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Parameter Estimation for Discretely Observed
Cox-Ingersoll-Ross Model with Small Lévy Noises

Chao Wei

Abstract—This paper is concerned with the parameter esti-
mation problem for Cox-Ingersoll-Ross model with small Lévy
noises from discrete observations. The least squares method
is used to obtain the parameter estimators and the explicit
formula of the estimation error is given. The consistency of the
estimators are derived when a small dispersion coefficient ¢ — 0
and n — oo simultaneously by using Cauchy-Schwarz inequal-
ity, Gronwall’s inequality, Markov inequality and dominated
convergence. The asymptotic distribution of the estimation error
is studied. The simulation is made to verify the effectiveness of
the least squares estimators.

Index Terms—Least squares estimator, Lévy noises, discrete
observations, consistency.

I. INTRODUCTION

1t stochastic differential equations are important tools for
studying random phenomena and are widely used in the
modeling of stochastic phenomena in the fields of physics,
chemistry, medicine and finance( [3], [12], [17]). However,
part or all of the parameters in stochastic model are always
unknown. In the past few decades, some popular methods
have been put forward to estimate the parameters in It
stochastic differential equations, such as maximum likelihood
estimation( [1], [20], [21]), least squares estimation( [4],
[16], [18]) and Bayes estimation( [7]-[9], [11]). But, in fact,
non-Gaussian noise can more accurately reflect the practical
random perturbation. Lévy noise, as a kind of important non-
Gaussian noise, has attracted wide attention in the research
and practice in the fields of engineering, economy and soci-
ety. From a practical point of view in parametric inference,
it is more realistic and interesting to consider asymptotic
estimation for stochastic differential equations with small
Lévy noises. Recently, a number of literatures have been
devoted to the parameter estimation for the models driven
by small Lévy noises. When the coefficient of the Lévy
jump term is constant, drift parameter estimation has been
investigated by some authors [13], [14].

The Cox-Ingersoll-Ross model( [5], [6]), hereafter the CIR
model, which was introduced in 1985 by John C. Cox,
Jonathan E. Ingersoll and Stephen A. Ross as an extension
of the Vasicek model ( [19]), describes the evolution of
interest rates. It is known that parameter estimation for CIR
model driven by Brownian motion has been well developed
based on discrete observations( [2], [22]). However, some
features of the financial processes cannot be captured by the
CIR model, for example, discontinuous sample paths and
heavy tailed properties. Therefore, it is natural to replace
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the Brownian motion by the Lévy process. Recently, the
parameter estimation problems for CIR model driven by
small Lévy noises have been studied by some authors.
For example, Ma and Yang( [15]) established the central
limit theorems, the deviation inequality and the moderate
deviations for least squares estimators of parameters in the
CIR type model driven by a-stable noises; Li and Ma( [10])
derived the consistency and central limit theorems of the
conditional least squares estimators in a stable Cox-Ingersoll-
Ross model. But, the explicit formula of the estimators and
the estimation error have not been given in these papers.

In this paper, we consider the parameter estimation prob-
lem for CIR model with small Lévy noises from discrete
observations. The decomposition of the Lévy process is
different from that in ( [10], [15]), so the methods used to
prove the asymptotic property of the estimators are different.
The process is discreted based on Euler-Maruyama scheme,
the least squares method is used to obtain the explicit formula
of the estimators and the estimation errors are given as well.
when the small dispersion coefficient € — 0 and n — oo
simultaneously, the consistency of the least squares estima-
tors are proved by applying the Cauchy-Schwarz inequality,
Gronwall’s inequality, Markov inequality and dominated
convergence. Finally, the simulation result is provided to
verify the effectiveness of the obtained estimators.

This paper is organized as follows. In Section 2, the CIR
model driven by small Lévy noises is introduced, the contrast
function is given and the explicit formula of the least squares
estimators are obtained. In Section 3, the estimation errors
are derived, the consistency of the estimators are proved
and the asymptotic distribution of the estimation error are
discussed. In Section 4, the results are extended to semi-
martingale noises. In Section 5, some simulation results are
made. The conclusion is given in Section 6.

II. PROBLEM FORMULATION AND PRELIMINARIES
Let (Q,.%#,P) be a basic probability space equipped
with a right continuous and increasing family of o-algebras
({F#t}i>0). Let (L, t > 0) be an ({#})-adapted Lévy
noises with decomposition

t t
L; = B; —|—/ / zN(ds,dz) —|—/ / zN(ds,dz),
0 J|z|>1 0 J|z|<1 (1)

where (By,t > 0) is a standard Brownian motion, N (ds, dz)
is a Poisson random measure independent of (B;,¢ >
0) with characteristic measure dtv(dz), and N(ds,dz) =
N(ds,dz) — v(dz) is a martingale measure. We assume
that v(dz) is a Lévy measure on R\O satisfying [(|z]* A
1)v(dz) < oo.

In this paper, we study the parameter estimation for CIR
model with small Lévy noises described by the following
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stochastic differential equation:

de (Oé — /BXf dt + 50’\/ de, t e [07 1] (2)
Xo =0,

where « and 3 are unknown parameters and o is known
constant. Without loss of generality, it is assumed that € €
(0,1].

Consider the following contrast function

Z |Xt Xt — (a — ﬁXti,l)Atifﬂz
Pn, E EQO'QXt Ati_l ’
3)
where At;_1 =t; —t;_1 = L.
It is easy to obtain the estlmators
N ny iy X, — 2 Xf Zz 1th 1
Ap e =
( Zz le1 127, 1Xt 1)
+ nzz 1( Xt )
( Zz 1XtL 121 1Xt11)
4)
~ n —nZz 1 XtL !
Bme =

A(n? — Zi:l X, 4 Zi:l XtLI )
Z;L:l(Xti - Xti—l) Z?:l th. B
+ n n — :
( - Zi:l th‘—l Zi:l th )

Before giving the main results, we introduce some assump-
tions below.

Let XY = (X?,¢ > 0) be the solution to the underlying
ordinary differential equation under the true value of the
parameter:

—1

dX? = (a— BXD)dt, X§ = .

Assumption 1: o and [ are positive true valves of the
parameters and o > 0.

Assumption 2: info<;<1{X;} > 0.

Assumption 3: There exists L > 0 such thatja — fz| <
L(1 + |zl).

Assumption 4: sup,
oo for every p > 1.

In the next sections, the consistency of the least squares
estimators are derived and the simulation is made to verify
the effectiveness of the estimators.

E[|X;|’] < oo and suptE[‘Xlt‘,,} <

III. MAIN RESULT AND PROOFS

In the following theorem, the consistency in probability
of the least squares estimators are proved by using Cauchy-
Schwarz inequality, Gronwall’s inequality, Markov inequality
and dominated convergence. R

Theorem 1: The least squares estimators & and [ are
consistent in probability, namely

5 P
Pr.e = B.
Proof: By using the Euler-Maruyama scheme, from (2),

we have
= (a=BXy,_)Ati—1+eoy /X, (L, =Ly, ).
&)

~ P
Op e — Q,

X, =X,

Then, it is easy to see that

n

Z(Xti - Xti—l) (6)

i=1

1 n n
= o — gﬁZXt171 +EUZN/Xti,1<Lt
i=1 i=1

X,
i (7
1
i=1 " ti-l
- 1
+ EUZ (Ltl — Lti—l)'
o VX

Substituting (6) and (7) into the expression of @, it follows
that

Qe — O
o Z?:l \/K(Lt
1 1 1
(TS S Ay e
€o Zz 1 ﬁ(Ltz Lti—l)% Z?:l Xti—l
1 ) 1 :
T n Zi:l Xy n Z?:l X

i—1

Let M{"® = X[,4)/n» in which [nt] denotes the integer part
of nt. We will prove that the sequence {M;"“} converges to
the deterministic process {X?} uniformly in probability as
e — 0 and n — oo.

Observe that

t t
Xt—X?:/ (XQ—XS)ds+ga/ VX.dL,.  (8)
0 0

By using the Cauchy-Schwarz inequality, we have

| X —

2\/ ds\2+2a2o—2|/ Vv X.dL,|?

2t/ |X37X2|2d5+25202\/ V/ XdL|?
0 0

X0|2

XO

IN

IN

According to the Gronwall’s inequality, we obtain

t
|X; — X?? < 2520'262t2|/ VX dLy|*. 9)
0

Then, it follows that
\/ sdLs|. (10)

Therefore, for each 1" > 0, it is easy to check that

- X?| < V2eoeT” sup |

0<t<T

sup |X,
0<t<T

sup | X, — X0 5 o. (11)

0<t<T

As [nt]/n — t when n — oo, we get that the sequence

{M]"} converges to the deterministic process {X} uni-
formly in probability as € — 0 and n — oo.

1V 11Lt_11

Next we will prove that >

[y V/XVdL,.
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Note that

Z,/Xt” — Ly, ) /\/ MdL,.

Then, it is elementary to see that

1 1
|/ \/Mg"’des—/ V/X0dL,|
0 0
1
| / (VMIF — \/X0)dB
0

12)

+ /1/ (VM —\/X0)2N(ds, dz)
01 |z|>1

+ / / (VM — \/X9)2N(ds,dz)|
0 : |z|<1

< I/O (VM — /X0)dB,|

1

+ I// (VMP® — \/X0)2N(ds, dz)|
0 Jz|>1

+ I/ / (VMZ"E — \/XD)2N(ds,dz)|.
0 J|z|<1

It can be easily to check that

1
[ RN s, o)

0 Jiz|>1

1
< / / I/ MIF — \/X0||2|N(ds, d=)

0 |z|>1
1
< sup \\/Msn’af\/Xﬂ/ / |2| N (ds, dz)
0 Jiz|>1

0<s<1

P
— 0,

as € — 0 and n — oo.
By using the Markov inequality and dominated con-

vergence, we have |f01(\/MS”’E — VX0)dBg| 50 and
1 , s P
| 5 lelSI(\/MS ©—/X9)zN(ds,dz)| — 0.

Thus, combining the previous results, it follows that
n 1
S VXe (L~ L) 5/ V/X0dL,.
i=1 0
P

Then, it is easy to see that > | ——(L;, — Ly, ,) —
1= /Xf,‘7 K3 i—1
§ ——dL -
Jo gthe

13)

Let
Xy = _inf _{X, .}, (14)
and
Xy = sup {Xy_ ) (15)
0<t;—1<1
We make an assumption that Xy # Xjy.
From (15), it follows that
1 n
=3 Xi, £ Xy <0
n 4
=1
Therefore, when ¢ — 0 and n — oo, we have
e /Xty (Le, — L, ) 50, (16)
i=1

(Advance online publication:

and

a7

1 < P
EO’Z m 71)5;)(“71 = 0.

Finally, we will consider the boundedness of 1 —
1 n 1 n 1
n Ei:l Xti—l n Zi:l X,

It is obviously that

n

7ZX1’1 1 ZXl 217

i=1 ti-1

(18)

which, under the assumption that X # X, implies

n

1
1—- 19
DIREIN LI
From (14) and (15), it follows that
1 1
— Xv— (20)
Z Z ¥ <Xz,
Then we have
! < L < 00
a2 i tllnzzﬁﬂﬁ 1—XMX1N
(21)

Combining the previous arguments, when € — 0 and n —
00, we have

Gne D a (22)
From (4) and (6), we obtain
3 —B= (anﬁ B a) —E0 Z?:l V Xti—l(Lt
" % Z:’lzl Xtﬂ,—l
(23)
Smce ISt X, = Xy > 0, we get that
rlL :’ 1XtL 1 S X < o0

Together with the results that @, . — o £ 0 and
go Zl 1 m Ly, — Ly, ,) —>O it follows that

Bn,s _B _> 07

ase —+0and n — oo. _

Therefore, &, c and G, . are consistent in probability. The
proof is complete. u

In the following theorem, the asymptotic distribution of
the estimation error are discussed.

Theorem 2: Under the conditions ¢ — 0, n — oo and
ne — oo, it follows that

L o Jo VXYL, ~

e Hape—a) =

(24)

—afy FrdLs o J) X0ds

1—fOX2dsf0X—gJ s

)

and

1 1
o - Ufo ‘/ngLSfo ;0 Ufo \/7
€ (Bn,e*ﬂ) — 1—f0 Xods . Xlods

Proof: Since

5*1(04,1 e — Q)

UZ@ 1V Xt7 1

1 1
1_*21 1th 1n i= 1xt

i—1

UZZ 1 \/T(Lt ti—l)ﬁ E?:l Xti—l
n .
“n Zi:l th—l % 21:1 ﬁ

-1
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By the methods used in Theorem 1, it is easy to check

that .
1 n
N X, —P>/ X0ds, (25)
n- 0
=1
and .
lwe 1 »p 1
— — —d 26
nizleti—l 0 X? § ( )

Then, it is obviously that
1< I~ 1 »p Yoo, 1
1—-— X = 1-— X.d —ds.

n Z t171n ; ‘thii1 /O s SA Xg S
27

i=1
Therefore, together with the results in Theorem 1, we
obtain

afo V/X0dL, —crfo rdL foXods

6_1(an’€—a) =
1-— fo X0ds

0 XO
(28)

As
571(Bn e ﬁ)

€ 1(0¢n8 -

B 0.27, 1 \/

% Zi:l Xti—l
Together with above results, it can be checked that
L 0 Jo VXYL [y fmds —o [y rdL
1 —fO Xodsfo Xods

Ltl 1

“Bre—B) 5

(29)
The proof is complete. [ |

IV. GENERALIZATION TO SEMI-MARTINGALE NOISES

In this section, we discuss the extension of our main results
in Section 3 to the general case when the driving noise is
a semi-martingale. Let Q; = Qo + M; + A; be a semi-
martingale, where M, is a local martingale and A, is a finite
variation process. Then, we can replace the driving Lévy
process L; by the semi-martingale @); to get

{ dX; =(o — BX,)dt + eo\/X1dQy,
X =

Now we state the new results as follows.
Theorem 3: Under Assumptions 1 — 2, the least squares
estimators &, . and 3, . are consistent, namely

€01

~ P
Ope — @
and
~ p
Bn.e = B.

Proof: According to the results in Section 3, it is easy
to get the error of estimation

a—a«

50—21 1 \/ ti—1 Qt th 1

1 1
1 - n Zi:l Xeiiy n Xti,l
€g E?:l ﬁ(Qtl - Qti—l)% Z?:1 Xtifl
1 1 1 )
T n Z?:l Xty n Xy,

1

and
B _ ﬁ _ (an,f - - EOZ 1V tz 1 th 1
" % Zi:l Xti—l
(3D
By applying the same methods, it can be checked that
. P
Ope — Q,
and JU.
Bne =B
The proof is complete. ]

Theorem 4: Under the conditions ¢ — 0, n — oo and
ne — oo, it follows that

1 1 1
- o[y VX2Qs — o |, ﬁd@s Jo X2ds

1 1
1— [, X0ds [, X%?ds

i

m
L
Q
s
o
|
Q
1

1
~ Ofo VX2dQs |, Xlods Ufo \/Fde
%
lffo Xodsjo Xods

Proof: Since
e HApe — )
UZZ 1V th 1 Qt Qtt 1
— i e i th_l
a Z?:l \/Xlti_l(Qtz - Qti—l)% Z?:l Xti—l
L= o X i <o '

i—1

By the methods used in Theorem 1, it is easy to check
that

=N X, 5[ X0ds, (32)
=1 0
and "
1 1 »p 1
= —d 33
nZth 1 0 Xg i ( )

Then, it is obviously that

1 ¢ Ly 1
P L Xy ; Ko

=1

I 1 0 1 1
%17/ ngs/ —=ds
o o X7
(34)
Therefore, together with the results in Theorem 1, we

obtain

afo VX0dQ, — afo \/FdQS fo Xds

e (an—a) B
1— fo XVds fo <o

(35)
As
671 (B\n,s - 5)

e Qe —

JZ? 1 \/ ti— 1
711 Zi:l Xti—l
Together with above results, it can be checked that

X0, 1 1
O'fo dQs fO XLQdS—O'fO \/%dQs
1— [i X0ds '

Qt7 1

“(Bre—B) 5

1
0 X0
(36)

(Advance online publication: 12 August 2019)



Engineering Letters, 27:3, EL._27 3 26

The proof is complete. ]

Remark 1: 1f the Cox-Ingersoll-Ross model is driven by
a-stable motion Z = {Z;,t > 0} with index «, where
Z satisfies that for any 0 < s < t, E[e™(%:=%:)|F] =
e~ (t=9)a(¥) g (u) is the Lévy symbol of Z. The model
is described as follows:

dXt :(9 - AXt)dt + vV XtdZt,
Xo =zo,

We introduce the following contrast function:

t>0

)‘) = Z |Xti — X, — (9 - )\Xti—l)Ati_:LlQ?
i=1
where Ati_l = ti — ti—l = h.

Then, we can obtain the explicit expression of estimators

g it (Xee — Xoo ) 20 X7
" h(n i Xz,l =2 (i X)?)
Do (X, — X )Xo i Xe
h(n iy X7 = 2 (i X )?)
% Do (X = X )20 Xy
" h(n D X7 1 i (i X))
. ny oo (X, — Xi, ) X4,
h(n3oiny X7, = 2 (0 X, ))?)
The expression of estimators are different from that in (4).
Therefore, the methods used to discuss the consistency and

asymptotic distribution of the estimators are different as well,
and this is the further topics to consider.

V. COX-INGERSOLL-ROSS MODEL DRIVEN BY
BROWNIAN MOTION

We consider Cox-Ingersoll-Ross model driven by Brown-
ian motion, which is described as follows:

dXt :(Ol — ﬁXt)dt —+ o/ Xtth

Xo =zo,
where W; is a Wiener process modeling the random market
risk factor, o, 5 and o are unknown parameters.

It is assumed that the process is observed at times
{to,t1,...,tn} where t; =iA,;i=1,2,...nand 0 < A < %
Discretizing equation (37), it follows that

th - Xti—l = (Oé - BXti—l)A +o \/ Xti—lAEtN

where ¢, is a i.i.d. N(0,1) sequence and for every i, €, is
independent with {X;,,j <i}.
Then, it is easy to check that

”Z?ﬂ Xy, — Z? 1 X,

(37)

(38)

Zz Ith 1

a =
A(nQ — E?:l Xt,i,l Ziil Xti71
X,
R n? — HZ?:1 ﬁ
ﬁ pr—

A(n? — 22;1 Xty Z?:l ﬁ) (39)
E?:l(Xti - Xti
A

71) Z?:l ﬁ
- Z?fl Xti 1 Z?fl th )

i—1
1 Xt th 1 (a - ﬁth 1) 2
o2 =X Z < )<,

1

i—1

Next we will prove the consistency of o2.

Note that
(Xti - th‘,—l - (a - B\Xti—l)A)2
= (th - Xt¢71)2 + [(a - /BXti—l)A}Q
_Z(th' - Xti—l)(a - BXti—l)A'

According to It6’s lemma,

d(Xtu - Xti—1)2
= Q(Xtu — Xti_l)(a — BXt“)dt
+02 Xy, dty, +2(X;, — Xy, o/ Xy, AW,

it follows that

(th‘, - th‘—l )2

ti
=2 [ (X, Xo)a - 5, )it
ti—1

t;
+0'2 / Xtudtu
ti—1

ti
+2/ (Xtu _Xt 1)0-‘/Xtuthu'
ti—1

Hence
0% — 0?2
_ |n2AXn:/t (X, _Xt}(:)(la_BXtu)dtu
AZ/ . _1)0 e aw,
o2 I ft
), )}X A
n — A
1A¥ a ﬁXi AP
_Zi )gial— BXy, ,)A 22
< nAQi]/ﬁ (X, Xt}(;)(la BXt“)dtuF
N
4
R At
+4$2121|(06—)fftl )‘
16 g (Ko = Xe )@ BXu) o
[ Kooy

Applying the Holder’s inequality and the Cauchy-Schwarz
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inequality, we have

m/“(Xm—X}nm—ﬁ&n

ti—1

(X — X))o — BXe)
E[A/ 1| X,

A/‘ (Bl — )} (E|(X,,

Ol 6Xt ) )Zdtu,

dty|?

IN

|2dt.,

IN

Xti—l)

from Assumption 4 we get that E|t -|* is bounded.
Furthermore, E|(X;, — X, ,)(a — BX;“,) 1 < (ElXy, —
X, ,[®)2 (Ela—BX,, [®)2. According to lemma 1, it shows
that E| X, — X;,_,|® = O(A%) and with Assumption 3 and
Assumption 4 we know that Ela — 8X;|® < 128L8(1 +
sup; E| X¢[®) < .

Thus we obtain the result that

IE|/ (Xt, — Xm 1)(04—5Xtu)

dt,|* = O(A?).

(40)

(a - ﬂXti—1)2 |2
Xti—l

(a _ BXtifl)zl

X2.

E|

< |>ﬂEm—ﬁme>%

1
< (Bl

ti—1

X 2
it is easy to check that E\ﬂihl)

Xe;_y
Xy =X, 1) (@—BXe;_4) ‘2
X, .

|2 is bounded.

Then look at IE|
Since

i—1

(Xti - Xti—l)(a - B\Xti—l) |2
X,

(]E|(Xt Xti—l)(ai/B\Xti—

E|

Nl=

1
(Bl

ti—1

and IE|(XT1 _Xti71 )(62—

) BINES

BXt,i,1)|4 = O(A?), it follows that

1) I =0(A). (1)

X1,

. t;
Hereafter, we consider E| ‘[ti—l <
As

~<dt, — 1|2

ti
t,L 1 th IA

1 X, — X,
- —2]E| Dty Aty

E| dt, — 1)

< ]E|A

g
=
E<

< — (E| Xti71|4)%dt7ﬂ

and E|X;, — X;, ,|* = O(A?), we obtain that

17 Xtu
trif 1 Xti,—l A

E| dt, — 1] = O(A). (42)

Finally, we study E| 7", [* wdmu 2.
i—1 ti_1
Let

N, = (43)

(X, — X)X
AWy, .
i1 JtAti 1 X,
It is obvious that NV, is a martingale. From the martingale
moment inequality, there exists a constant C such that

E|N|* < CE(N)y, (44)
where (IV); denotes the quadratic variation of IV;.
Note that
n tAL
(X, - X)X
N), = / v T Stio) Bl g o (45)
' Z;Mnl X2
and
E(N)¢
n tAL;
C(X, X)X,
= E}Z/‘A T,
Xtu 1 4\ L
< Z ]E| ‘ )2(E|Xtu _Xti—l‘ )2dtu'
tAL; —
Since E| 25t |2 is bounded and
i—1
E|Xs, = Xi o [* = O(ty — tia?), (46)
it follows that
E(N); = nO(A?). (47)
As a result
=5 1
Elo?2 — 0% = O(A) + O(ﬁ)' (48)

Therefore, E|o2 — 0?2 — 0 when A — 0 and nA — oo
as n — oo. This means that 02 — o2 in the Lo norm.

VI. SIMULATION

In this experiment, we generate a discrete sample
(Xt,)i=01,...n and compute &, . and S, . from the sample.
We let 0 = 0.5, x9p = 0.1. For every given true value of
the parameters-(ayg, Bo), the size of the sample is represented
as“Size n” and given in the first column of the table. In Table
1, € = 0.05, the size is increasing from 500 to 3000. In Table
2, € = 0.001, the size is increasing from 5000 to 30000.
The tables list the value of “ag — LSE”, 8y — LSE”and
the absolute errors (AE) of LSE, LSE means least squares
estimator.

Two tables illustrate that when n is large enough and ¢ is
small enough, the obtained estimators are very close to the
true parameter value. Therefore, the methods used in this
paper are effective and the obtained estimators are good.

Next we give some simulation results of the confidence
interval of g and By under 0.95 confidence level. In Table
3 and Table 4, We let 0 = 0.5, zg = 0.1. For every given
true value of ag and By, let € = 0.01, the size of the sample
is increasing from 2000 to 10000. These tables list the value
of ag — LSFE and By — LSE and in the last column of the
table list the confidence interval of o and (3y. Table 3 and
Table 4 illustrate that the length of the confidence interval is
becoming small when the size of the sample is increasing.
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LSE SIMULATION RESULTS OF aig AND 3¢

TABLE I

TABLE III

SIMULATION RESULTS OF CONFIDENCE INTERVAL OF «g

True Aver AE True Aver 0.95
(w0, B0) Sizen ag — PBo — «ao Bo ap Size n ag — LSE confidence in-
LSE LSE terval
500 09542 19452  0.0458  0.0548 2000 0.9963 [0.9825,1.2246]
1.2) 1000 09628  2.0467  0.0372  0.0467 1 5000 1.0018 [0.9917,1.1148]
3000 09765 20326  0.0235  0.0326 10000 1.0007 [0.9956,1.1032]
500 19586 29610  0.0414  0.0390 2000 1.9951 [1.9792,2.3423]
23 1000 20371  3.0224 00371  0.0224 2 5000 2.0027 [1.9845,2.2247]
3000 20189 30123 00189  0.0123 10000 2.0011 [1.9983,2.1162]
500 29496 39438  0.0504  0.0562 2000 2.9954 [2.9763,3.3592]
G4 1000 3.0377 40397 00377  0.0397 3 5000 3.0028 [2.9894,3.2334]
3000 3.0214 40205  0.0214  0.0205 10000 3.0015 [2.9932,3.1221]
TABLE 1I TABLE IV
LSE SIMULATION RESULTS OF «p AND ,80 SIMULATION RESULTS OF CONFIDENCE INTERVAL OF ,80
True Aver AE True Aver 0.95
(w0, Bo) Sizen ag — Bo — o Bo Bo Size n ag — LSE confidence in-
LSE LSE terval
5000 09965 19979  0.0035  0.0021 2000 2.0032 [1.9875,2.2354]
(1.2) 10000 09982 20013 00018  0.0013 2 5000 2.0019 [1.9986,2.1241]
30000 09997 20004  0.0003  0.0004 10000 2.0008 [2.0001,2.1032]
5000 19972 29974 00028  0.0026 2000 3.0043 [2.9721,3.3246]
23) 10000 20014  3.0015 00014  0.0015 3 5000 3.0025 [2.9875,3.2314]
30000 20002  3.0003  0.0002  0.0003 10000 3.0009 [2.9986,3.1105]
5000 29968 39978  0.0032  0.0022 2000 4.0035 [3.9749,4.3368]
G4 10000 30017 40012 00017  0.0012 4 5000 4.0021 [3.9875,4.2389]
30000 3.0004 40005  0.0004  0.0005 10000 4.0010 [3.9983,4.1568]
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VII. CONCLUSION

In this paper, the parameter estimation for CIR model
with small Lévy noises has been studied from discrete
observations. The least squares method has been used to
obtain the estimators. The explicit formula of the estimation
error has been given and the consistency of the least squares
estimators has been proved. The asymptotic distribution of
the estimation error has been discussed as well. Further
research topics will include the parameter estimation for
general nonlinear stochastic differential equations driven by
1évy noises.
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