
verify the effectiveness of algorithms on similarity measuring
and ontology mapping, respectively.

II. SETTING

Let V be an ontology instance space. For any vertex
v ∈ V (G), all its related information is expressed by a p
dimensional vector, i.e., v = (v1, · · · , vp)T . W.L.O.G., by
slightly confusing the notation, we use v to denote both v and
its corresponding vector. For the given real-valued ontology
function f , the similarity between two vertices vi and vj is
judged by |f(vi)− f(vj)|.

Here, the dimension p of vector is always large since
it contains all the information of the corresponding con-
cept, including attribute and the neighborhood structure in
the ontology graph. For example, in biology ontology or
chemical ontology, the information of all genes, molecular
structure, chemical process and disease or medicinal may
be contained in a vector. Furthermore, the structure of
ontology graph becomes very complicated since its vertex
number becomes large, and one typical instance is the GIS
(Geographic Information System) ontology. These factors
lead to the high calculation complexity of ontology similarity
measuring and ontology mapping application. However, the
similarity between the ontology vertices is only determined
by a small number of vector components. For example, in
the gene ontology, only a small number of diseased genes
lead to a genetic disease, and we can ignore most of the other
genes. Another example, in the application of GIS ontology,
if an accident happens and causes casualties somewhere,
we should find the nearest hospital without considering the
shops, factories and schools nearby. That is to say, we only
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consider the neighborhood information which satisfies the
specific needs on the ontology graph. From this point of
view, large number of industrial and academic interests are
attracted to study the sparse ontology learning algorithm.

Actually, one sparse ontology function is expressed by

fw(v) =

p∑
i=1

viwi + δ, (1)

where w = (w1, · · · , wp)T is a sparse vector and δ is a
noise term. The sparse vector w is used to shrink irrelevant
component to zero. Thus, we should learn sparse vector w
first to determine the ontology function f . Hence, by ignoring
the noise term, the response vector y = (y1, · · · , yn)T can
be expressed by

y = Vw (2)

where V ∈ Rn×p is a ontology information matrix, and
for each ontology instance (vi, yi), we have yi = vTi w =∑p
j=1 v

j
iwj where vi = (v1

i , v
2
i , · · · , v

p
i )T .

Here, we don’t give review of ontology sparse vector
learning algortihms, but give an example to show how to get
the optimal solution. Let S = {(vi, yi)}ni=1 be the ontology
tranining sample set with vi ∈ Rp and yi ∈ R. We assume
that labels are centered and ontology data are standardized,
i.e.,

∑n
i=1 yi = 0,

∑n
i=1 vij = 0 and

∑n
i=1 v

2
ij = 1. In

this setting, one of ontology optimization framework can be
expressed as

min
w

1

2

n∑
i=1

(vTi w − yi)2 (3)

s.t. ‖w‖1 + c1
∑
j<k

max{|wj |, |wk|} ≤ c2,

where ‖w‖1 controls the sparsity of ontology sparse vector
w, c1 and c2 are two positive balance parameters. If combin
the ontology optimization framework (3) with its restrict
conditions, we obtain

F (w, λ1, λ2) = min
w

1

2

n∑
i=1

(vTi w − yi)2 + λ1‖w‖1

+λ2

∑
i<j

max{|wi|, |wj |}, (4)

where λ1 and λ2 are positive balance parameters. Suppose w
is the optimal solution of (4), oj ∈ {1, · · · , p} is the order of
|wj | among {|w1|, |w2|, · · · , |wp|} such that |wj1 | ≤ |wj2 | if
o(j1) < o(j2). The set Kk ⊆ {1, · · · , p} meets the following
two conditions: |wj1 | = |wj2 | = ϑk for any j1, j2 ∈ Kk with
j1 6= j2; |wj | 6= ϑk if j ∈ {1, · · · , p} and j ∈ Kk. It
reveals that ϑk (0 ≤ ϑ1 < ϑ2 < · · · < ϑK) represents the
common value of |wj | for set Kk and K1∪K2∪· · ·∪KK =
{1, · · · , p}. Thus, the ontology optimization framework can
be re-formulated as

min
ϑ

1

2

n∑
i=1

(ṽTi ϑ− yi)2 +
K∑
k=1

βkϑk (5)

s.t. 0 ≤ ϑ1 < ϑ2 < · · · < ϑK ,

where ṽi = {ṽi1, ṽi2, · · · , ṽiK}, ṽik =
∑
j∈Kk sign(wj)vij

and βk =
∑
j∈Kk(λ1 + (o(j)− 1)λ2).

By defining the active set by means of ϑk as A = {k ∈
{1, · · · ,K}|ϑk > 0} and A = {1, · · · ,K}−A, the optimal
conditions of (5) can be re-expressed as

n∑
i=1

−ṽik(ṽTi ϑ− yi) + βk = 0, ∀k ∈ A (6)

0 < ϑ2−|A| < · · · < ϑK−1 < ϑK (7)

ϑA = 0. (8)

For two parameter λ1 and λ2, set ∆λ =

(
∆λ1

∆λ2

)
,

d =

(
d1

d2

)
and ∆λ = d∆η, where ∆η is a parameter

used to control the adjustment qualities of two parameters.
Let ∆ϑ be the changes of parameter ϑ with direction ξ,
∆ηmax be te maximum change of ∆η, and ε be the accuracy
parameter. Set β̃k =

∑
j∈Kk(d1 +(o(j)−1)d2) and we infer

the following linear system for each k ∈ A:
n∑
i=1

ṽikṽ
T
iA∆ϑA + β̃k∆η = 0. (9)

Let B̃ be the K ×K diagonal matrix with elements β̃k, and
Ṽ be a n×K matrix whose i-th row is ṽTi . Hence, (9) can
be expressed as

Ṽ T∗AṼ∗A∆ϑA + B̃AA∆η = 0. (10)

Let HAA = Ṽ T∗AṼ∗A and ξA = ∆ϑA
∆η . Then (10) can be

re-formulated by

HAAξA = −B̃AA. (11)

Thereore, ξA (the direction of ∆ϑA) can be obtained by
solving (11).

The maximum adjustment ∆ηmax should be determined
after yielding the linear relationships of ξA in which we
need to consider the three main classes of situations. If a
certain ϑk in A equals to zero, then the maximal possible
∆ηA can be calculated before a certain ϑk ∈ A moves to
A using the constraints ϑk + ξk∆η > 0 for any k ∈ A
in the optimality conditions of ontology learning alorithm.
If the pair of feature sets change their orders of ϑk, in
light of (7), the optimality conditions of ontology learning
algorithm rely on a fix orders of ϑk. Hence, the maximal
possible ∆ηo can be determined in view of constraints
ϑk+ξk∆η < ϑk+1 +ξk+1∆η before a pair of Kk and Kk+1

change their orders. If the termination condition is satisfied,
i.e., η reaches η, then the maximal adjustment value before
the ontology algorithm satisfies the termination condition is
η−η. Finally, the smallest of three values {η−η,∆ηA,∆ηo}
constitutes the maximal adjustment value of ∆ηmax.

The solution w can be ensured as a ε-approximation so-
lution with F (w, λ1, λ2)−F (w∗, λ1, λ2) ≤ ε by the duality
gap K(w, λ1, λ2) = F (w, λ1, λ2)−F̃ (α, λ1, λ2) ≤ ε due to
the ontology optimization problem F (w) in (4) is a convex
problem, where w∗ is an optimal solution of F (w, λ1, λ2),
α is the dual variable, and F̃ (α, λ1, λ2) is the dual of
F (w, λ1, λ2). Specifically,

F̃ (α, λ1, λ2) = max
α
−α

Tα

2
− αT y (12)

s.t. max∑p
j=1(λ1+λ2(o(j)−1))|wj |=1

αTVw ≤ 1,
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where V ∈ Rn×p is ontology information matrix and
optimal α of F̃ (α, λ1, λ2) can be analytically computed as
α = (Vw− y) min{ 1

r∗(V T (Vw−y))
, 1} where |γ1| ≤ |γ2| ≤

· · · ≤ |γp| and

r∗(γ) = max
j∈{1,··· ,p}

∑j
i=1 |γj |∑j

i=1 λ1 + (i− 1)λ2

.

On the how to compute the value of K(ϑ, λ1, λ2), we can
get it using the following steps: given w or ϑ, λ1 and λ2;
calculate γ = V T (Vw− y) and decline order the γi; deter-
mine r∗(γ); compute the optimal α of F̃ (α, λ1, λ2); return
the duality gap K(w, λ1, λ2) = F (w, λ1, λ2)−F̃ (α, λ1, λ2)
in terms of (12).

The whole processes can be described as follows: given di-
rection number and accuracy parameter ε,an interval [η1, η2]
of η, determine the solustion ϑ and sets Kk for η = η1; repeat
the following actions until η > η2 or K(ϑ, λ1, λ2) > ε:
calculate ∆ϑ and ∆η, update η, ϑ, λ1, λ2, A and ϑk;
determine K(ϑ, λ1, λ2). Finally return a solution in [η1, η2]
with regard to λ1 and λ2.

III. MAIN ONTOLOGY ALGORITHMS

In this section, we present the ontology sparse learning
techniques, and thus apply it in the ontology engineering.
Two main ontology algorithms for ontology similarity mea-
suring and ontology mapping are manifested.

A. Greedy ontology algorithm and its optimization tricks

Now we consider the following ontology model

yi = wT vi + δi (13)

or an ontology logistic regression framework

p(yi|vi) =
1

1 + e−wT vi−w0
, (14)

where δ = (δ1, · · · , δp)T ∈ Rp is an ontology disturbance
vector and w0 ∈ R is an ontology disturbance term. A
modified ontology linear model with pairwise interaction
terms (Ψ ∈ Rp×p is a weight matrix which is connected
with pairwise interactions) can be formulated as

yi = wT vi + vTi Ψvi + δi, (15)

or ontology logistic version

p(yi|vi) =
1

1 + e−yi(w
T vi+vTi Ψvi+w0)

. (16)

The ontology loss function corresponding to this framework
is denoted by

l(w,Ψ) =
1

2

n∑
i=1

‖yi −wT vi − vTi Ψvi‖22, (17)

or the logistic ontology loss

llog(w,Ψ, w0) =
n∑
i=1

log(1 + e−yi(w
T vi+v

T
i Ψvi+w0)). (18)

Assume that Ψ can be expressed as the tensor product
of K rank one matrices for pairwise interactions, i.e., Ψ =∑K
k=1 %k ⊗ %k. Let ŵ and %̂k be the estimator of w and

%k respectively. Then the ontology sparse vector is obtained
below

{ŵ, %̂k} = arg min
%k,w

l(w,Ψ) + λw‖w‖1

+
K∑
k=1

λ%k‖%k‖1, (19)

where λw and λ%k for k ∈ {1, · · · ,K} are positive balance
parameters. In the logistic ontology case, the corresponding
framework can be obtained replace ontology loss function in
(19) by llog. Set Q as objective function of (19) and t is a
counting number in the iteration process.

Let L(%k) be the ontology loss function of ontology
framework (19) with regard to %k. The optimality condition
for ontology framework (19) can be stated as 5jL(%k) +
λ%ksgn(%kj) = 0 if %kj 6= 0; otherwise | 5j L(%k)| ≤ λ%k .
Also, we can re-write the ontology optimality conditions for
w using the similar fashion. Let

5jL(%k) =
1

2

∑
i

(−2vji v
T
i %k)(yi −wT vi − vTi Ψvi).

Thus, the subgradient 5sjf(%k) for each %kj is 5jL(%k) +
λ%ksgn(%kj) if |%kj | > 0; 5jL(%k) + λ%k if %kj = 0
and 5jL(%k) < −λ%k ; 5jL(%k) − λ%k if %kj = 0 and
5jL(%k) > λ%k ; and 0 if −λ%k ≤ 5jL(%k) ≤ λ%k . And
the subgradient with regard to w can be inferred using the
similar way, and the differential of ontology loss function in
ontology framework (19) with regard to w can be determined
by

5jL(w) =
1

2

∑
i

(−2vji )(yi −wT vi − vTi Ψvi).

The projection operator theory can be used to optimal
the ontology problem. Let PO and PS be two projection
operators, Γw be the positive definite approximation of
Hessian of quadratic approximation of ontology function
f(w), γw and γ%k be the parameter for step sizes. Here PO
projects the step into the orthant including %k and w, and
PS projects the Newton-like direction to ensure the descent
direction. Hence, the update can be described as

w← PO(w − γwPS(Γ−1
w 5s f(w))),

%k ← PO(%k − γ%kPS(Γ−1
%k
5s f(%k))).

More contexts on projection operator can be referred to
Magnus and Brosens [35], Pluta and Russo [36], Rosenthal
[37], Arias and Gonzalez [38], Somai et al. [39], Jorgensen
et al. [40], Leble et al. [41], Bramati et al. [42], and Censor
and Mansour [43].

Also, soft computing tricks can be well applied to get
the ontology optimization solution. By setting S as the soft
thresholding operator, the updated rule can be formulated as

w̃j(λw) ← S(w̃j(λw) +
n∑
i=1

Vij(yi

−
∑
k 6=j

Vjkw̃k −
∑
k

VikΨVki), λw),
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%̃kj(λ%k) ← S(%̃kj(λ%k) +
n∑
i=1

Vij(
∑
k

P∑
r=1

%krVir)[yi −∑
k 6=j

Vjkw̃k −
∑
k

VikΨVki], λ%k).

A greedy ontology implementation process can
be described as follows: set w = 0, K = 1 and
%K = 1. %K−1 > 0 for K ≥ 2; repeat actions wtj =

arg minj Q((wt1, · · · , wtj−1, w
t−1
j+1, · · · , wt−1

p ), %t−1
k ) and

%tk,j = arg minj Q((%tk,1, · · · , %tk,j−1, %
t−1
k,j+1, · · · , %

t−1
k,p ), %t−1

k )
untill convergence; K = K + 1 and %K = 1; jump out of
the condition loop and delete %K and %K−1 from %.

B. Ontology sparse vector learning in special disturbance
setting

In the part, we propose the ontology sparse vector learning
algorithm in the special mathematical setting. First we ex-
press the ontology model using the matrix version as follows:

y = VTw + ε, (20)

where y ∈ Rn, V is the ontology information matrix, w =
(w1, · · · , wp)T ∈ Rp is the ontology sparse vector and ε ∈
Rn is a disturbance vector which meets ε ∼ N (0,Π). In
some machine learning works, Π−1 = (cij) expresses the
partial covariance sturcture of data.

Assume that there are m observation ontology sparse
vectors wi = (wi1, w

i
2, · · · , wip)T and their corresponding

estimators are yi = (yi1, y
i
2, · · · , yip)T (here i ∈ {1, · · · ,m}).

The l1 norm of matrix is denoted as ‖Π‖1 =
∑
i≤j |cij | and

‖V‖1 =
∑
i,j |vij |. The ontology loss function in this setting

can be formulated as

lm,λ(V,Π) = lm(V,Π) + λ1‖Π−1‖1 + λ2‖V‖1, (21)

where ontology loss function lm(V,Π) is used to measure
the quality of observation and their estimators, and λ1, λ2 are
balance parameters. For example, it can be detailed expressed
as lm(V,Π) = Trace((Y −VW)T (Y −VW)Π−1) −
log Π−1, where Y = (y1, · · · ,ym) ∈ Rn×m, W =
(w1, · · · ,wm) ∈ Rp×m, V ∈ Rn×p.

Let d(y|w) and d(y|w,V,Π) be true conditional
distribution function and parametetric distribution
function, respectively. Then the expected value
E[d(y|w,V,Π)] can be approximated using the empirical
version 1

m

∑m
i=1 d(yi|wi,V,Π), and ontology loss

function can be written in empirical version (set∫
d2(y|w,V,Π)dy = 1

2nπ
n
2 |Π|

1
2

):

l̃m(V,Π) =

∫
d2(y|w,V,Π)dy

− 2

m

m∑
i=1

d(yi|wi,V,Π). (22)

Furthermore,

l̃m,λ(V,Π) =
|Π−1| 12
2nπ

n
2
− 2

m

m∑
i=1

d(yi|wi,V,Π)

+λ1‖Π−1‖1 + λ2‖V‖1. (23)

When it comes to logistic ontology loss, (22) can be re-
written as

lm(V,Π) = − log[
1

m

m∑
i=1

e−
1
2 (yi−V Twi)TΠ−1(yi−V Twi)]

−1

2
log |Π−1|, (24)

and additional, (23) can be re-written as

lm,λ(V,Π) = − log[
1

m

m∑
i=1

e−
1
2 (yi−V Twi)TΠ−1(yi−V Twi)]

−1

2
log |Π−1|+ λ1‖Π−1‖1 + λ2‖V‖1. (25)

Set Θ = (V,Π−1) and ρi(Θ) =

− (yi−V Twi)TΠ−1(yi−V Twi)
2 . By setting Θ0 as the initial

value and C is a positive parameter which is not dependent
on Θ, then the first order approximation of log{

∑m
i=1 e

ρi(Θ)

m }
with regrad to Θ can be stated by

1

m

m∑
i=1

meρi(Θ0)∑m
i=1 e

ρi(Θ0)
5 ρi(Θ0)T (Θ−Θ0) + C.

The objection function (25) can be approximated by

− log |Π−1|+ 1

m

m∑
i=1

meρi(Θ0)∑m
i=1 e

ρi(Θ0)
(yi (26)

−V Twi)TΠ−1(yi − V Twi) + λ1‖Π−1‖1 + λ2‖V‖1.

Set Λ = Λ(Θ0) = 1
m

∑m
i=1

meρi(Θ0)∑m
i=1 e

ρi(Θ0) (yi − V Twi)(yi −
V Twi)T , then (26) can be re-stated as

− log |Π−1|+ Trace(Π−1Λ(Θ0))

+ λ1‖Π−1‖1 + λ2‖V‖1. (27)

The whole iterative processes can be described as follows:
input Π−1

0 , ε1 and ε2 are precision parameters, V0 and all
ontology informations; get Λ, Π̂−1 = arg min{− log |Π−1|+
Trace(Π−1Λ(Θ0))+λ1‖Π−1‖1 +λ2‖V‖1} in terms of (27)
and V̂ by means of (26) and given Π−1

0 ; if ‖Π̂−1−Π−1
0 ‖2F ≤

ε1 and ‖V̂ − V0‖2F ≤ ε2, then finish the procedures.
Otherwise, set Π−1

0 = Π̂−1 and V0 = V̂ and return back to
the last step.

We found that in a big data environment, data is generally
sparse. Conversely, dense data can only appear in small data
environments. Therefore, the above sparse vector algorithm
is consistent with the ontology similarity calculation and
dimensionality reduction in most big data environments.

IV. EXPERIMENTS

In this section, we present four simulation experiments
on ontology similarity measure and ontology mapping re-
spectively to verity the effectiveness of proposed ontology
algorithms. To make experiment result as precise as possible,
our presented ontology algorithms are run in C++, using
LAPACK and BLAS libraries for linear algebra computation.

We chose these ontology data sets as experimental objects,
not only because they play a major role in their respective
fields, but also serve as a standard ontology sample. They
are constructed in accordance with the following principles.
• Clarity and objectivity. The ontology should give a clear
and objective semantic definition of the defined terms in
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natural language.
• Completeness. The definitions given are complete and they
fully express the meaning of the terms described.
• Consistency. The inference derived from the term is
compatible with the meaning of the term itself, and there
is no contradiction.
• Maximum monotonic scalability. When adding general
or special terms to the ontology, there is no need to modify
the existing content.
• Minimum commitment. As few constraints as possible to
present the modelled object.
• Ontological distinction principle. The classes in the
ontology should be disjoint.
• Diversification of hierarchies. The multiple inheritance
mechanisms are potential to be enhanced.
• Modularity to minimize the degree of coupling between
the modules.
• Minimizat ion of the semantic distance. The semantic
distance between the sibling concepts is minimized, and the
concepts with similar meanings are abstracted as much as
possible, which are represented by the same meta-language.
• Standardization of names. Use standard names whenever
possible.

Here we need to be particularly reminded that in the
specific algorithm program, the calculation between sparse
vectors is different from the traditional vector calculation.
Since most of the components are zero, binary search tech-
niques can be used for sparse vector calculations and improve
program efficiency.

A. Experiment on biology data

First, we employ our ontology algorithm in the field
of biology. The “Go” ontology O1 was constructed in
http://www.geneontology.org (Figure 1 presents the basic
structure of O1) is a structured database which stores bi-
ological gene-related information. P@N (Precision Ratio) is
used as criterion to weight the equality of the result data. It
implemented within several steps:
• first, we infer the closest N concepts for each vertex on
the ontology graph by experts.
• then, we derive the N concepts with largest similarity for
each vertex on ontology graph by our proposed algorithm.
• finally, we calculate the precision ratio for each vertex,
and at last determine the precision ratio for whole ontology
graph.

Also, ontology function training approaches introduced
in Gao et al. [23], [25] and [44] are also acted on “Go”
ontology. The precision ratios are compared from these four
techniques, and partial experiment results can refer to Table
1.

From the precision ratio comparison presented in Table
1, we see that the precision ratio gotten from our ontology
algorithm is much higher than the precision ratio obtained
by ontology learning algorithms proposed in Gao et al. [23],
[25] and [44] when N =3, 5, 10 or 20. Therefore, we can
draw the conclusion that the ontology algorithm presented in
our paper is superior to the ontology approaches described
by Gao et al. [23], [25] and [44] in the biology gene “Go”
ontology application.

Fig. 2. “Physical Education” Ontology O2

Fig. 3. “Physical Education” Ontology O3

B. Experiment on physical education data

The physical education ontologies O2 and O3 (the struc-
tures of O2 and O3 can refer to Figure 2 and Figure
3, respectively) are used to test the serviceability of our
algorithm for the ontology mapping construction which is
purposed to compute the similarity between vertices from
ontology O2 and O3. P@N is also used as the criterion
to measure the equality of the obtained results. Ontology
learning algorithms described in Gao et al. [23], [24] and
[25] are also act on “physical education” ontology. The
comparison is made on precision ratios among these four
learning approaches, and partial result can refer to Table 2.

According to the precision ratio comparison revealed in
Table 2, we see that our proposed ontology learning our
algorithm is more efficient than ontology learning techniques
manifested in Gao et al. [23], [24] and [25].

C. Experiment on plant data

The “PO” ontology O4 was constructed in
http://www.plantontology.org (Figure 4 reveals the basic
structure of O4) which is used as a dictionary in plant
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Fig. 1. “Go” ontology

TABLE I
PARTIAL OF SIMILARITY COMPUTING DATA ON “GO” ONTOLOGY.

P@3 average P@5 average P@10 average P@20 average
precision ratio precision ratio precision ratio precision ratio

our ontology learning algorithm 0.5653 0.6971 0.8396 0.9472
ontology algorithm in Gao et al. [23] 0.5192 0.6569 0.8031 0.9192
ontology algorithm in Gao et al. [25] 0.5201 0.6663 0.8275 0.9417
ontology algorithm in Gao et al. [44] 0.5649 0.6827 0.8124 0.9371

TABLE II
PRTIAL OF THE EXPERIMENT DATA FOR ONTOLOGY MAPPING ON PHYSICAL EDUCATION ONTOLOGIES.

P@1 average P@3 average P@5 average
precision ratio precision ratio precision ratio

our ontology learning algorithm 0.6913 0.7957 0.9355
ontology algorithm in Gao et al. [23] 0.6774 0.7849 0.9032
ontology algorithm in Gao et al. [24] 0.6913 0.7634 0.8968
ontology algorithm in Gao et al. [25] 0.6774 0.7957 0.9290

science, and it is used to verify the efficiency of our ontology
learning algorithm for similarity measuring application. We
use P@N standard again in this experiment. Furthermore,
previously ontology learning tricks manifested in Gao et al.
[22], [25] and [44] are also acted on the “PO” ontology. The
precision ratios by these four algorithms are determined,
respectively. Partial of the precision ratios are compared in
Table 3.

When N =3, 5, or 10, the precision ratios yielded by
ontology learning algorithm introduced in Gao et al. [22],
[25] and [44] are lower than the precision ratio deduced
in terms of our ontology learning technology. Clearly, our
proposed ontology learning algorithm is superior to the
method described by Gao et al. [22], [25] and [44] with
respect to similarity computation in plant science field.

D. Experiment on humanoid robotics data

Two humanoid robotics ontologies O5 and O6 was intro-
duced by Gao and Zhu [22] (the fundamental structures of
O5 and O6 are showed in Figure 5 and Figure 6 respectively)
which are used for our last experiment. In this experiment,
we aim to obtain similarity between ontology vertices from
O5 and O6, and thus infer the ontology mapping according

to these similarities. Once again, P@N criterion is employed
to judge the equality of the experiment conclusion. Ontology
learning tricks obtained in Gao et al. [22], [23] and [25] were
also acted on humanoid robotics ontologies. The precision
ratios which are gotten from four ontology optimization
methods are compared and partially presented in Table 4.

According to the compared precision ratios manifested in
Table 4, we draw the conclusion that our described ontol-
ogy learning algorithm acts more efficiently than ontology
learning approaches introduced in Gao et al. [22], [23] and
[25]. These superiority is manifested to be more evident as
N becomes larger.

V. CONCLUSIONS

In this article, new ontology computation techniques are
introduced for ontology similarity measure and ontology
mapping applications. The detailed optimization scheming
relies on ontology sparse vector learning, and the target
ontology sparse vector is obtained via iterative computation.
Simulation precision ratios of the four experiments in the
last section imply that our new ontology technology has
high efficiency in biology, physics education, plant science
and humanoid robotics. The new ontology algorithms raised
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Fig. 4. “PO” ontology O4

TABLE III
PARTIAL OF ONTOLOGY SIMILARITY COMPUTING DATA ON “PO” ONTOLOGY.

P@3 average P@5 average P@10 average P@20 average
precision ratio precision ratio precision ratio precision ratio

our ontology learning algorithm 0.5371 0.6763 0.9037 0.9698
ontology algorithm in Gao et al. [22] 0.5042 0.6216 0.7853 0.9034
ontology algorithm in Gao et al. [25] 0.5081 0.6549 0.8104 0.9317
ontology algorithm in Gao et al. [44] 0.5360 0.6664 0.9004 0.9673

TABLE IV
PARTIAL ONTOLOGY MAPPING DATA ON HUMANOID ROBOTICS ONTOLOGIES.

P@1 average P@3 average P@5 average
precision ratio precision ratio precision ratio

our ontology learning algorithm 0.4444 0.6296 0.8444
ontology algorithm in Gao et al. [22] 0.4444 0.5185 0.6111
ontology algorithm in Gao et al. [23] 0.2778 0.6111 0.7889
ontology algorithm in Gao et al. [25] 0.4444 0.5370 0.8222

Fig. 5. “Humanoid Robotics” Ontology O5
Fig. 6. “Humanoid Robotics” Ontology O6
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in this paper illustrate promising application prospects in
multiple disciplines.

The following topics can be considered as the future
ongoing research work.
• What are the statistical characteristics (for example, the
computing complexity and convergence rate) of the given
ontology learning algorithm?
• The ontologies of different application domains have
their own different characteristics. Whether the algorithm
proposed in this paper can exert better efficiency in other
engineering fields waiting for further verification.
• Ontology sparse vector computes only one trick among
learning techniques. Thus, it is natural to ask whether other
machine learning techniques are suitable for ontology graph
similarity applications.
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