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Abstract—In this paper, a compartmental model is presented
to investigate the effects of preventive and control measures
on dengue disease transmission. It is showed that the model
has exactly two disease-free equilibria: a trivial equilibrium,
and a biologically realistic disease-free equilibrium. The next-
generation matrix technique is used to obtain the basic repro-
duction number, R0, associated with the model. This threshold
parameter is used to discuss the local stability of the biologically
realistic disease-free equilibrium. It is found that the biologically
realistic disease-free equilibrium is locally asymptotically stable
whenever R0 < 1, and unstable otherwise. The global asymp-
totic stability of the model is established using the comparison
theorem. For the pre-intervention case, it is showed that the
model has a unique positive endemic equilibrium when the
basic reproduction number Rw is above unity, and no endemic
equilibrium otherwise. Numerical implementation is carried out
on the model and the results of simulation showed that an
efficient control of dengue disease relies on the combination of
human preventive and vector control measures.

Index Terms—Dengue, control measures, basic reproduction
number, stability.

I. INTRODUCTION

DENGUE fever (DF), a vector-borne disease, is a se-
rious global concern [1]–[3] and its emergence and

re-emergence have become a major health issue. Dengue
is predominant in urban and semi-urban areas of tropical
and subtropical locales around the globe [4]. Currently, over
40% of the world’s population is at risk of the disease
and it is estimated that the entire world may witness about
50−100 million dengue infections annually with over 20, 000
annual deaths due to DF and up to 500, 000 individuals
develop Dengue Hemorrhagic Fever (DHF) or Dengue Shock
Syndrome (DSS), a severe case of DF [5].

Dengue viruses are transmitted to human by the bites
of infected Aedes aegypti and Aedes albopictus female
mosquitoes, which are known as the primary and secondary
vectors, respectively [1], [6]. Also, studies have shown that
the virus can be transmitted vertically - a transmission from
mosquito to its posterity [1]. Four serologically close but dif-
ferent viruses, identified as DEN 1-DEN 4, cause the disease
[6]. Recovery from infection by one serotype grants life-long
immunity to that strain but only a temporary cross-immunity
to the others [1], [6], [7]. The recovered individual becomes
more susceptible to the other three virus strains [6]. Presently,
there is no effective vaccine against all the four dengue virus
strains, although studies are currently under way. All the
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treatment are directed at relieving the disease symptoms. As
a result, an effective control of dengue disease transmission
is focusing on its vectors, relying on reduction of mosquito
population through practices such as larviciding, adulticiding
and environmental management embracing elimination of
breeding sites, and personal protection [1]. These dengue
control practices sometimes determine the compartmental
framework to be adopted for model formulation.

Mathematical model has turned into an important tool for
the comprehension of transmission dynamics of epidemic
diseases and to propose control strategies for the diseases.
For instance, a deterministic model was used to examine
the spread of HIV infection in [8]–[11]. In the context
of dengue disease, mathematical model has been used to
examine distinctive aspects of the disease. There is a number
of works dedicated to the use of compartmental model
in gaining insights into the dynamics of dengue disease
transmission [12]–[14]. In other studies, mathematical model
was used to exploit the available dengue interventions for
the disease prevention and control. For example, a com-
partmental model was constructed to predict the efficacy
of hypothetical vaccine on dengue disease spread in [15],
[16]. Also, mathematical investigation of the impact of vector
control measures in controlling dengue disease transmission
was carried out in [17], [18]. The impact of combining
an imperfect vaccine together with several vector control
measures on the transmission dynamics of dengue disease
has also been examined [7], [19].

As there is no perfect vaccine for dengue disease currently,
it is necessary to explore the available control measures
towards the reduction of mosquito population and prevention
of mosquito bite. Meanwhile, this study proposes a compart-
mental model to gain a proper insight into the impacts of
vaccination of susceptible individuals, individual protection
against mosquito bites, treatment of infectious humans, me-
chanical control (destruction of mosquitoes artificial breeding
sites), the use of larvicide, and application of adulticide on
dengue disease transmission, prevention and control.

The rest of this paper is organized as follows: In Sec-
tion II, a compartmental dengue model with intervention
is proposed. Mathematical analysis of the model, such as
positive boundedness, computation of basic reproduction
number and stability analysis, is also carried out. In Section
III, a compartmental dengue model without intervention is
presented, and the endemic equilibrium of the model is
obtained. Section IV presents the numerical solution and
discussion of results. Finally, conclusion is drawn in Section
V.

II. MATHEMATICAL MODEL WITH INTERVENTION

The compartmental model proposed in this study is based
on the mathematical model presented in [20] and the con-
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sideration of [16]. It consists of four epidemiological com-
partments for humans: Sh(t)− susceptible; Eh(t)− exposed;
Ih(t)− infectious; and Rh(t)− recovered (resistant). For the
mosquitoes population, two stages of mosquito (immature
and winged stages) are taken into consideration. There is
an epidemiological state for immature (aquatic) mosquitoes,
which includes eggs, larvae and pupae, and three for winged
(female) mosquitoes: Am(t)− aquatic; Sm(t)− susceptible;
Em(t)− exposed; and Im(t)− infectious.

In addition, six parameters: uv, uP , uT , uM , uL and uA
are incorporated into the model. uV represents the fraction
of susceptible individuals one chooses to vaccinate, uP
measures the level of individuals effort to avoid mosquito
bites through the use of mosquito repellents, mosquito bed
nets and other preventive practices, uT accounts for the
fraction of infectious humans that seek for timely supportive
treatment, while uM , uL and uA represent the levels of
mechanical control, larviciding and adulticiding, respectively.
Vaccination with waning immunity is considered [16].

The dynamics of dengue disease considered in this work
is studied and formulated under the assumptions that:
A1: There is no consideration for vertical transmission (i.e.,
no infected mosquito can transmit dengue virus to its eggs).
A2: At any time t, the total human population is constant.
That is,

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t). (1)

A3: Aquatic and female mosquito populations are constant
and proportional to human population. Mathematically,

Am(t) = kNh, (2)
Sm(t) + Em(t) + Im(t) = Nm = mNh (3)

for some constants m and k [21].
A4: Human population is homogeneous. This means that
every individual in a compartment is homogeneously mixed
with other individuals.
A5: Homogeneity exists between human and mosquito pop-
ulations. This means that each mosquito has the same prob-
ability to bite any host.
A6: Immigration is negligible for humans and mosquitoes.
A7: The vaccinated individuals lose their immunity over
time.
A8: There is no recovery for an infected mosquito.
A9: Both humans and mosquitoes are born susceptible (i.e.,
no natural protection).

Suppose Sh = Sh(t), Ṡh = dSh(t)
dt and similar notations

for every other time-dependent state variables, the compart-
mental model which describes the dynamics between human
and mosquito populations is presented by eight time-varying
ordinary differential equations (ODEs) given by

Ṡh = µhNh − (1− uP )
bβmhIm
Nh

Sh − uV Sh − µhSh

+ ϕuVRh, (4a)

Ėh = (1− uP )
bβmhIm
Nh

Sh − γhEh − µhEh, (4b)

İh = γhEh − [αuTσh + (1− uT )σh] Ih − µhIh, (4c)

Ṙh = [αuTσh + (1− uT )σh] Ih + uV Sh − ϕuVRh
− µhRh, (4d)

Ȧm = µb

(
1− Am

uMK

)
(Sm + Em + Im)− σAAm

− (µA + uL)Am, (5a)

Ṡm = σAAm − (1− uP )
bβhmIh
Nh

Sm

− (µm + uA)Sm, (5b)

Ėm = (1− uP )
bβhmIh
Nh

Sm − γmEm

− (µm + uA)Em, (5c)

İm = γmEm − (µm + uA)Im, (5d)

subject to the initial conditions:

Sh(0) = S0h, Ih(0) = I0h, Am(0) = A0m,

Eh(0) = E0h, Rh(0) = R0h, Sm(0) = S0m,

Em(0) = E0m, Im(0) = I0m,

(6)

where βhm is the transmission probability of dengue virus
from Ih (per bite), µh is the human birth and natural death
rates (per day), σh is the viraemic period (per day), ϕ is the
waning immunity process, α is the rate of effectiveness of
anti-arboviral diseases drugs, γh is the intrinsic incubation
period (per day), b is the average mosquito daily biting
rate (per day), σA is the development rate from hatchling
(larva) to adult mosquito (per day), βmh is the transmission
probability of dengue virus from Im (per bite), µA is the
natural mortality rate of larvae (per day), µm is the mosquito
death rate (per day), µb is the number of eggs at one deposit
per capita (per day), k is the number of larvae per human, γm
is the extrinsic incubation period (per day), m is the number
of female mosquito per human, and K is the maximal
capacity of larvae.

A. Mathematical Analysis of the Model
1) Positivity and Boundedness of Solutions: Since Model

(4)-(5) is used to describe the dynamics of human and
mosquito populations, it is necessary to prove that all the
solutions of the state variables with nonnegative initial data
remain positive at all time, t for it to be epidemiologically
meaningful.

Lemma 1. Under the dynamics of dengue disease described
by Model (4)-(5), the region Ω defined by the set

Ω =
{

(Sh, Eh, Ih, Rh, Am, Sm, Em, Im) ∈ R8
+ :

Sh + Eh + Ih +Rh ≤ Nh, Am ≤ kNh,
Sm + Em + Im ≤ mNh}

(7)

is positively invariant.

Proof: For the proof of this lemma, see [22].

Lemma 2. Let

X(t) = (Sh(t), Eh(t), Ih(t), Rh(t), Am(t), Sm(t), Em(t),

Im(t))
T

for all t. Suppose that X(0) are nonnegative. Then, the
solutions X(t) remain nonnegative for all t > 0.

Proof: To establish this lemma, let

t̄ = sup {t > 0 : Sh ≥ 0, Eh ≥ 0, Ih ≥ 0, Rh ≥ 0,

Am ≥ 0, Sm ≥ 0, Em ≥ 0, Im ≥ 0} .
(8)
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Thus, t̄ > 0. Now, from Equation (4a), we have

Ṡh = µhNh − (1− uP )
bβmhIm
Nh

Sh − uV Sh − µhSh

+ ϕuVRh,

= µhNh −
(

(1− uP )bβmh
Im
Nh

+ uV + µh

)
Sh

+ ϕuVRh,

= µhNh − (g(t) + uV + µh)Sh + ϕuVRh, (9)

where g(t) = (1− uP )bβmh
Im
Nh

.
It follows that

d

dt

(
Sh exp

{
(uV + µh)x+

∫ t

0

g(x) dx

})
= (µhNh

+ ϕuVRh) exp

{
(uV + µh)x+

∫ t

0

f(x) dx

}
. (10)

Integrating both sides of Equation (10) from t = 0 to t = t̄
yields

Sh(t̄) exp

{
(uV + µh)t̄+

∫ t̄

0

g(x) dx

}
− Sh(0)

=

∫ t̄

0

(µhNh + ϕuVRh) exp {(uV + µh)z

+

∫ y

0

h(y) dy

}
dz. (11)

Simplifying, we get

Sh(t̄) = Sh(0) exp

{
−

[
(uV + µh)t̄+

∫ t̄

0

g(x) dx

]}

+ exp

{
−

[
(uV + µh)t̄+

∫ t̄

0

g(x) dx

]}

×
∫ t̄

0

(µhNh + ϕuVRh) exp {(uV + µh)z

+

∫ y

0

h(y) dy

}
dz, (12)

≥ 0.

Clearly, the right-hand side of Equation (12) is a sum of
positive terms. Therefore, Sh(t̄) is positive. In the same way,
the positivity of the quantities Eh, Ih, Rh, Am, Sm, Em and
Im for all time t can be proved. This completes the proof.

2) Basic Reproduction Number and Local Asymptotic
Stability of the Disease-Free Equilibrium:

Theorem 1. Let Ω be as defined by (7). Also, suppose that

M =
µbσA

(µm + uA)(σA + µA + uL)
,

where M is the net reproductive number. Then, there are at
most two disease-free equilibria related to the compartmental
Model (4)-(5):

1) IfM≤ 1, then there exists a Disease-Free Equilibrium
(DFE), a mosquito-free equilibrium which contains
only humans (i.e. human without disease and no
mosquito) called a Trivial Equilibrium (TE), given by

E0 =

(
k4µhNh

k4k5 − ϕu2
V

, 0, 0,
µhuVNh

k4k5 − ϕu2
V

, 0, 0, 0, 0

)
;

2) If M > 1, then there is a Biologically Realistic
Disease-Free Equilibrium (BRDFE), given by

E1 = (S∗h, 0, 0, R
∗
h, A

∗
m, S

∗
m, 0, 0) ,

where

S∗h =
k4µhNh

k4k5 − ϕu2
V

, R∗h =
µhuVNh

k4k5 − ϕu2
V

A∗m =

(
1− 1

M

)
uMK, S∗m =

(
1− 1

M

)
σA
k7
uMK.

Proof: To prove this theorem, we follow the solution
technique adopted in [23]. Consider Model (4)-(5) at steady
state:

Ẋ(t) = 0, (13)

where

Ẋ(t) = (Ṡh(t), Ėh(t), İh(t), Ṙh(t), Ȧm(t), Ṡm(t),

Ėm(t), İm(t))T .

Let

E2 = (S∗∗h , E
∗∗
h , I

∗∗
h , R∗∗h , A

∗∗
m , S

∗∗
m , E

∗∗
m , I

∗∗
m ) (14)

be any arbitrary Endemic Equilibrium (EE) of Model (4)-(5)
and

λh = (1− uP )bβmh
Im
Nh

, λm = (1− uP )bβhm
Ih
Nh

(15)

be the forces of infection of humans and mosquitoes, respec-
tively. Then, at steady state, Equation (15) becomes

λ∗∗h = (1−uP )bβmh
I∗∗m
N∗∗h

, λ∗∗m = (1−uP )bβhm
I∗∗h
N∗∗h

. (16)

Now, by virtue of Equations (13) and (15), we have

µhNh − λhSh − uV Sh − µhSh + ϕuVRh = 0, (17a)
λhSh − γhEh − µhEh = 0, (17b)

γhEh − [αuTσh + (1− uT )σh]Ih − µhIh = 0, (17c)
(αuTσh + (1− u3)σh)Ih + uV Sh − ϕuVRh

−µhRh = 0, (17d)

µb

(
1− Am

uMK

)
(Sm + Em + Im)− σAAm

−(µA + uL)Am = 0, (17e)
σAAm − λmSm − (µm + uA)Sm = 0, (17f)
λmSm − γmEm − (µm + uA)Em = 0, (17g)

γmEm − (µm + uA)Im = 0. (17h)

Solving Equations (17a), (17b), (17c) and (17d) at steady
state yields

S∗∗h =
k1k3k4µhNh
(k6 + k7λ∗∗h )

, E∗∗h =
k3k4µhNhλ

∗∗
h

(k6 + k7λ∗∗h )
,

I∗∗h =
k4µhγhNhλ

∗∗
h

(k6 + k7λ∗∗h )
, R∗∗h =

(k1k3uV + k2γhλ
∗∗
h )µhNh

(k6 + k7λ∗∗h )
,

(18)
where, k1 = (µh + γh), k2 = (αuTσh + (1 − uT )σh),
k3 = (k2 + µh), k4 = (ϕuV + µh), k5 = (uV + µh),
k6 = (k1k3k4k5−ϕk1k3u

2
v) and k7 = (k1k3k4−ϕuV γhk2).
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Next, the expressions for Sm, Em and Im, respectively,
in terms of Am using Equations (17f), (17g) and (17h) are
given by

S∗∗m =
σA

(k8 + λ∗∗m )
A∗∗m ,

E∗∗m =
σAλ

∗∗
m

k9(k8 + λ∗∗m )
A∗∗m ,

I∗∗m =
σAγmλ

∗∗
m

k8k9(k8 + λ∗∗m )
A∗∗m ,

(19)

where, k8 = (µm + uA) and k9 = (γm + µm + uA).
Substituting Equation (19) in Equation (17)5 gives

A∗∗m

{
µbσA
k8k9

(
1− A∗∗m

uMK

)(
k8k9 + k10λ

∗∗
m

(k8 + λ∗∗m )

)
−k11} = 0, (20)

where, k10 = (k8 + γm) and k11 = (σA + µA + uL).
Equation (20) has a trivial solution: A∗∗m = 0. Substituting

A∗∗m = 0 in Equation (19) yields S∗∗m = 0, E∗∗m = 0,
I∗∗m = 0. Furthermore, at I∗∗m = 0, λ∗∗h = 0. Consequently,
E∗∗h = 0, I∗∗h = 0, R∗∗h = µhuVNh

k4k5−ϕu2
V

, S∗∗h = k4µhNh

k4k5−ϕu2
V

.
Therefore, we obtain a TE point:

E0 =

(
k4µhNh

k4k5 − ϕu2
V

, 0, 0,
µhuVNh

k4k5 − ϕu2
V

, 0, 0, 0, 0

)
.

Next, suppose that A∗∗m 6= 0 in Equation (20) so that we seek
the possible solution of the following Equation (21):

µbσA
k8k9

(
1− A∗∗m

uMK

)(
k8k9 + k10λ

∗∗
m

k8 + λ∗∗m

)
− k11 = 0. (21)

Resolving Equation (21) leads to

A∗∗m =

[
µbσAk8k9

(
1− 1

M
)

+ θλ∗∗m
µbσA(k8k9 + k10λ∗∗m )

]
uMK, (22)

where, M = µbσA

k8k11
and θ = (µbσAk10 − k8k9k11).

The threshold, M, regulates the existence of mosquitoes.
This threshold can be used to establish that Model (4)-(5)
has exactly two equilibria with no disease in the population.

In order to compute the TE using the threshold M, set
Eh = Ih = Em = Im = 0, and consequently, λ∗∗h = λ∗∗m =
0. Hence, from Equation (22), we have

A∗∗m =

(
1− 1

M

)
uMK. (23)

Suppose thatM≤ 1 in Equation (23). Then, we recover the
TE given by

E0 =

(
k4µhNh

k4k5 − ϕu2
V

, 0, 0,
µhuVNh

k4k5 − ϕu2
V

, 0, 0, 0, 0

)
. (24)

Next, suppose thatM > 1. Using Equation (23) with λ∗∗h =
λ∗∗m = 0 in Equations (18) and (19) yields the BRDFE:

E1 = (S∗h, 0, 0, R
∗
h, A

∗
m, S

∗
m, 0, 0) (25)

with

S∗h =
k4µhNh

k4k5 − ϕu2
V

, R∗h =
µhuVNh

k4k5 − ϕu2
V

A∗m =

(
1− 1

M

)
uMK, S∗m =

(
1− 1

M

)
σA
k7
uMK.

Hence, the proof.

Remark 1. In the absence of prevention and control mea-
sures (i.e., uV = uP = uT = uL = uM = uA = 0), we
recover the set of DFE points obtained in [20].

It is important to obtain the basic reproduction number,
R0, for Model (4)-(5). This epidemiological threshold ac-
counts for the average number of dengue secondary cases
produced by a typical infected individual introduced into
a completely susceptible population [24], [25]. It can be
used to predict whether dengue disease will be eradicated or
invade a completely susceptible population. When R0 < 1,
each infected individual, on average, produces below one
new infected individual, and it is predictable that dengue
disease will be cleared from the population. Otherwise, the
disease will invade the susceptible population [22]. Hence,
using the next generation operator method [24] on Model
(4)-(5), the following theorem is established.

Theorem 2. If M > 1, then the basic reproduction number
associated with Model (4)-(5) is given by

R0 =

√
(1− uP )2b2βhmβmhγmγh

k1k3k8k9

S∗m
N∗h

S∗h
N∗h

(26)

where, k1 = (γh + µh), k3 = (αuTσh + (1− uT )σh + µh),
k8 = (µm + uA) and k9 = (γm + µm + uA).

Or, equivalently

R0 =

√
(1− uP )2b2βhmβmhσAγhγmk4uMk

k1k3k2
8k9k12

(
1− 1

M

)
(27)

where, k1 = (γh + µh), k3 = (αuTσh + (1− uT )σh + µh),
k4 = (ϕuV + µh), k8 = (µm + uA), k9 = (γm + µm + uA)
and k12 = (ϕuV + uV + µh).

The BRDFE, given as E1, is Locally Asymptotically Stable
(LAS) whenever R0 < 1, and unstable whenever R0 > 1.

Proof: We prove this theorem by using the technique of
next generation matrix method [24], [26], [27]. Considering
only the compartments in which the disease is in progression
in Model (4)-(5) leads to a subsystem given as

Ėh = (1− uP )
bβmhIm
Nh

Sh − γhEh − µhEh,

İh = γhEh − [αuTσh + (1− uT )σh] Ih − µhIh,

Ėm = (1− uP )
bβhmIh
Nh

Sm − γmEm

− (µm + uA)Em,

İm = γmEm − (µm + uA)Im.

(28)

Subsystem (28) can be written as ẋ = F(x)−V(x), where
x = (Eh, Ih, Em, Im)T , F(x) accounts for the components
associated to the new cases of dengue disease and V(x)
represents the remaining components in the compartments.
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It follows that

F(x) =


(1− u2)bβmh

Im
Nh
Sh

0

(1− u2)bβhm
Ih
Nh
Sm

0

 ,

V(x) =


k1Eh

k3Ih − γhEh
k9Em

k8Im − γmEm

 .

Computing and evaluating the Jacobian matrices associated
with F(x) and V(x) at x0, respectively, gives

JF(x0) =


0 0 0 (1− uP )bβmh

S∗
h

N∗
h

0 0 0 0

0 (1− uP )bβhm
S∗
m

N∗
h

0 0

0 0 0 0


and

JV(x0) =


k1 0 0 0

−γh k3 0 0

0 0 k9 0

0 0 −γm k8


where, k1 = (µh + γh), k3 = (αuTσh + (1− uT )σh + µh),
k8 = (µm + uA), k9 = (γm + µm + uA) and x0 is a DFE
(here, we take E1 as x0). Hence, R0 = ρ

(
JF(x0)J

−1
V(x0)

)
,

where ρ(A) is the spectral radius (maximum eigenvalue) of
a matrix A [24]. Using Maple, R0 is computed as

R0 =

√
(1− uP )2b2βhmβmhγmγh

k1k3k8k9

S∗m
N∗h

S∗h
N∗h

(29)

where, k1 = (γh + µh), k3 = (αuTσh + (1− uT )σh + µh),
k8 = (µm + uA) and k9 = (γm + µm + uA).

Or, equivalently

R0 =

√
(1− uP )2b2βhmβmhσAγhγmk4uMk

k1k3k2
8k9k12

(
1− 1

M

)
(30)

where, k1 = (γh + µh), k3 = (αuTσh + (1− uT )σh + µh),
k4 = (ϕuV + µh), k8 = (µm + uA), k9 = (γm + µm + uA)
and k12 = (ϕuV + uV + µh).

Consequently, by Theorem 2 in [24], the BRDFE, given
by E1, associated with Model (4)-(5) is LAS if R0 < 1, and
unstable if R0 > 1. This completes the proof of Theorem 2.

Remark 2. Since Model (4)-(5) describes dengue disease
transmission between human and mosquito populations, then
the expression for R0 in Equation (29) can be written as

R0 =
√
Rhm ×Rmh, (31)

where, Rhm =
(1−uP )bβhmγhS

∗
m

N∗
h

(γh+µh)(αuTσh+(1−uT )σh+µh) and

Rmh =
(1−uP )bβmhγmS

∗
h

N∗
h

(γm+µm+uA)(µm+uA) .
The expression for R0 in Equation (31) indicates two

routes of infection. These are: transmission from human to
mosquito; and from mosquito to human. Rhm describes the
number of mosquitoes that just one infectious human infects

during the period of infectiousness in a susceptible mosquito
population. The term (1 − uP )bβhm

S∗
m

N∗
h

is the product of
the transmission probability of dengue from humans to
mosquitoes and the number of susceptible mosquitoes per
humans. Also, γh

(γh+µh) is the proportion of individuals that
survive the exposed state (incubation period) to become
infectious while 1

(αuTσh+(1−uT )σh+µh) is the average dura-
tion of humans infectiousness period (i.e., human’s viraemic
period).

A similar interpretation holds for Rmh. It signifies the
number of humans that one infectious mosquito infects
over its expected infectious period in a completely sus-
ceptible population. The term (1 − uP )bβmh

S∗
h

N∗
h

represents
the transmission probability of dengue between humans and
mosquitoes in a susceptible population. Also, γm

γm+µm+uA
is

the proportion of mosquitoes that survive the exposed state
to become infectious while 1

µm+uA
is the average duration

of mosquitoes infectiousness period.

3) Global Asymptotic Stability of the Disease-Free Equi-
librium: We investigate the global asymptotic stability of
Model (4)-(5) by following [28]. Let X = (Sh, Rh, Am, Sm)
and I = (Eh, Ih, Em, Im) and group Model (4)-(5) into

dX

dt
= F (X, 0), (32a)

dI

dt
= G(X, I), G(X, I) = 0, (32b)

where, F (X, 0) is the right-hand side of Ṡh, Ṙh, Ȧm, Ṡm
with Eh = Ih = Em = Im = 0 and G(X, I) is the right-
hand side of Ėh, İh, Ėm, İm. Suppose further that G(X, I)
satisfies the following two conditions:

C1: G(X, 0) = 0, and

C2: G(X, I) = DIG(X∗, 0)I − Ĝ(X, I),

Ĝ(X, I) ≥ 0, (X, I) ∈ Ω,

(33)

where

(X∗, 0) = E1 = (S∗h, R
∗
h, A

∗
m, S

∗
m, 0, 0, 0, 0) ,

with S∗h = k4µhNh

(k4k5−ϕu2
V

)
, R∗h = µhuVNh

(k4k5−ϕu2
V

)
,

A∗m =
(
1− 1

M
)
uMK, S∗m =

(
1− 1

M
)
σA

k8
uMK,

DIG(X∗, 0), a M-matrix with nonnegative off-diagonals,
is the Jacobian of G(X, I) obtained with respect to
(Eh, Ih, Em, Im) and evaluated at (X∗, 0), and Ω is the
region where Model (4)-(5) makes sense biologically. If the
reduced system, Equation (32), satisfies the conditions in
Equation (33), then the following theorem holds.

Theorem 3. The DFE, E1, of Model (4)-(5) is Globally
Asymptotically Stable (GAS) in Ω whenever R0 < 1, and
unstable otherwise.

Proof: From Model (4)-(5), it follows that

F (X, 0) =


µhNh − (µh + uV )Sh + ϕuVRh

uV Sh − (ϕuV + µh)Rh

µb

(
1− Am

uMK

)
Sm − (σA + µA + uL)Am

σAAm − (µm + uA)Sm


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and

DIG(X∗, 0) =


−k1 0 0 Φh

γh −k3 0 0

0 Φm −k9 0

0 0 γm −k8


where, Φh = (1−uP )bβmh

S∗
h

N∗
h

and Φm = (1−uP )bβhm
S∗
m

N∗
h

.
Using the relation of condition C2 in Equation (33) yields

Ĝ(X, I) =


Ĝ1(X, I)

Ĝ2(X, I)

Ĝ3(X, I)

Ĝ4(X, I)

 =


Ψh

0

Ψm

0

 (34)

where, Ψh = (1− uP )bβmh
S∗
h

N∗
h
Im

(
1− Sh

Nh

N∗
h

S∗
h

)
and

Ψm = (1− uP )bβhm
S∗
m

N∗
h
Ih

(
1− Sm

Nh

N∗
h

S∗
m

)
.

Since 0 ≤ Sh, 0 ≤ Sm, 0 ≤ uP < 1, and we have that
Sh ≤ Nh, Sm ≤ mNh in Ω, it is obvious that Ĝ(X, I) ≥ 0.
Also, the DFE

X∗ =

(
k4µhNh

(k4k5 − ϕu2
V )
,

µhuVNh
(k4k5 − ϕu2

V )
,

(
1− 1

M

)
uMK,(

1− 1

M

)
σA
k8
uMK

)
is clearly a GAS equilibrium point of the reduced system,
Equation (32a). Therefore, it follows from Theorem 3 that
the DFE,
E1 = (X∗, 0) is GAS.

Theorem 3 epidemiologically implies that it is possible
to eliminate dengue disease from the population whenever
R0 < 1 irrespective of the initial sizes of the state variables
of Model, Equation (4)-(5).

Apart from the existence of TE and BRDFE, it is necessary
to show that the system, Model (4)-(5), has an EE. This is
a non-negative steady state solution where dengue disease
persists in the population. In order to examine the endemic
state solution, we consider the transmission dynamics of
dengue disease before intervention.

III. MATHEMATICAL MODEL WITHOUT INTERVENTION

In the absence of preventive and control measures (i.e.,
uV = uP = uT = uM = uL = uA = 0), the system, Model
(4)-(5), becomes

Ṡh = µhNh −
bβmhIm
Nh

Sh − µhSh

Ėh =
bβmhIm
Nh

Sh − γhEh − µhEh,

İh = γhEh − σhIh − µhIh,
Ṙh = σhIh + uV Sh − µhRh,

(35)

Ȧm = µb

(
1− Am

K

)
(Sm + Em + Im)− σAAm − µAAm,

Ṡm = σAAm −
bβhmIh
Nh

Sm − µmSm,

Ėm =
bβhmIh
Nh

Sm − γmEm − µmEm,

İm = γmEm − µmIm,
(36)

subject to the initial conditions:

Sh(0) = S0h, Ih(0) = I0h, Am(0) = A0m,

Eh(0) = E0h, Rh(0) = R0h, Sm(0) = S0m,

Em(0) = E0m, Im(0) = I0m.

(37)

As a result of biological reasons, the solution properties of
Model (35)-(36) together with the initial conditions (37) is
studied in the region G defined by the closed set

G = Gh × Ga × Gm ⊂ R4
+ ×R+ ×R3

+ (38)

with

Gh =
{

(Sh, Eh, Ih, Rh) ∈ R4
+

∣∣∣Sh + Eh + Ih +Rh ≤ Nh
}
,

Ga =
{
Am ∈ R+

∣∣∣Am ≤ K} and

Gm =
{

(Sm, Em, Im) ∈ R3
+

∣∣∣Sm + Em + Im ≤ mNh
}
.

The same description of parameters and state variables of
Model (4)-(5) holds for Model (35)-(36).

Furthermore, the corresponding expression to R0 given by
Equation (30) in the absence of any intervention (i.e., ui = 0,
i ∈ {V, P, T,M,L,A}) is the basic reproduction number
related to Model (35)-(36). Therefore, the basic reproduction
number of Model (35)-(36) is given by

R2
w =

b2βhmβmhσAγmγhk

(γh + µh)(σh + µh)µ2
m(γm + µm)

(
1− 1

N

)
(39)

where, N = µbσA

µm(σA+µA) .
In the next subsection, the threshold Rw is used to

establish the existence of a unique EE.

A. Existence of the Endemic Equilibrium
Here, we claim that Model (35)-(36) has a unique positive

EE in the following result.

Theorem 4. Let N > 1. Then, the compartmental dengue
Model (35)-(36) has a unique positive EE when Rw > 1,
and no EE otherwise.

Proof: Let the EE of Model (35)-(36) be represented by

E3 = (S∗∗h , E
∗∗
h , I

∗∗
h , R∗∗h , A

∗∗
m , S

∗∗
m , E

∗∗
m , I

∗∗
m ) . (40)

Solving Model (35)-(36) at steady state yields the following
components of E3:

I∗∗h =
(γm + µm)µ2

mµhNh
(
R2
w − 1

)
[µmµh(γm + µm)Nhbβhm + b2βmhβhmσAγmA∗∗m ]

Nh,

S∗∗h = Nh −
(γh + µh)(σh + µh)

µhγh
I∗∗h ,

E∗∗h =
σh + µh
γh

I∗∗h ,

R∗∗h =
σh
µh
I∗∗h ,

A∗∗m =

(
1− 1

N

)
K,

S∗∗m =
σA

µm + bβhm
I∗∗
h

Nh

A∗∗m ,

E∗∗m =
bβhm

γm + µm

I∗∗h
Nh

σA

µm + bβhm
I∗∗
h

Nh

A∗∗m ,

I∗∗m =
γm
µm

bβhm
γm + µm

I∗∗h
Nh

σA

µm + bβhm
I∗∗
h

Nh

A∗∗m ,

(41)
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where N = µbσA

µm(σA+µA) and Rw is as defined in Equation
(39).

It is clear from Equation (41) that a positive EE exists
only at Rw > 1. Hence the proof.

IV. NUMERICAL IMPLEMENTATION AND DISCUSSION

In this section, we take up the numerical experiments on
Model (4)-(5) in order to gain insight into the efficacy of pre-
ventive and control measures for dengue under investigation.
Model (4)-(5) with the associated state initial conditions (6)
is simulated using ode45 routine in MATLAB. The initial
values for the system of ODEs: S0h = 479350, E0h = 216,
I0h = 434, R0h = 0, A0m = kNh, S0m = mNh,
E0m = 0, I0m = 0 are taken from [22] while the parameter
values and their sources are as presented in Table I. The
simulation is carried out in two folds: when the preventive
and control measures are applied separately; and when they
are combined.

TABLE I: THE VALUES AND SOURCES OF MODEL
PARAMETERS

Parameter Value Source

βhm 0.25 [18], [29]

µh
1

71×365
[16], [22]

σh
1
3

[16], [22]

ϕ 0.05 [16]

α 0.3 [30]
1
γh

4 days [22]

b 1 [22]

σA
1
9

[18], [29]

βmh 0.25 [18], [29]

µA 0.25 [22]

µm
1
15

[18], [29]

µb 6 [16], [18], [22], [29]

k 0.9 [18], [29]

γm
1
11

[22]

m 6 [22]

K kNh [22]

In the absence of the control interventions (that is, ui = 0
for i = {V, P, T,M,L,A}), the basic reproduction number,
R0, is computed to be 1.5315 for the disease outbreak.
The epidemiological indication of this is that dengue disease
will persist in the population. Hence, the choice of control
parameters, uV , uP , uT , uM , uL, and uA, can put R0 below
unity.

The results of the numerical simulations are presented in
Fig. 1- Fig. 9. In the case of no intervention, it can be
observed from Fig. 1-Fig. 9 that the peak of the number
of human infection occurred between the period of 60 to
150 days. There is a delay in the mosquito infection with
the number of infection having a peak between the 80th
and the 190th days. The use of certain proportion of the
preventive and control measures reduces these peak values
of the number of human and mosquito infections almost to
zero after the 50th day of dengue outbreak (see Fig. 1, Fig.
2, Fig. 6, Fig. 7, Fig. 8 and Fig. 9).

Examining the impact of the six control measures on the
dynamics of infectious humans and mosquitoes separately, it
is observed from Fig. 1, Fig. 2 and Fig. 6 that continuous

vaccination of 25% of susceptible individuals, the use of
individual protection by 75% of susceptible individuals, and
application of adulticide with 25% coverage are all enough to
decrease the number of infectious humans and mosquitoes to
zero. However, the use of either anti-arboviral disease drugs,
elimination of artificial water collects or administration of
larvicide at mosquitoes breeding sites is not sufficient at any
level (ui = 0, 0.25, 0.50, 0.75, 1, i = {T,M,L}) to decrease
the infectious humans and mosquitoes to zero, although the
impact of the control measures can be seen as the peak value
of the number of both the infectious humans and mosquitoes
continued to decrease at each control level as shown in Fig.
3, Fig. 4 and Fig. 5.
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Fig. 1: Infected humans and mosquitoes with various levels
of vaccination (uV = 0, 0.25, 0.50, 0.75, 1).

On the other hand, combination of several control mea-
sures depicts significant results on dengue disease spread.
This strategy of integration of separate use of dengue
control measures drastically reduces the large proportion
of each control measure needed to eliminate the disease
spread. Fig. 7 shows the dynamics of infectious human
and mosquito populations when vaccination, individual pro-
tection and treatment are simultaneously used at different
levels (ui = 0, 0.01, 0.05, 0.10, 0.15, i = {V, P, T}). It
is observed that combining 5% each of the controls is
enough to make the number of infectious individuals and
mosquitoes to remain near zero. Similarly, Fig. 8 shows
the significant impact of mechanical control, larvicide and
adulticide at different levels of their combination (ui =
0, 0.01, 0.05, 0.10, 0.15, i = {M,L,A}) on the dynamics
of infectious human and mosquito populations. It is found
that only 5% of each control is sufficient for the infectious
individuals and mosquitoes to stay close to zero. Further-
more, Fig. 9 presents the dynamics of infectious humans
and mosquitoes using the six control measures simultane-

Engineering Letters, 27:3, EL_27_3_24

(Advance online publication: 12 August 2019)

 
______________________________________________________________________________________ 



ously at different levels (ui = 0, 0.01, 0.05, 0.10, 0.15, i =
{V, P, T, L,M,A}). It is observed that only 5% of each
control is sufficient for the number of infectious individuals
and mosquitoes to stay close to zero.
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(b) Infectious mosquitoes

Fig. 2: Infectious humans and mosquitoes with various levels
of individual protection (uP = 0, 0.25, 0.50, 0.75, 1).
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(b) Infectious mosquitoes

Fig. 3: Infectious humans and mosquitoes with various levels
of treatment (uT = 0, 0.25, 0.50, 0.75, 1).
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(b) Infectious mosquitoes

Fig. 4: Infectious humans and mosquitoes with various levels
of mechanical control (uM = 0, 0.25, 0.50, 0.75, 1).
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(b) Infectious mosquitoes

Fig. 5: Infectious humans and mosquitoes with various levels
of larvicide (uL = 0, 0.25, 0.50, 0.75, 1).
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Fig. 6: Infectious humans and mosquitoes with various levels
of adulticide (uA = 0, 0.25, 0.50, 0.75, 1).
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Fig. 7: Infectious humans and mosquitoes with various levels
of control (uV = uP = uT = 0, 0.01, 0.05, 0.10, 0.15).

V. CONCLUSION

In this study, a mathematical model was proposed and
analysed for dengue disease transmission and control. The
model considered both the aquatic and adult stages of
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Fig. 8: Infectious humans and mosquitoes with various levels
of control (uL = uA = 1− uM = 0, 0.01, 0.05, 0.10, 0.15).
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Fig. 9: Infected humans and mosquitoes with various levels
of control implementation (uV = uP = uT = 1 − uM =
uL = uA = 0, 0.01, 0.05, 0.10, 0.15).

mosquito for proper investigation of the impacts of lar-
vicide administered at mosquito breeding sites and open
space spray of insecticide on mosquito population control.
In addition, other control measures (vaccination, individual
protection and treatment) that target human population were
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incorporated into the model. We showed that the model has
exactly two disease-free equilibria: the TE; and the BRDFE.
Computation of R0 associated with the model was carried
out, and it was used to discuss the stability of the BRDFE.
It was found that the BRDFE is LAS whenever R0 < 1, and
unstable wheneverR0 > 1. We used the comparison theorem
to prove that the BRDFE is GAS. It was showed that, for
pre-intervention case, the model has a unique positive EE
only at Rw > 1.

From the results of our numerical solution, it was found
that focusing on a single control measure for dengue disease
requires huge proportion of such measure to eliminate the
disease spread. Of all the six control measures considered,
only three of them (vaccination, adoption of individual
protection practice and application of adulticide) are enough
to diminish the number of infected humans and mosquitoes to
zero. While the others (treatment, mechanical control and use
of larvicide) only reduces the disease burden, but insufficient
for the disease elimination. Also, it was found that less equal
proportion of each of the control measures is needed to
eliminate the disease spread by the following combinations:

1) Vaccination, individual protection and treatment;
2) Mechanical control, larvicide and adulticide; and
3) Vaccination, individual protection, treatment, mechan-

ical control, larvicide and adulticide.
We therefore concluded that combining several control mea-
sures guarantees an effective control and minimization of the
proportion of control measures require for preventing and
curtailing dengue disease transmission.
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