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Abstract— This study proposes three enhanced multi-

objective imperialist competitive algorithms: MOICA-I, 

MOICA-II and MOICA-III for solving multi-objective optimal 

reactive power dispatch (MOORPD) problem. In MOICA-I, 

the fuzzy power method is proposed to solve the application of 

imperialist competitive algorithm (ICA) in multi-objective 

problems (MOPs). In MOICA-II, based on the non-dominated 

sorting method and the crowded distance calculation, the 

constraint dominant method and the total rank method are 

proposed to solve the inequality constraint and the ranking of 

the solutions. In MOICA-III, combined with the fuzzy power 

method in MOICA-I and the constraint dominant method in 

MOICA-II, the power quantitation method is proposed to solve 

the above three problems simultaneously: the application of the 

ICA, the processing of the constraint and the measurement 

method of the solutions. In order to verify the effectiveness of 

the enhanced approaches for the MOORPD problem, three 

objective functions including total active power losses, voltage 

deviation and voltage stability index are considered. Simulation 

experiments are carried out in the IEEE 30, 57 and 118 bus 

systems. The results show that the enhanced approaches can 

effectively solve the MOORPD problem, and the performance 

of MOICA-III is outstanding. 
 

Index Terms—Multi-objective optimal reactive power 

dispatch; imperialist competitive algorithm; fuzzy power 

method; constraint dominant method; power quantitation 

method 

I. INTRODUCTION 

HE optimal reactive power dispatch (ORPD) problem is 

a sub-problem of optimal power flow (OPF) problem, 

and it is also one of the important research issues of power 

system optimization [1]–[3]. The main purpose of ORPD is  
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to improve the power flow distribution of the power system 

by adjusting the control device under certain constraints, 

thereby strengthening the safe operation of the power grid, 

improving the system voltage quality and reducing the 

operating cost of the power grid. In the ORPD problem, these 

control devices (variables) mainly include three categories: 

the generator voltages, the transformer taps and the reactive 

power compensation [4], [5]. In addition, the generator 

voltages are continuous variables, the other two variables are 

discrete variables. Therefore, from the perspective of the 

mathematical model, the ORPD problem is a non-convex, 

non-differentiable, nonlinear, multi-constrained and high-

dimensional optimization problem. According to the number 

of optimization targets, the ORPD problem can be divided 

into single-objective ORPD (SOORPD) problem and multi-

objective ORPD (MOORPD) problem [6]–[8]. 

Different from the single-objective optimization problems 

(SOPs), the multi-objective optimization problems (MOPs) 

need optimize multiple targets simultaneously, and seek a set 

of Pareto optimal solution sets, and then find the best 

compromise solution (BCS) from these solution sets [9]. 

Therefore, the solution of MOPs is generally more difficult. 

The traditional methods for solving MOPs include linear 

weighted sum method, ε-constraint method, multi objective 

programming approach, and goal attainment method [10]–

[13]. Although these methods inherit the ideas of some 

classical algorithms for solving SOPs, they have a common 

flaw, which means, these methods must be run multiple times 

to get the Pareto optimal solution sets of the original problem. 

And the above methods are difficult to deal with non-

differentiable, non-convex and large-scale problems which 

lead to the limitation of the practical application of these 

methods. 

The successful application of multi-objective evolutionary 

computation approach in the field of the multi-objective 

optimization provides a new research direction for MOPs. 

Since the evolutionary algorithm can obtain multiple Pareto 

solutions in a single simulation run and can easily process 

discontinuous or concave Pareto fronts, this method has 

unique advantages in solving the MOPs. In recent years, a 

large number of algorithms have been proposed and applied 

to solve the MOPs, such as non-dominated sorting genetic 

algorithm II (NSGA-II), non-dominated sorting genetic 

algorithm III (NSGA-III), strength Pareto evolutionary 

algorithm 2 (SPEA2), Pareto envelope-based selection 

algorithm II (PESA-II) and multi objective particle swarm 

optimization (MOPSO) [14]–[16]. Since the imperialist 
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competitive algorithm (ICA) was proposed by Atashpaz-

Gargari and Lucas, it has been successfully applied to a 

variety of optimization problems [17]. In [18], an enhanced 

ICA (EICA) is proposed to aim at improving its searching 

ability. In [19], the researcher proposed the Sigma method 

for improving multi-objective ICA (MOICA). In [20], a new 

MOMICA was proposed and applied to solve the multi-

objective OPF (MOOPF) problem. In [21], a modified 

GBICA (MGBICA) is presented for solving the optimal 

electric power planning problem. 

ICA has obvious features such as simple operation, high 

accuracy and fast searching speed, which makes it have 

certain advantages and efficiency in solving optimization 

problems [22]–[24]. The update of ICA mainly depends on 

the objective function value (power value) of the individual 

country. However, there are multiple targets in the MOPs that 

conflict with each other, which makes the originally 

algorithm cannot directly solve the MOPs. In order to apply 

ICA to solve the MOOORPD problem, we firstly need to deal 

with the application of ICA on MOPs. Therefore, this paper 

proposes a MOICA based on fuzzy power method to solve 

the application of ICA, and we call this method MOICA-I. 

In addition, since the MOOORPD problem is a multi-

constrained problem, whether the constraint processing 

method is reasonable has a great influence on the algorithm 

result. Based on the non-dominated sorting method and the 

crowded distance calculation method [25], we propose a 

constraint dominant method for judging the merits of the 

country, and ranking all the countries according to their merit. 

Then, we call this method MOICA-II. In order to further 

quantify the value of country's power and prioritize 

constraints. Based on the constraint dominant method in the 

MOICA-Ⅱ and the fuzzy power method in the MOICA-Ⅰ, the 

power quantitation method is proposed, and we call this 

method MOICA-III. 

The aforementioned MOICA-I, MOICA-II and MOICA-

III algorithms were tested on the IEEE30 bus system, the 

IEEE57 bus system and the IEEE118 bus system to verify 

their effectiveness and performance. In addition, the 

Generational Distance (GD) and Hyper-volume (HV) 

indicators are used to measure the stability and diversity of 

the three algorithms [26], [27]. For different bus types and 

target combinations, we conducted simulation experiments 

in six cases. The simulation results show the effectiveness of 

the above three enhanced methods, and also verify the 

superiority of the MOICA-III algorithm. 

The following sections of this paper are organized as 

follows: The mathematical model description of the 

MOORPD problem is shown in Section II. Section III 

describes the MOICA-I, MOICA-II and MOCA-III 

algorithms for solving the MOORPD problems. The 

simulation results and performance analysis of the 

algorithms can be seen in Section IV, and Section V provides 

the final conclusion. 

II. MATHEMATICAL MODELING 

Generally, the main purpose of MOPs is to optimize 

multiple conflicting objectives while satisfying equality and 

inequality constraints, simultaneously. An MOP containing 

M objective functions can be mathematically described as 

follows: 

 
1 2min ( , ) [ ( , ), ( , ), , ( , )]MF x u f x u f x u f x u  (1) 

subject to: 

 ( , ) 0g x u   (2) 

 ( , ) 0h x u   (3) 

where F is the objective functions, g and h are constraints. In 

the MOORPD problem, x is the vector of state variables 

consisting of: the load bus voltages VL, the generator reactive 

power outputs QG and the transmission line loadings SL. 

Therefore, the x can be expressed as follows: 

 [[ ] ,[ ] ,[ ] ]T T T T

L G Lx V Q S  (4) 

u is the vector of control variables consisting of: the 

generator bus voltages VG, the transformer taps T and the 

reactive power compensation QC. Thus, the u can be 

expressed as follows: 

 [[ ] ,[ ] ,[ ] ]T T T T

G Cu V T Q  (5) 

where ‘T’ represents transposition. 

A. Objective functions of MOORPD 

1) Active power losses minimization 

This objective of ORPD problem is to minimize the total 

active power transmission losses in the power system. The 

objective function are expressed as follows: 

 
2 2

1( , ) min = ( 2 cos )
E

loss k i j i j ij

k N

f x u P g V V VV 


    (6) 

where Ploss is the total power losses of the power system; NE 

is the number of transmission lines; gk is the conductance of 

the kth branch which connects the bus i and bus j; Vi and Vj 

are the voltage magnitude of bus i and bus j, respectively; δij 

is the voltage angle between bus i and bus j. 

2) Voltage deviation minimization 

This objective is to minimize the total voltage deviations 

in all load buses which can be expressed as: 

 
2

1

( , ) min
PQN

REF

d i

i

f x u V V V


    (7) 

where Vd is the total voltage deviations; NPQ is the number of 

PQ buses; Vi is the bus voltage at the ith load node; VREF is 

the desired voltage magnitude. 

3) Voltage stability index minimization 

Voltage stability is the capacity of a power system to 

maintain constant bus voltage when the system is in normal 

operating conditions or is being subjected to disturbances. In 

this paper, the voltage stability enhancement is achieved by 

minimizing voltage stability index (L index) and it can be 

represented by following equations: 

 
3 ( , ) min( )f x u Lindex  (8) 

where 

 max( ),j PQLindex L j N   (9) 

and 
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 (10) 

where NPV is the number of PV buses; YLL and YLG are the 

sub-matrices. And the Y-bus matrix (node admittance matrix) 

acquired after separating the PQ buses and PV buses can be 

stated as: 
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where IG and IL are the currents of PQ buses and PV buses; 

VG and VL are the voltages of PQ buses and PV buses. 

B. Constraints of MOORPD 

1) Equality constraints 

The aforementioned g is equality constraints and it 

includes: 

 ( cos sin ) 0,
i

Gi Di i j ij ij ij ij

j N

P P V V G B i N 


      (12) 

 ( sin cos ) 0,
i

Gi Di i j ij ij ij ij PQ

j N

Q Q V V G B i N 


      (13) 

where PGi and QGi are the active and reactive power 

generation; PDi and QDi are the active and reactive load 

demand; Vi and Vj are the voltages of the ith bus and the jth 

bus, respectively; Gij and Bij are the real part and imaginary 

part of the ijth element of Y-bus matrix; Ni is the number of 

buses adjacent to the bus i; N is the number of system buses. 

2) Inequality constraints 

The aforementioned h is inequality constraints and it 

includes x (state variables) inequality constraints and u 

(control variables) inequality constraints. The x inequality 

constraints are formulated as follows: 

 

min max

min max
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 (14) 

where VLi is the load bus voltages of the ith load bus; SLij is 

the apparent power flow of the ijth transmission line; NPV is 

the number of PV buses; max and min respectively represent 

the minimum and maximum value of the variable. 

The u inequality constraints can be detailed as follows: 

 

min max

min max

min max

, 1, ,

, 1, ,

, 1, ,
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 (15) 

where VGi is the generator bus voltages of the ith generator 

bus; Ti is the transformer tap settings of the ith transformer; 

QCi is the reactive power compensation capacity of the ith 

capacitor bank; NT is the number of transformers; NC is the 

total number of capacitor banks. 

III. PROPOSED ALGORITHMS FOR MOORPD PROBLEM 

A. Overview of ICA 

ICA is a new intelligent optimization algorithm inspired by 

imperialistic competition [28]. This algorithm starts with an 

initial population and each of them is called countries. Based 

on their power, the countries are classified into two types: 

imperialists and colonies. The imperialists (stronger 

countries) will take control of colonies (weaker countries) to 

form empires. Then, the imperialistic competition begins 

among all the empires. During this competition, weak 

empires collapse and stronger empires take possession of 

their colonies. Finally, all countries will be controlled by one 

empire. The main steps are presented as below. 

1) Initialization 

ICA starts with a population of size Npop. In an Nvar 

dimensional optimization problem, a country is a vector 

containing Nvar control variables. The control variables in a 

country include some socio-political features such as, social 

beliefs, customs, culture, language and other features. In the 

MOORPD problem, these socio-political features (control 

variables) represents generator bus voltages, transformer taps 

and reactive power compensation. Thus the ith country are 

expressed as follows: 

 
,1 ,2 ,3 ,( ) [ , , , , ]

vari i i i Ncountry i p p p p  (16) 

where country(i) denotes the candidate solution; pi represents 

the control variable that should be optimized. 

In order to form the initial empires, the first Nimp countries 

with less cost function values are selected as imperialists and 

the remaining Ncol countries will be the colonies which are 

under control of one of empires. For variables (pi,1, pi,2, 

pi,3,…,pi,Nvar), the cost function f(country(i)) can be evaluated 

by (17). 

 
,1 ,2 ,3 ,( ) ( ( )) ([ , , , , ])

vari i i i Ncost i f country i f p p p p   (17) 

2) Formation of empires 

In this process, each imperialist will acquire a number of 

colonies based on its power. In order to proportionally divide 

the colonies among imperialists, the normalized cost of an 

imperialist is first calculated by (18). 

 max{ }n n i
i

C c c   (18) 

Where cn is the cost of nth imperialist and Cn is the 

normalized cost. Then, the normalized power of each 

imperialist, pn, can be evaluated by (19). 

 
1

| / |
impN

n n i

i

P C C


   (19) 

When the normalized power of all imperialist are gathered, 

the initial number of colonies for nth empire, NCn, can be 

denoted by (20). 

 { }n n colNC round p N  (20) 

3) Assimilation 

After forming the empires, the assimilation process begins. 

The movement of a colony towards its respective imperialist 

depends on two parameters: the distance parameter β and the 

direction parameter θ. Fig. 1 shows this assimilation process. 

In this figure, d presents the distance between imperialist and 

colony, x is a random variable with steady distribution and it 

can be defined by (21), θ is the deviation angle with an angle 

parameter γ and it can be defined by (22). 

 ~ (0, )x U d   (21) 

 ~ ( , )U     (22) 

 

Fig. 1. The assimilation process 

Imperialist

Colony

Colonynew

θ
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4) Revolution 

ICA allows all countries to enhance their power through 

mutation. After assimilation and mutation, a colony may 

reach to a new position with lower cost (equivalent to having 

more power than before) than that of imperialist, and then the 

colony will replace the imperialist. 

5) Imperialistic competition 

In ICA, this process is modeled by defining the total power 

of an empire by the power of imperialist and its colonies. The 

total cost is calculated by following equations: 

 
1

| / |
imp

n

N

p n i

i

P NTC NTC


   (23) 

where 

 max{ }n n i
i

NTC TC TC   (24) 

and 

 ( ) { ( )}n n nTC Cost imp mean Cost colonies of emp   (25) 

where Ppn is the power of each empire, NTCn is the 

normalized total cost, TCn is the total cost of the nth empire 

and ξ is the colonial weight which is a positive number less 

than 1. 

In the imperialistic competition process, all empires try to 

take possession of colonies of other empires and control them. 

Any empire that is not able to succeed in imperialistic 

competition and cannot increase its power will be eliminated. 

Ultimately, there exists just one empire and all other 

countries are its colonies. The position of the imperialist in 

this empire represents the final solution of the optimization 

problem. 

B. Enhanced approaches 

The optimization of the ICA mainly depends on the power 

of country [28]. In the SOPs, the country's power can be 

directly determined by the value of the objective function. 

However, on the contrary to the SOPs with only one single 

objective, MOPs have two or more objective functions that 

conflict or interact with each other. Therefore, we cannot 

directly determine the country's power through the value of 

objective function. In addition, the MOORPD problem has 

some obvious features such as multiple constraints and high 

dimensions, and those features lead to the processing of 

constraints and the comparison of candidate solutions 

becomes more complicated. In order to solve these problems 

encountered in the application of ICA algorithm to 

MOORPD problem, three MOICAs including MOICA-Ⅰ, 

MOICA-Ⅱ and MOICA-Ⅲ are proposed. 

1) MOICA-Ⅰ 

In MOICA-I, we will redefine the measure of country's 

power through fuzzy mathematics decision method and we 

called this approach “fuzzy power method”. First, the 

satisfaction function Smi of the kth cost function fm of country 

i is defined as follows: 

 

min

max

min max

max min

max

1

( )
( )

0

mi m

m mi

mi m mi m

m m

mi m

f f

f f x
S x f f f

f f

f f

 



  


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 (26) 

where fmmax and fmmin represent the maximum and the 

minimum value of the mth cost function, respectively. For 

every country i, the redefined standardized power can be 

expressed by the standardized satisfaction function sfi. 

 
p

M

mim=1

i i N M

mii=1 m=1

S
sP sf =

S




 
 (27) 

Then, the power of all countries can be represented by sP, 

which is a fuzzy number between 0 and 1. The country with 

maximum standardized power value can be seen as the 

strongest country in this world. 

2) MOICA-Ⅱ 

In the MOORPD problem, the constraint violation should 

be considered before measuring the quality of each candidate 

solution. The violations of equality constraints are checked 

by using Newton-Raphson load flow calculation. To solve 

the problem of constraints, we propose a constraint dominant 

method. This method can divide all countries into n levels by 

prioritizing country's constraint violations. Then for the m 

countries of the same level, the country's power is can be 

further sorted by the classical crowded distance calculation. 

Based on the constraint dominant method and the crowded 

distance calculation, we propose the second improved 

approach: total rank method. 

 Constraint dominant method 

For the country i, the control variables constraints ui are 

handled as follows: 

 

,min ,min

,max ,max

,min ,max

if

if

if

i i

i i i

i i i

u u u

u u u u

u u u u

 


 


 

 (28) 

For each country's state variables, constraint dominant 

method is proposed which is described as below.  

Initially, the power level of all country is divided according 

to the constraint violation of the state variable, and sum of 

constraint violations are calculated as follows: 

 
1

( ) max( ( , ),0)
Ns

i j i

j

Vio u h x u


  (29) 

where Ns is the number of particular inequality constraints on 

state variables. 

Next, for control variables u1 and u2 from any two different 

countries, their quality can be judged by the constraint 

dominant rules: 

Constraint Dominant Rules: 

1. if Vio(u1) < Vio(u2)  u1 dominates u2; 

2. if Vio(u1) > Vio(u2)  u2 dominates u1; 

3. if Vio(u1) = Vio(u2) 

4. if fi(x,u1) ≤ fi(x,u2) for all i∈{1, 2, …, M} and fj(x,u1) < fj(x,u2) 

for any j∈{1, 2, …, M} 

5. u1 dominates u2; 

6. else  u2 dominates u1; 

According to the above rules, all countries can be divided 

into n levels. We can define Rank (i) as the power level of 

country i. The country with the lower rank value is stronger, 

and the greater the Rank value, the weaker the power. 

 Crowded distance calculation 

All countries can be hierarchically divided by the 

constraint dominant method. If country i and country j have 

same rank value, their power strength can be judged by the 

crowded distance calculation. Then, we define Dis (i) as the 

crowded distance of country i. In current level, the greater 

the country’s crowded distance value is, the stronger the 
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country’s power is. Finally, two attributes of a country are 

obtained: Rank (i) and Dis (i). For any country i and country 

j, the total rank relationship can be determined by the 

following rules: 

Total Rank Rules: 

1. if Rank (i) < Rank (j)  country i is stronger than country j; 

2. if Rank (i) > Rank (j)  country j is stronger than country i; 

3. if Rank (i) = Rank (j) 

4. if Dis (i) > Dis (j)  country i is stronger than country j; 

5. else  country j is stronger than country i; 

3) MOICA-Ⅲ 

In the MOICA-Ⅱ, we have proposed the constraint 

dominant method to solve the inequality constraint problem 

and stratify the countries. After the country's rank value is 

determined, these countries on the rank 1 are considered 

Pareto-optimal front, and countries with the same rank value 

are compared by using crowded distance calculation. For any 

two countries, the crowded distance calculation method can 

determine which country is stronger, however it cannot 

determine the difference in power between them. 

Based on the constraint dominant method and the fuzzy 

power method, the third improved method: power 

quantitation method is proposed. This method can measure 

the difference in power between all countries. First, calculate 

the power value of each country by (30). 

 ( )
1

1

( )
= ( )

( )

1

Rank i

M
m

i N
m

mn

i i

f i
C Rank i M

f n

P C




 
  
 
 




  (30) 

Where Ci is the new cost function of country i, Pi is the 

power of country i, fm(i) is the mth objective function value 

of country i, NRank(i) is the number of those country with same 

Rank value, fm(n) is the mth objective function of the nth 

country with rank value equal to Rank(i). 

The cost function consists of two parts: the fuzzy power 

value and the rank value. In the first part, the objective 

function values of each country are standardized based on the 

related objective function values of all countries with same 

rank, and the value of this part is between 0 and 1. In the 

second part, Rank (i) is greater than or equal to 1, M is greater 

than 2, thus, the value of second part is greater than 2. 

We can observe that the rank value is a dominant factor. 

The fuzzy power value is a secondary factor, and this factor 

mainly affects those countries with same rank value. This 

means that the constraint is always the primary factor 

determining the country's power. For these countries with the 

same constraint violations, the power can be differentiated 

by fuzzy power values rather than just sorting. Therefore, the 

application of the ICA, the processing method of constraints, 

and the measurement method of the quality of the solution 

are simultaneously solved by this method. 

C. Proposed algorithms for MOORPD problem 

The main goal of this study is solving MOORPD problem 

using those improved MOICA methods. Using the proposed 

methods, a set of solutions will stored in a repository (NR). 

As the algorithm iterates, the particles in the repository are 

continually updated, but the size of the repository remains 

the same. In this section, we employ the MOICA-Ⅰ, MOICA-

Ⅱ and MOICA-Ⅲ to solve the MOORPD problem. 

Proposed Approaches for MOORPD Problem 

Step1: Input the needed information of systems and algorithms. 

Step2: Create the initial population (countries). The population 

dimension is Npop× Nvar. 

Step3: For each country, calculate the objective functions and 

constraint violations using Newton-Raphson load flow 

calculation. 

Step4: Determine country's power by using MOICA-Ⅰ, MOICA-Ⅱ or 

MOICA-Ⅲ. 

Step5: Store powerful solutions in repository. 

Step6: Form the empires and start assimilation process. 

Step7: Execute revolution operation. 

Step8: Imperialistic competition and eliminate weak empire. 

Step9: Calculation of power value of all countries using MOICA-Ⅰ, 

MOICA-Ⅱ or MOICA-Ⅲ. 

Step10: Update powerful solutions in repository and keep the 

repository size constant. 

Step11: Check stopping condition and go to next step if satisfying the 

preprogrammed maximum generations, otherwise, continue 

Step7. 

Step12: Output Pareto optimal solutions in repository. 

Step13: Calculation of power value of all Pareto optimal solutions 

using power quantitation method, choose a Pareto optimal 

solution with maximum power value as the best compromise 

solution. 

IV. SIMULATION RESULTS 

In order to verify the effectiveness and performance of 

modified methods, the proposed MOICA-Ⅰ, MOICA-Ⅱ and 

MOICA-Ⅲ algorithms have been examined and tested in the 

IEEE 30 bus test system (system 1), the IEEE 57 bus test 

system (system 2) and the IEEE 118 bus test system (system 

3) for solving MOORPD problem. Three objective functions 

are considered: Ploss, Vd and L index. Those algorithms have 

been implemented in MATLAB 2014a and run them on a PC 

with Intel(R) Core(TM) i5-7500 CPU @ 3.40GHz with 

3.41GHz. 

A. Parameter settings 

1) System parameters 

The single line diagram of the system 1 is shown in Fig. 2. 

Its detail data are given in [29]. The reactive power 

generation limits and the transmission apparent power flow 

limits can be seen in [30]. The system 1 has a set of control 

variables with a 19-dimensional vector. The limits of 

generator bus voltages are set at 0.95-1.1 in p.u. and the 

limits of transformer taps are 0.9 and 1.1. 

The single line diagram of system 2 is shown in Fig. 3. Its 

detail data are taken from [31]. The reactive power 

generation limits and the transmission apparent power flow 

limits can be seen in [32]. The system 2 has a set of control 

variables with a 27-dimensional vector. The limits of 

generator bus voltages are set at 0.9-1.1 in p.u. and the lower 

and upper limits of transformer taps are 0.9 and 1.1. 

To verify the effectiveness of the proposed methods in a 

larger scale system, these algorithms are tested on the system 

3. The single line diagram of system 3 is shown in Fig. 4. Its 

detail data are taken from [31]. The improved reactive power 

generation limits and the transmission apparent power flow 

limits can be found in [33]. The system 3 has a set of control 

variables with a 75-dimensional vector. The limits of 

generator bus voltages are set at 0.9-1.1 in p.u. and the 

minimum and maximum values of transformer taps are 0.9 

and 1.1.
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Fig. 2. The single line diagram of the system 1 Fig. 3. The single line diagram of the system 2 
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Fig. 4. The single line diagram of the system 3 

 

2) Algorithm parameters 

The number of particles and iterations will directly affect 

the complexity of the optimization problem [34]. Therefore, 

finding the appropriate parameters is of great significance to 

this experiment. After a lot of repeated trails, the algorithm 

parameters are set as shown in TABLE I. 
TABLE I SIMULATION PARAMETERS SELECTION 

Algorithms Parameters Cases 1-5 Case6 

MOICA-Ⅰ 

MOICA-Ⅱ 

MOICA-Ⅲ 

Population size: Npop 80 80 

Repository size: NR 80 80 

Maximum iterations: Kmax 300 500 

Number of empires: Nimp 16 16 

Number of colonies: Ncol 64 64 

Deviation angle: θ π/5 π/5 

Distance parameter: β π/5 π/5 

Colonial weight: ξ 2 2 

B. Results for system 1 

1) Case1: Optimizing Ploss and Vd 

In this simulation process, the distributions of the Pareto 

optimal solutions of different methods are shown in Fig. 5. 

We can observe that the proposed algorithms can obtain the 

Pareto front. It also shows that the MOICA-III methods can 

found better BCS. Fig. 6 shows the details of the Pareto front 

of the MOICA-III, including minimum Ploss (MP), minimum 

Vd (MV) and BCS. And the detailed data of BCS can be seen 

in TABLE II, it is observed that the BCS of MOICA-III are 

better than MOICA-I, MOICA-II. 

2) Case2: Optimizing Ploss and L index 

L index is an important indicator for evaluating the stability 

of the power systems. Thus in case 2, the Ploss and L index 

are considered simultaneously. The simulation results of 

proposed improved methods illustrated in Fig. 7-8. The 

control variables of BCS of three algorithms are presented in 

TABLE III. It is found that Ploss and L index are 0.0513653 

p.u. and 0.1207811 for MOICA-III method. Compared with 

MOICA-I and MOICA-II, the Ploss is reduced about 

0.0000248 p.u. and 0.0000119 p.u., and the L index is 

reduced about 0.0003926 and 0.0000034. To further verify 
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the performance of the MOICA-III algorithm, we compared 

it with the reported MOCIPSO algorithm. From the 

comparisons of the MP, minimum L index (ML) and BCS 

obtained from MOICA-III with the reported MOCIPSO in 

TABLE IV, the Ploss of BCS and the MP are better than 

MOCIPSO. 

3) Case3: Optimizing Vd and L index 

In Case3, the performance of the MOICA-I, MOICA-II 

and MOICA-III for simulation optimization of Vd and L 

index is considered. The distribution of Pareto optimal 

solution of three methods are shown in Fig. 9-10. We can see 

from the Fig. 10 that the minimum Vd is 0.179703 p.u. and 

the minimum L index is 0.116921. The simulation results of 

BCS are given in TABLE V. As seen in TABLE V, the Vd and 

L index of the MOICA-III method can be reduced about 

0.0052018 p.u. and 0.0001359 less than the MOICA-II 

method, and those optimization indicators of the MOICA-II 

method can be reduced about 0.0124589 p.u. and 0.0001341 

less than the MOICA-I method.  

 

  
Fig. 5. Simulation results obtained for case1 using of MOICA-I, 

MOICA-II, MOICA-III 

Fig. 6. Pareto optimal fronts of MOICA-III in case1 

 

  
Fig. 7. Simulation results obtained for case2 using of MOICA-I, 

MOICA-II, MOICA-III 

Fig. 8. Pareto optimal fronts of MOICA-III in case2 

 

  
Fig. 9. Simulation results obtained for case3 using of MOICA-I, 

MOICA-II, MOICA-III 

Fig. 10. Pareto optimal fronts of MOICA-III in case3 
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0.427348

0.123288

1.331479

0.116921

0.179703

0.137936
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TABLE II SIMULATION RESULTS OF BCS OF CASE1 

Control Variables MOICA-I MOICA-II MOICA-III Control Variables MOICA-I MOICA-II MOICA-III 

VG1(p.u.) 1.07930 0.97652 1.02930 C10(p.u.) 0.04930 0.02360 0.04420 

VG2(p.u.) 1.10000 0.97140 1.01072 C12(p.u.) 0.04430 0.00360 0.00000 

VG5(p.u.) 0.95000 1.02526 0.98946 C15(p.u.) 0.04380 0.03290 0.03600 

VG8(p.u.) 1.08979 0.97368 1.04877 C17(p.u.) 0.04550 0.05000 0.04610 

VG11(p.u.) 1.05856 0.97857 1.02193 C20(p.u.) 0.04150 0.04820 0.03720 

VG13(p.u.) 1.05555 0.96881 1.01267 C21(p.u.) 0.04930 0.04940 0.04830 

T6-9 1.09290 1.00800 1.08050 C23(p.u.) 0.01910 0.04210 0.03070 

T6-10 0.90000 0.98800 0.91080 C24(p.u.) 0.04990 0.05000 0.04990 

T4-12 1.02610 1.02100 1.01300 C29(p.u.) 0.02270 0.02130 0.02650 

T28-27 0.96910 0.97190 0.97690     

   Ploss (p.u.) 0.051358 0.051348 0.051337 

   Vd (p.u.) 0.301026 0.291872 0.281155 
 

TABLE III SIMULATION RESULTS OF BCS OF CASE2 

Control Variables MOICA-I MOICA-II MOICA-III Control Variables MOICA-I MOICA-II MOICA-III 

VG1(p.u.) 0.95000 1.05360 0.97261 C10(p.u.) 0.04990 0.04950 0.05000 

VG2(p.u.) 0.97196 1.07918 0.97736 C12(p.u.) 0.04820 0.05000 0.04990 

VG5(p.u.) 1.00200 0.95877 1.05608 C15(p.u.) 0.04610 0.04800 0.04980 

VG8(p.u.) 0.95345 0.95527 1.03700 C17(p.u.) 0.05000 0.04980 0.05000 

VG11(p.u.) 0.95862 1.08566 1.03250 C20(p.u.) 0.04960 0.04970 0.04990 

VG13(p.u.) 0.95000 1.09856 0.96509 C21(p.u.) 0.04840 0.04980 0.05000 

T6-9 0.98820 0.97730 0.98120 C23(p.u.) 0.04210 0.04920 0.04860 

T6-10 0.90570 0.90000 0.90000 C24(p.u.) 0.05000 0.04850 0.05000 

T4-12 0.95650 0.94850 0.94110 C29(p.u.) 0.04370 0.04180 0.04100 

T28-27 0.91920 0.91870 0.91910     

   Ploss (p.u.) 0.051390 0.051377 0.051365 

   L index  0.121174 0.120785 0.120781 
 

TABLE IV COMPARISONS OF THE OBTAINED MP, ML AND BCS WITH REPORTED MOCIPSO ALGORITHM FOR CASE2 

Control Variables 
MOICA-III  MOCIPSO [30] 

MP ML BCS  MP ML BCS 

VG1(p.u.) 0.97664 0.96619 0.97261  1.10000 1.10000 1.10000 

VG2(p.u.) 0.99920 1.00737 0.97736  1.10000 1.10000 1.10000 

VG5(p.u.) 1.04310 1.04506 1.05608  1.10000 1.10000 1.10000 

VG8(p.u.) 0.96361 1.03457 1.03700  1.10000 0.94002 1.10000 

VG11(p.u.) 0.98510 1.01989 1.03250  1.10000 1.10000 1.10000 

VG13(p.u.) 0.96641 0.95657 0.96509  0.90000 1.10000 1.10000 

T6-9 1.01730 0.92640 0.98120  0.94000 0.98000 0.94000 

T6-10 0.90000 0.90000 0.90000  1.08000 1.10000 1.10000 

T4-12 0.97250 0.91800 0.94110  1.10000 1.10000 1.10000 

T28-27 0.95210 0.90000 0.91910  0.97000 0.94000 0.94000 

C10(p.u.) 0.05000 0.05000 0.05000  0.06000 0.30000 0.22000 

C12(p.u.) 0.04980 0.04980 0.04990  0.30000 0.30000 0.30000 

C15(p.u.) 0.05000 0.05000 0.04980  0.07000 0.20000 0.12000 

C17(p.u.) 0.05000 0.05000 0.05000  0.06000 0.13000 0.09000 

C20(p.u.) 0.05000 0.04990 0.04990  0.00000 0.00000 0.00000 

C21(p.u.) 0.05000 0.04960 0.05000  0.12000 0.18000 0.11000 

C23(p.u.) 0.03980 0.04960 0.04860  0.03000 0.02000 0.01000 

C24(p.u.) 0.05000 0.05000 0.05000  0.07000 0.09000 0.07000 

C29(p.u.) 0.02920 0.05000 0.04100  0.03000 0.00000 0.03000 

Ploss (p.u.) 0.050920 0.052324 0.051365  0.05174 0.05419 0.05232 

L index 0.127554 0.116792 0.120781  0.12664 0.11411 0.11821 

MP: minimum Ploss; ML: minimum L index; BCS: best compromise solution. 
 

TABLE V SIMULATION RESULTS OF BCS OF CASE3 

Control Variables MOICA-I MOICA-II MOICA-III Control Variables MOICA-I MOICA-II MOICA-III 

VG1(p.u.) 1.08691 1.09235 1.00584 C10(p.u.) 0.01030 0.01150 0.04620 

VG2(p.u.) 1.01105 1.05319 0.96243 C12(p.u.) 0.04400 0.02990 0.02920 

VG5(p.u.) 1.07198 1.00457 1.07893 C15(p.u.) 0.04330 0.04210 0.00860 

VG8(p.u.) 1.01538 1.05829 1.00169 C17(p.u.) 0.03710 0.01880 0.04450 

VG11(p.u.) 0.95000 1.10000 1.02883 C20(p.u.) 0.03120 0.04810 0.04160 

VG13(p.u.) 1.04979 1.09434 0.99787 C21(p.u.) 0.04970 0.04090 0.04090 

T6-9 1.03980 1.10000 1.09230 C23(p.u.) 0.00740 0.02870 0.01930 

T6-10 0.97250 0.90000 0.94500 C24(p.u.) 0.03650 0.03930 0.04950 

T4-12 1.07470 1.09850 1.07390 C29(p.u.) 0.05000 0.04850 0.04360 

T28-27 0.90000 0.90000 0.90000     

   Vd (p.u.) 0.445009 0.432550 0.427348 

   L index  0.123558 0.123424 0.123288 

C. Results for system 2 

1) Case4: Optimizing Ploss and Vd 

In Case4, the proposed three improved methods are tested 

for simultaneous minimization of Ploss and Vd. The results of 

simulation on the system 2 is a series of dominant solutions 

are presented in Fig. 11-12. TABLE VI shows a comparison 

of optimal BCSs of those proposed method, it is observed 
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that MOICA-III has the best BCS among these two 

algorithms. The proposed MOICA-III algorithm finds 

0.2709848 p.u. active power losses and 0.8620723 p.u. 

voltage deviation for MOORPD problem, the MOICA-II 

method finds 0.2710686 p.u. and 0.8691996 p.u., and the 

MOICA-I method finds 0.27113235 p.u. and 0.8764507 p.u., 

respectively. Therefore, the proposed methods are valid on 

system 2 and the MOICA-III has the best performance in this 

optimization experiment. 

2) Case5: Optimizing Ploss and L index 

In Case5, the Pareto fronts obtained from 30 simulation 

runs for proposed methods are shown in the Fig. 13-14. It is 

clear that the Pareto front obtained using MOICA-III are 

superior as compared to the same obtained using MOICA-II 

and MOICA-I from Fig. 13. The BCSs of improved 

algorithms acquired from the minimization of Ploss and L 

index by using MOICA-I, MOICA-II and MOICA-III have 

been summed up in TABLE VII. The BCSs are selected as 

(0.2692880 p.u. and 0.2206386), (0.2692067p.u. and 

0.2196037) and (0.2691803 p.u. and 0.2192921) for 

MOICA-I, MOICA-II and MOICA-III methods, respectively. 

It can be seen from TABLE VIII that the MP, ML and BCS 

obtained by MOICA-III are better than the reported 

MOCIPSO algorithm. This proves the superiority of 

MOICA-III, especially on the large scale system. 

 

  
Fig. 11. Simulation results obtained for case4 using of MOICA-I, 

MOICA-II, MOICA-III 

Fig. 12. Pareto optimal fronts of MOICA-III in case4 

  
Fig. 13. Simulation results obtained for case5 using of MOICA-I, 

MOICA-II, MOICA-III 
Fig. 14. Pareto optimal fronts of MOICA-III in case5 

TABLE VI SIMULATION RESULTS OF BCS OF CASE4 

Control Variables MOICA-I MOICA-II MOICA-III Control Variables MOICA-I MOICA-II MOICA-III 

VG1(p.u.) 1.00231 1.07187 1.07829 T34-32 0.93660 0.94000 0.94670 

VG2(p.u.) 1.05097 1.02193 1.01753 T11-41 0.90270 0.90040 0.90110 

VG3(p.u.) 0.97822 0.95911 1.05428 T15-45 0.93380 0.92600 0.93520 

VG6(p.u.) 1.06342 1.08940 1.02174 T14-46 0.93840 0.93540 0.93320 

VG8(p.u.) 0.99202 1.02243 1.03569 T10-51 0.95200 0.94960 0.95340 

VG9(p.u.) 1.01933 1.05265 1.06556 T13-49 0.91760 0.90680 0.90700 

VG12(p.u.) 1.07702 0.96961 1.00955 T11-43 0.90120 0.90690 0.90090 

T4-18 1.00540 0.93150 1.03980 T40-56 0.98490 1.01040 1.01820 

T4-18 0.93050 0.97630 0.90640 T39-57 0.95640 0.95500 0.95460 

T21-20 1.00640 1.00660 0.99940 T9-55 0.93780 0.94760 0.94680 

T24-25 0.93820 0.99660 0.97080 C18(p.u.) 0.05450 0.01960 0.03380 

T24-25 1.04090 0.95860 1.02320 C25(p.u.) 0.06670 0.05190 0.08480 

T24-26 1.00730 1.00930 1.01300 C53(p.u.) 0.04700 0.06210 0.06530 

T7-29 0.95190 0.95730 0.95970     

   Ploss (p.u.) 0.271132 0.271069 0.270985 

   Vd (p.u.)  0.876451 0.869200 0.862072 
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TABLE VII SIMULATION RESULTS OF BCS OF CASE5 

Control Variables MOICA-I MOICA-II MOICA-III Control Variables MOICA-I MOICA-II MOICA-III 

VG1(p.u.) 1.03077 1.08012 1.06458 T34-32 0.92880 0.94150 0.93560 

VG2(p.u.) 1.00935 0.99046 1.09549 T11-41 0.90080 0.90000 0.90520 

VG3(p.u.) 0.96182 0.97445 0.98139 T15-45 0.90010 0.90160 0.90130 

VG6(p.u.) 0.96459 1.00408 0.95351 T14-46 0.90060 0.90000 0.90040 

VG8(p.u.) 0.95030 0.96318 1.02440 T10-51 0.90360 0.90680 0.90440 

VG9(p.u.) 1.04953 0.99530 0.96339 T13-49 0.90000 0.90000 0.90000 

VG12(p.u.) 1.08134 0.99629 1.04777 T11-43 0.90130 0.90010 0.90850 

T4-18 0.90010 0.99020 0.92600 T40-56 1.03700 1.05370 1.09020 

T4-18 1.02330 0.90460 0.90090 T39-57 1.00030 1.02850 1.02750 

T21-20 1.06550 1.01820 1.00630 T9-55 0.90160 0.90170 0.90000 

T24-25 1.10000 1.08600 1.06370 C18(p.u.) 0.05180 0.07120 0.00000 

T24-25 1.05760 1.07660 1.08540 C25(p.u.) 0.20840 0.21650 0.21100 

T24-26 1.01850 1.01390 0.99060 C53(p.u.) 0.03520 0.03580 0.01380 

T7-29 0.93200 0.92750 0.91310     

   Ploss (p.u.) 0.269288 0.269207 0.269180 

   L index  0.220639 0.219604 0.219292 

 

TABLE VIII  COMPARISONS OF THE OBTAINED MP, ML AND BCS WITH REPORTED MOCIPSO ALGORITHM FOR CASE5 

Control Variables 
MOICA-III  MOCIPSO [30] 

MP ML BCS  MP ML BCS 

VG1(p.u.) 0.98007 1.02788 1.06458  0.90000 0.90000 1.10000 

VG2(p.u.) 1.03577 1.01564 1.09549  1.04996 0.90000 0.93520 

VG3(p.u.) 0.96458 0.95000 0.98139  1.10000 0.93820 0.90000 

VG6(p.u.) 1.00469 0.95002 0.95351  0.99769 0.90831 0.90000 

VG8(p.u.) 0.96811 0.96966 1.02440  0.90000 1.10000 1.07345 

VG9(p.u.) 0.95340 0.99874 0.96339  0.90000 1.10000 0.90000 

VG12(p.u.) 0.95098 0.95173 1.04777  1.01203 1.08472 0.96240 

T4-18 0.90000 0.90320 0.92600  0.96000 0.96000 0.96000 

T4-18 0.90130 0.90060 0.90090  0.90000 0.90000 0.90000 

T21-20 1.00210 1.00450 1.00630  1.00000 1.00000 1.01000 

T24-25 1.09880 1.09970 1.06370  1.10000 1.10000 1.10000 

T24-25 0.91610 1.10000 1.08540  1.10000 1.10000 1.10000 

T24-26 0.99940 0.96460 0.99060  1.00000 1.02000 1.01000 

T7-29 0.91050 0.91200 0.91310  0.93000 0.93000 0.93000 

T34-32 0.93620 0.90000 0.93560  0.98000 0.90000 0.93000 

T11-41 0.90080 0.90000 0.90520  0.97000 0.94000 0.96000 

T15-45 0.90000 0.90060 0.90130  0.94000 0.94000 0.94000 

T14-46 0.90020 0.90010 0.90040  0.92000 0.92000 0.92000 

T10-51 0.90830 0.90000 0.90440  0.93000 0.93000 0.93000 

T13-49 0.90000 0.90000 0.90000  0.90000 0.90000 0.90000 

T11-43 0.90040 0.90000 0.90850  0.90000 0.90000 0.90000 

T40-56 1.05030 1.08280 1.09020  1.08000 1.10000 1.08000 

T39-57 1.00600 1.06950 1.02750  1.00000 1.05000 1.02000 

T9-55 0.90000 0.90000 0.90000  0.92000 0.92000 0.92000 

C18(p.u.) 0.00070 0.05290 0.00000  0.00000 0.00000 0.00000 

C25(p.u.) 0.11090 0.24150 0.21100  0.18000 0.18000 0.18000 

C53(p.u.) 0.02300 0.01980 0.01380  0.04200 0.05400 0.04800 

Ploss (p.u.) 0.267238 0.271861 0.269180  0.27075 0.27254 0.27122 

L index 0.236693 0.212746 0.219292  0.24274 0.23291 0.23695 

MP: minimum Ploss; ML: minimum L index; BCS: best compromise solution. 

  
Fig. 15. Simulation results obtained for case6 using of MOICA-I, 

MOICA-II, MOICA-III 

Fig. 16. Pareto optimal fronts of MOICA-III in case6 
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D. Results for system 3 

1) Case6: Optimizing Ploss and Vd 

In order to find the Pareto front in the larger IEEE118 bus 

test system, we apply the proposed method to simultaneous 

minimization of IEEE118 bus test system with active power 

losses and voltage deviation. It is inferred from this Fig. 15 

that the results obtained by the MOICA-I, MOICA-II and 

MOICA-III are very close, which means the fact that those 

proposed methods are effective on large bus system. Fig. 16 

shows the minimum Ploss, minimum Vd and BCS of MOICA-

III in the system 3. It can be seen that the minimum Ploss is 

1.315366 p.u. and the minimum Vd is 1.250400 p.u.. A more 

detailed comparison of the results of the BCS of the MOICA-

I, MOICA-II and MOICA-III is shown in TABLE IX. It is 

notable that the MOICA-III find the lower active power 

losses and less voltage deviation than MOICA-I and 

MOICA-II. 

TABLE IX SIMULATION RESULTS OF BCS OF CASE6 

Control Variables MOICA-I MOICA-II MOICA-III Control Variables MOICA-I MOICA-II MOICA-III 

VG1(p.u.) 1.09948 0.90000 0.92634 VG87(p.u.) 1.10000 1.10000 0.91168 

VG4(p.u.) 1.09939 1.03550 1.07995 VG89(p.u.) 1.09387 0.91014 0.98920 

VG6(p.u.) 1.10000 1.09559 1.06341 VG90(p.u.) 1.10000 1.10000 0.95425 

VG8(p.u.) 1.09270 1.10000 0.95486 VG91(p.u.) 1.09291 1.10000 1.00979 

VG10(p.u.) 0.93466 1.10000 0.92722 VG92(p.u.) 1.09621 1.10000 0.92335 

VG12(p.u.) 0.90000 0.90000 1.03155 VG99(p.u.) 1.10000 0.90037 1.08149 

VG15(p.u.) 0.90000 0.91706 0.98782 VG100(p.u.) 1.08972 0.90000 0.99429 

VG18(p.u.) 1.10000 1.10000 1.03561 VG103(p.u.) 0.90000 1.10000 1.01720 

VG19 (p.u.) 0.92788 1.10000 1.01682 VG104(p.u.) 1.09874 1.10000 1.07246 

VG24(p.u.) 1.03514 1.10000 0.96372 VG105(p.u.) 1.09993 0.95894 0.93417 

VG25(p.u.) 0.95700 1.08538 0.91777 VG107(p.u.) 1.04879 0.90318 0.99250 

VG26(p.u.) 0.90000 1.08215 0.95305 VG110(p.u.) 0.90000 1.10000 1.01990 

VG27(p.u.) 0.90000 1.10000 0.95578 VG111(p.u.) 0.90563 1.09998 1.03521 

VG31(p.u.) 1.09633 0.93390 0.96054 VG112(p.u.) 1.10000 0.90000 1.06835 

VG32(p.u.) 0.96673 0.90000 0.94240 VG113(p.u.) 0.94220 0.90000 1.07848 

VG34(p.u.) 1.06267 0.90000 0.97807 VG116(p.u.) 1.10000 1.09922 1.07102 

VG36(p.u.) 1.05093 0.92974 1.09279 T8 0.99560 0.99080 0.99400 

VG40(p.u.) 1.09213 0.91248 1.07222 T32 0.97820 0.99050 0.99030 

VG42(p.u.) 0.90000 1.10000 1.06275 T36 0.99980 0.99390 0.99720 

VG46(p.u.) 0.90000 1.10000 1.04710 T51 0.99490 0.99560 0.99790 

VG49(p.u.) 0.90000 0.90000 1.00582 T93 1.01240 1.01490 1.01510 

VG54(p.u.) 0.90008 0.90000 0.98921 T95 1.00390 1.00180 0.99730 

VG55(p.u.) 1.05198 0.90460 0.92659 T102 0.96270 0.96690 0.92640 

VG56(p.u.) 1.09322 0.90000 1.01045 T107 0.90880 0.90420 0.91200 

VG59(p.u.) 1.09833 0.90616 1.02265 T127 0.94570 0.94650 0.94490 

VG61(p.u.) 1.07236 1.09999 1.00135 C34(p.u.) 0.11170 0.22190 0.29560 

VG62(p.u.) 1.04545 0.90000 1.00131 C44(p.u.) 0.11340 0.10590 0.14790 

VG65(p.u.) 0.90219 0.90000 0.90500 C45(p.u.) 0.30000 0.30000 0.24840 

VG66(p.u.) 1.02185 0.91474 1.07770 C46(p.u.) 0.29990 0.00000 0.06980 

VG69(p.u.) 0.99293 1.10000 0.90107 C48(p.u.) 0.01320 0.02020 0.00980 

VG70(p.u.) 1.08738 0.94539 0.91042 C74(p.u.) 0.28770 0.29460 0.00290 

VG72(p.u.) 1.08260 0.91005 0.98407 C79(p.u.) 0.18710 0.24970 0.22320 

VG73(p.u.) 1.10000 0.90000 0.94113 C82(p.u.) 0.30000 0.29920 0.29730 

VG74(p.u.) 1.02150 1.10000 1.02230 C83(p.u.) 0.29640 0.30000 0.27450 

VG76(p.u.) 1.10000 0.90389 1.02562 C105(p.u.) 0.00000 0.00000 0.21610 

VG77(p.u.) 1.09112 0.90036 0.99291 C107(p.u.) 0.00000 0.10020 0.16130 

VG80(p.u.) 0.90000 0.91116 0.99592 C110(p.u.) 0.13400 0.00010 0.15320 

VG85(p.u.) 0.91601 0.90000 0.94579     

   Ploss (p.u.) 1.317178 1.317221 1.317112 

   Vd (p.u.) 1.274844 1.274244 1.273235 

 

E. Performance evaluation 

Performance indicators are used to evaluate whether the 

algorithm achieves the desired goals. Hence, in order to 

further evaluate the performance of the MOICA-I, MOICA-

II and MOICA-III algorithms, two indicators were selected: 

Generational Distance (GD) indicator and Hyper-volume 

(HV) indicator. 

1) GD 

The GD indicator is used to describe the distance between 

the dominant solution obtained by the algorithm and the true 

Pareto front of the problem. In different cases of this test 

experiment, the best one Pareto front obtained by using 

above proposed methods, and this best one Pareto front is 

considered the true Pareto front. For the true Pareto front, its 

GD is equal to 0. This means that the smaller the GD is, the 

closer all the generated countries are to the true Pareto front. 

GD can be expressed by (31). 

 

2

1

n

i

i

d

GD
n





 (31) 

where n represents the total amount of the solutions, di 

represents the shortest distance between the ith solution and 

the true Pareto front.  

2) HV 

The HV indicator is used to calculate the volume of non-

dominated solution set obtained by the optimization 

algorithm. HV is an effective one-dimensional quality metric. 

It is strictly monotonous in terms of Pareto dominance. The 
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larger the value of HV is, the better performance of the 

corresponding algorithm. The mathematical formula for HV 

is shown as follows: 

 
1( )

S

i iHV v   (32) 

where δ represents the Lebesgue measure which is used to 

measure volume [35], |S| indicates the number of non-

dominated solution sets and vi denotes the volume formed by 

reference point and the ith solution.  

3) Statistical analysis 

In this section, we will use the boxplot to analyze the GD 

and HV indicators. This method is a statistical graph used to 

display the dispersion of a set of data. The detail data 

includes: maximum, minimum, median, outlier, upper 

quartile and lower quartile. For the GD indicator, the best one 

optimal Pareto front is chosen as the true Pareto front in 

different cases. The box plots of GD and HV for MOICA-I, 

MOICA-II and MOICA-III among Cases 1-6 are shown as 

Fig. 17. The results of the GD indicator shows that the 

MOICA-III algorithm has a lower value than the results of 

the other two algorithms, which indicates that the result of 

each iteration of the algorithm is closer to the true Pareto 

front. It can be seen from Fig. 18 that the HV indicator of 

MOICA-III is higher than that of the other two algorithms, 

which also shows the superiority of MOICA-III.  

In order to further observe the performance of the above 

indicators, TABLE X lists the mean and standard deviation 

values of the GD and HV indicators in Cases 1-6. As seen in 

the TABLE X, in both GD and HV indicators, the mean value 

and standard deviation values of the MOICA-III are better 

than those of the other two methods. It is also indicates that 

MOICA-III has certain competitive advantages in those 

cases and can obtain solutions with better diversity. 

   

   

Fig. 17. Box plots of GD for the MOICA-I, MOICA-II and MOICA-III 

 

   

   

Fig. 18. Box plots of HV for the MOICA-I, MOICA-II and MOICA-III 
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TABLE X The mean and standard deviation of GD and HV for the MOICA-I, MOICA-II and MOICA-III 

Indicator 
Test 

Case 

MOICA-III  MOICA-II  MOICA-I 

Mean Std  Mean Std  Mean Std 

GD 

Case1 0.07258 0.02291  0.33045 0.05631  0.23099 0.08062 

Case2 0.00759 0.00277  0.03050 0.00738  0.01927 0.00890 

Case3 0.03062 0.01043  0.12404 0.02268  0.07410 0.03690 

Case4 0.15963 0.04843  0.39934 0.14826  0.38819 0.14149 

Case5 0.01439 0.00432  0.03276 0.00912  0.05323 0.02036 

Case6 0.04362 0.02828  0.31062 0.07342  0.56900 0.17790 

HV 

Case1 0.00071 1.45E-05  0.00048 3.75E-05  0.00067 9.53E-05 

Case2 2.12E-05 1.54E-07  1.72E-05 2.28E-06  1.24E-05 1.01E-06 

Case3 0.02568 0.00027  0.02231 0.00133  0.02155 0.00204 

Case4 0.00937 0.00025  0.00842 0.00081  0.00656 0.00078 

Case5 0.00169 4.23E-05  0.00145 0.00023  0.00086 0.00017 

Case6 0.11814 0.00244  0.06045 0.01542  0.04989 0.01620 

Mean: mean value; Std: standard deviation value.

V. CONCLUSION 

There are three main problems in solving the MOORPD 

problem by using the ICA method: the application of ICA in 

the MOPs, the processing method of constraints, and the 

measurement method of the quality of the solution. In view 

of the above-mentioned problems, this paper proposes three 

enhanced MOICAs, namely MOICA-I, MOICA-II and 

MOICA-III. The simulation experiments of enhanced 

approaches in three test systems (the IEEE 30, 57 and 118 

bus systems) verify their effectiveness in dealing with 

MOORPD problem. Compared with MOICA-I and MOICA-

II, the Pareto plots and the results of BCS show that the 

MOICA-III method is much more effective and can obtain 

the better Pareto solutions. In addition, from the GD and HV 

indicators of the three approaches, it is clear that the stability, 

diversity and optimization results of MOICA-III were 

superior to the other two approaches. 
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