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Abstract—In this paper, we consider a logarithmic population
model with piecewise constant arguments. First, we study the
uniqueness and existence range of the equilibrium point of the
model. After that, by using the linearized stability theorem, the
semicycle property and a suitable Lyapunov function, some
sufficient conditions are obtained for the local and global
asymptotic stability of the equilibrium point and the damped
oscillation of positive solutions of the model. Finally, some
examples with computer simulations are given to illustrate the
main results in this paper.

Index Terms—Logarithmic population model, Stability,
Boundedness, Semicycle, Damped oscillation.

I. INTRODUCTION

IT is well known that studies of differential equations
with a piecewise constant argument are motivated by the

fact that they represent a hybrid of continuous and discrete
dynamical systems and combine the properties of both the
differential and difference equations. These equations play
an important role in investigating the existence, uniqueness
and the asymptotic behavior of the solutions of the equations
in numerous applications and other aspects, referred to [1-7].

Because of the existence of many population models in
real world, the logarithmic population model has recently
attracted the attention of many mathematicians and biologist-
s, see various types of logarithmic models in Refs. [8-15].
One can easily see that all equations considered in the above
mentioned papers are subject to the existence and stability of
their periodic solutions or almost periodic solutions by using
the methods of some fixed point theorems and Lyapunov
functions. However, there are few papers concerning the ex-
istence and stability of the equilibrium points of logarithmic
population models. Especially, for the logarithmic population
models with piecewise constant arguments, very few results
can be found in the literature.

Due to the linearized stability theorem in [16] and the
known result about semicycle property in [17], we shall study
the stability of a unique equilibrium point and the semicycle
property of positive solutions of the following logarithmic
population model with piecewise constant arguments:

x′(t) = x(t){r − a0x(t)

−a1 ln(x([t]))− a2 ln(x([t− 1]))}, (1.1)
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where x(t) is the size of population, the parameters r, a0, a1
and a2 are positive real numbers and [t] denotes the integer
part of t ∈ [0,+∞). We emphasize that these parameters
play important roles to determine the local and global asymp-
totic stability of a positive equilibrium point of Eq. (1.1).

Throughout this paper, we assume that the initial condi-
tions x(−1), x(0) of Eq. (1.1) are positive numbers.

This paper is organized as follows: In Section 2, we
study the uniqueness and existence range of the equilibrium
point of Eq.(1.1) and prove that the equilibrium point is
locally asymptotically stable and the solutions of Eq. (1.1)
are bounded. In Section 3, the semicycle and oscillation
of a discrete solution (which is positive) of Eq. (1.1) is
investigated. Several illustrative example is shown in Section
4.

II. PRELIMINARIES

In this section, we shall state the following definitions and
lemmas, which will be useful in proving our main result.

By [6] and [16], let I ⊆ R be an interval, bounded or not,
and let

f : I × I −→ I

be a continuously differentiable function. For every set of
initial conditions {x−1, x0} ⊂ I the difference equation

xn+1 = f(xn, xn−1), n = 1, 2, . . . (2.1)

has a unique solution {xn}∞n=−1.
Let x̄ be an equilibrium point of Eq. (2.1), i.e., x̄ =

f(x̄, x̄). If we replace xn and xn−1 in Eq. (2.1) by the
variables u and v respectively, then we have

p =
∂f

∂u
(x̄, x̄), q =

∂f

∂v
(x̄, x̄).

The equation

yn+1 = pyn + qyn−1, n = 1, 2, . . . (2.2)

is called the linearized equation associated with Eq. (2.2)
about the equilibrium point x̄. Its characteristic equation is

λ2 − pλ− q = 0. (2.3)

Lemma 1. (Linearized Stability [16]).
(1) If both roots of the quadratic Eq. (2.3) lie in the open

disk |λ| < 1, then the equilibrium point x̄ of Eq. (2.1) is
locally asymptotically stable.
(2) A necessary and sufficient condition for both roots of

Eq. (2.3) to lie in the open unit disk |λ| < 1 is

|p| < 1− q < 2.

In this case x̄ is locally asymptotically stable, where the
locally asymptotically stable x̄ is also called a sink.
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(3) A necessary and sufficient condition for both roots of
Eq. (2.3) lying outside the open disk |λ| < 1 is

|q| > 1, |p| < |1− q|.

In this case x̄ is unstable and called a repeller point.
(4) A necessary and sufficient condition for one of the

roots of Eq. (2.3) lying outside the open disk |λ| < 1 and
the other root inside is

p2 + 4q > 0, |p| > |1− q|.

In this case x̄ is unstable and called a saddle point.

Lemma 2. [17] Assuming that f ∈ C[(0,∞) ×
(0,∞), (0,∞)] and that f(x, y) is decreasing in both ar-
guments. Let x̄ be a positive equilibrium point of Eq. (2.1).
Then even oscillatory solutions of Eq. (2.1) has semicycle of
length at most two.

One can know that the simplest logistic differential equa-
tion with piecewise constant arguments can be written as

x′(t) = x(t)

{
r − x([t])

k

}
, t > 0, r, k ∈ (0,+∞). (2.4)

By integrating Eq. (2.4) on any interval of the form [n, n+
1) for n = 1, 2, . . . , and taking limits as t → n+ 1, we get

x(n+ 1) = x(n)
(
er−

x(n)
k

)
, n = 1, 2, . . . . (2.5)

The asymptotic behavior of the solutions of Eq. (2.5) was
considered by May [18], and May and Oster [19].

Following the same idea and the same method in Eq. (2.4),
one can easily derive the following discrete analogues of Eq.
(1.1):

x(t) = x(n)
(
e
∫ t
n
(r−a0x(s)−a1 ln(x(n))−a2 ln(x(n−1)) ds

)
. (2.6)

Distinctly, the initial conditions x([0]) = x(0) > 0, and
the solutions of Eq. (1.1) are also positive.

Therefore, from (1.1), we have

x′(t)− x(t)[r − a1 ln(x(n))− a2 ln(x(n− 1))]

= −a0x
2(t), n 6 t < n+ 1. (2.7)

Let m1 = r − a1 ln(x(n)) − a2 ln(x(n − 1)), x = x(t),
then Eq. (2.7) is changed to

−x′ +m1x = a0x
2, n 6 t < n+ 1. (2.8)

If m1 = 0, on the one hand, the Eq. (2.8) is changed
to −x′ = a0x

2, its solution is x(t) = 1
a0t+x(0) . On the

other hand, r − a1 ln(x(n)) − a2 ln(x(n − 1)) = 0, we get
xa1(n)xa2(n− 1) = er. Therefore, we have

1

(a0n+ x(0))a1

1

(a0(n− 1) + x(0))a2
= er. (2.9)

However, when n → ∞, the left of equation (2.9)
converges to 0, which is contrary. Therefore, there is a natural
number N0, when n > N0, m1 ̸= 0.

In the following investigation of this paper, we assume
m1 ̸= 0.

From (2.8), we get

d

dt
(
em1t

x
) = a0e

m1t, n 6 t < n+ 1. (2.10)

Using (2.10) and by letting t → n + 1 for n = 1, 2, . . .,

we obtain the solution of (2.7) as

x(n+ 1) =
x(n)em1

1 + a0x(n)
em1−1
m1

. (2.11)

To investigate the solution of Eq. (1.1) in more detail, we
need to investigate the behavior of Eq. (2.11).

III. STABILITY AND BOUNDEDNESS OF SOLUTIONS OF
EQ. (1.1)

First of all, we need to determine the identity of equilibri-
um points of Eq. (2.11), where these equilibrium points are
also the critical points of Eq. (1.1).

Theorem 1. Eq. (2.11) has unique equilibrium point x̄
satisfying 0 < x̄ < e

r
a1+a2 .

Proof: From (2.6), we have x(t) > 0, that is, x(n) > 0.
From Eq. (2.11), using x(n+1)−x(n) = 0, and m1 ̸= 0,

we get

(em1 − 1)− a0x(n)
em1 − 1

m1
= 0,

that is

x(n) =
1

a0
(r − a1 ln(x(n))− a2 ln(x(n− 1))).

Utilizing x(n)− x(n− 1) = 0 again, we get the positive
equilibrium point x̄ of Eq. (2.11) satisfying

x̄ =
1

a0
(r − (a1 + a2) ln(x̄)),

or,

(a1 + a2) ln(x̄) = r − a0x̄. (3.1)

Clearly, the exact expression of the solution x̄ of Eq. (3.1)
is difficult to obtain, but it exists and satisfies 0 < x̄ <
e

r
a1+a2 .
Indeed, let {

y = (a1 + a2) lnx,
y = r − a0x.

(3.2)

Obviously, if (x, y) is a solution of the system (3.2), then
x is a equilibrium point of Eq. (2.11). On the other hand, the
logarithmic curve y = (a1+a2) lnx and beeline y = r−a0x
always intersect in (0, e

r
a1+a2 ).

So there is a unique solution of system (3.2), and its
abscissa is the equilibrium point x̄ of Eq. (2.11).

Let m = a0x̄ = r − (a1 + a2) ln x̄, from Eq. (2.11), we
get the characteristic equation of the form:

λ2 − (−a1
m

+
1

em
+

a1
mem

)λ− a2(
1

mem
− 1

m
) = 0. (3.3)

Clearly, m > 0, and the local stability of equilibrium point
x̄ depends on the roots of the characteristic of Eq. (3.3). To
analyse the local stability of the positive equilibrium point,
we use the linearized stability as follows

Theorem 2. If 2a2 − a1 > 0, then the positive equilibrium
point of Eq. (2.11) is locally asymptotically stable if and
only if

1

m
− 1

mem
<

1

a2
.
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Proof: From Lemma 2.1 (1) and (2), the positive
equilibrium point of Eq. (2.11) is locally asymptotically
stable if and only if

| − a1
m

+
1

em
+

a1
mem

| < 1− a2(
1

mem
− 1

m
) < 2. (3.4)

From (3.4), two cases can be considered here which are:

(a) | − a1

m + 1
em + a1

mem | < 1− a2(
1

mem − 1
m )),

(b) 0 < 1− a2(
1

mem − 1
m ) < 2.

From (b), we obtain

1

m
− 1

mem
<

1

a2
, that is, mem > a2(e

m − 1). (3.5)

From (a), we get

±
(
− a1

m
+

1

em
+

a1
mem

)
< 1− a2(

1

mem
− 1

m
). (3.6)

According to 2a2 − a1 > 0, m > 0 and (3.5), we have
em(m+ a2 − a1) > a2 − a1 −m, hence, (3.6) holds.

Therefore, we get that the positive equilibrium point of
Eq. (2.11) which is locally asymptotically stable if and only
if (3.5) holds. This completes the proof of Theorem 2.

Theorem 3. If 2a2 − a1 > 0, then the positive equilibrium
point x̄ of Eq. (2.11) is unstable and called a repeller point
if and only if

1

m
− 1

mem
>

1

a2
.

Proof: From Lemma 1, the positive equilibrium point
of Eq. (2.11) is a repeller if an only if

|a2(
1

mem
− 1

m
)| > 1,

|−a1
m

+
1

em
+

a1
mem

| < |1− a2(
1

mem
− 1

m
)|.

Since |a2( 1
mem − 1

m )| > 1, we have

1

m
− 1

mem
>

1

a2
. (3.7)

By the inequality |−a1

m + 1
em + a1

mem | < |1−a2(
1

mem − 1
m )|,

we have

(c) −a1

m + 1
em + a1

mem < 1− a2(
1

mem − 1
m ),

(d) −(−a1

m + 1
em + a1

mem ) < 1− a2(
1

mem − 1
m ).

That is easy to prove (c) holds.
From (d), we get(

1

m
− 1

mem

)
(a1 − a2) <

1

em
+ 1. (3.8)

If a1 − a2 ≤ 0, then the inequality (3.8) holds.
If a1 − a2 > 0, from (3.7) and 2a2 − a1 > 0, we get

1

em
+ 1 >

a1 − a2
a2

=
a1
a2

− 1 (3.9)

Distinctly, the inequality (3.9) holds. This completes the
proof of Theorem 3.

We can proof that there is no saddle point for Eq.(2.11).

Theorem 4. Every positive solution x of Eq. (2.11) is
bounded with the bound (0, r

a0(1−e−r) ).

Proof: Let {x(n)}∞n=−1 be a positive solution of Eq.
(2.11).

If 0 < x(n) 6 1,for n = −1, 0, 1, 2, . . . , then the theorem
has been proved.

Following, we prove it from two aspects.
(i) If x(n) > 1 (n = 0, 1, 2, . . . ) and m1 = r −

a1 ln(x(n)) − a2 ln(x(n − 1)) > 0. Since ln(x(k)) > 1 >
0(k ∈ N+), thus, 0 < m1 < r and e−r < e−m1 < 1.

So we obtain

x(n+ 1) =
x(n)m1

a0x(n) + [m1 − a0x(n)]e−m1
<

r

a0(1− e−r)
.

Because x(n + 1) = m1

a0+[
m1
x(n)

−a0]e−m1
< m1

a0−a0e−m1
,

and the function y = x
a0−a0e−x (0 < x < r) are monotone

increasing.
(ii) If x(n) > 1 (n = 0, 1, 2, . . . ), and m1 = r −

a1 ln(x(n))− a2 ln(x(n− 1)) < 0, then e−m1 > 1.
Because

x(n+ 1) =
−m1

[−m1

x(n) + a0]e−m1 − a0
<

−m1

a0e−m1 − a0
.(3.10)

Because the function y = x
a0−a0e−x (x < 0) is monotone

increasing, thus

y < lim
x→0

−x

a0e−x − a0
=

1

a0
.

But 1
a0

< r
a0(1−e−r) (r > 0) hold. This completes the

proof.

IV. SEMICYCLE ANALYSIS

We believe that a semicycle analysis of the solutions of a
scalar difference equation is a powerful tool for a detailed
understanding of the entire character of solutions and often
leads to straightforward proofs of their long term behavior.

we now give the definitions of positive and negative
semicycle of a solutions of Eq. (2.1) relative to an the
equilibrium point x̄.

By [17], a positive semicycle of a solutions {xn} of Eq.
(2.1) consists of a ”string” of terms {xl, xl+1, . . . , xm}, is
all greater than or equal to the equilibrium point x̄, with
l > −1 and m 6 ∞ and such that

either l = −1, or, l > −1 and xl−1 < x̄

and

either m = ∞, or, m < ∞ and xm+1 < x̄.

A negative semicycle of a solutions {xn} of Eq. (2.1)
consists of a ”string” of terms {xl, xl+1, . . . , xm}, all less
than the equilibrium point x̄, with l > −1 and m 6 ∞ and
such that

either l = −1, or, l > −1 and xl−1 > x̄

and

either m = ∞, or, m < ∞ and xm+1 > x̄.

In the following, we shall apply the lemma 2 to analyse
in detail the conditions of semicycle and damped oscillation
of every oscillatory solution of Eq. (2.11)

Theorem 5. Suppose a1 > 1, and xa1ya2 > er+1, then
f(x, y) is decreasing in both arguments, where

f(x, y) =
x(r − a1 lnx− a2 ln y)

a0x+ (r − a1 lnx− a2 ln y − a0x)pxy
, (4.1)
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where pxy = e−(r−a1 ln x−a2 ln y), f ∈ C[(0,∞) ×
(0,∞), (0,∞)].

Proof: We set t = r−a1 lnx−a2 ln y, then f(x, y) =
tx

a0x+(t−a0x)e−t . The first derivative of (4.1) with respect to
x and y is respectively

∂f

∂x
=

A1

B
and

∂f

∂y
=

A2

B
,

where

B = [a0x+ (t− a0x)e
−t]2,

A1 = −a0a1x+ [(1− a1)t
2 + a0a1xt+ a0a1x]e

−t]

and

A2 =
a2x

y
[−a0x+ (−t2 + a0xt+ a0x)e

−t].

After that, we shall proof the rationality of the assumption
of theorem-self.

Let
g1(t) = (1− a1)t

2 + a0a1xt+ a0a1x,

g2(t) = −t2 + a0xt+ a0x.

If

a1 > 1 and xa1ya2 > er+1, (4.2)

then, t+1 = (r−a1 lnx−a2 ln y)+1 < 0, we have g1(t) < 0
and g2(t) < 0, therefore, A1 < 0 and A2 < 0, then f(x, y)
is decreasing in both arguments.

From g1(t), since 1−a1 < 0, thus, ∆1 = [a0a1x]
2−4(1−

a1)a0a1x > 0 holds.
By g2(t), ∆2 = [a0x]

2 + 4a0x > 0 holds.
Since a0a1x±

√
∆1

2(a1−1) are the two roots of equation (1−a1)t
2+

a0a1xt+ a0a1x = 0 with respect to t, and a0x±
√
∆2

2 are the
two roots of equation −t2 + a0xt+ a0x = 0 with respect to
t.

Because
√
∆2 < 2 + a0x holds,

2(a1 − 1)
√
∆2 < 2(a1 − 1)(2 + a0x),

that is,
[a0a1x]

2 − 4(1− a1)a0a1x

> (a0x)
2 + (a1 − 1)2[(a0x)

2 + 4a0x] + 2a0x(a1 − 1)
√
∆2.

We can find√
∆1 > a0x+ (a1 − 1)

√
∆2, (4.3)

then

a0a1x−
√
∆1

2(a1 − 1)
<

a0x−
√
∆2

2
. (4.4)

Because (4.3) holds, hence,
√
∆1 > −a0x+(a1−1)

√
∆2

holds.
We can gain

a0a1x+
√
∆1

2(a1 − 1)
>

a0x+
√
∆2

2
. (4.5)

By (4.4) and (4.5), we have, when t < a0a1x−
√
∆1

2(a1−1) ,

g1(t) < 0 and g2(t) < 0 hold. Here t > a0a1x+
√
∆1

2(a1−1) doesn’t
hold for t < 0.

Clearly, a0a1x−
√
∆1 < 0.

If t < a0a1x−
√
∆1

2(a1−1) , then√
∆1 < a0a1x− 2t(a1 − 1),

and then

a0a1x(t+ 1) < t2(a1 − 1). (4.6)

Distinctly, when t+ 1 < 0, the inequality (4.6) holds.
If a1 = 1, then g2(t) < g1(t) = a0a1x(t+ 1) < 0 always

holds for t+ 1 < 0.
If 1− a1 > 0.
Because

√
∆2 < 2 + a0x holds, thus

2(1− a1)
√

∆2 < 2(1− a1)(2 + a0x),

that is,
[a0a1x]

2 − 4(1− a1)a0a1x

< (a0x)
2 + (1− a1)

2[(a0x)
2 + 4a0x]− 2a0x(1− a1)

√
∆2.

We can find√
∆1 < (1− a1)

√
∆2 − a0x, (4.7)

then

−a0a1x−
√
∆1

2(1− a1)
>

a0x−
√
∆2

2
. (4.8)

Because (4.7) holds, hence,
√
∆1 < a0x+ (1− a1)

√
∆2

holds.
We can gain

−a0a1x+
√
∆1

2(1− a1)
<

a0x+
√
∆2

2
. (4.9)

By (4.8) and (4.9), when

t ∈ (
−a0a1x−

√
∆1

2(1− a1)
,
−a0a1x+

√
∆1

2(1− a1)
)

⊂ (
a0x−

√
∆2

2
,
a0x+

√
∆2

2
),

we have g1(t) < 0 and g2(t) > 0, and then A2 > 0. therefore
f(x, y) is nondecreasing with respect to y.

Therefore, it completes to proof the rationality of the
assumption of theorem-self, and completes the proof.

Theorem 6. Let {x(n)∞n=−1} be a positive solution of Eq.
(2.11). The following statements are true.
(I) Let r − a1 ln(x(n)) − a2 ln(x(n − 1)) < 0, then the

sequence {x(n)∞n=−1} is monotone decreasing.
(II) Let r−a1 ln(x(n))−a2 ln(x(n−1)) > a0x(n), then

{x(n)∞n=−1} is monotone increasing.

Proof: Let m1 = r − a1 ln(x(n))− a2 ln(x(n− 1)).
(I) From Eq. (2.11) we can obtain

x(n+ 1)− x(n) =
x(n)(m1 − a0x(n))(1− e−m1)

a0x(n) + [m1 − a0x(n)]e−m1
.

Since m1 = r − a1 ln(x(n)) − a2 ln(x(n − 1)) < 0, we
have

m1 − a0x(n) < 0 and 1− e−m1 < 0.

Furthermore, from e−m1 > 1, we get

a0x(n) + [m1 − a0x(n)]e
−m1 < m1 < 0, (4.10)

which gives x(n+ 1)− x(n) < 0 for n = 0, 1, 2, . . ..
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(II) The proof is similar with (I) and will be omitted.
It can be shown that in Theorem 4. the sequence

{x(n)∞n=−1} looks as follows:
If r−a1 ln(x(n))−a2 ln(x(n−1)) < 0, then for x(n) < x̄,

one can write

. . . < x(n+ 2) < x(n+ 1) < x(n) < x̄,

and by assuming that r − a1 ln(x(n)) − a2 ln(x(n − 1)) >
a0x(n), then for x(n) > x̄, we have

. . . > x(n+ 2) > x(n+ 1) > x(n) > x̄.

Theorem 7. Let {x(n)∞n=−1} be a positive solution of Eq.
(2.11), and x(n) ∈ (1, e

r
a1+a2 ). Assume that

ln(
x(2n− 1)

x(2n)
)

> r − a1 ln(x(2n))− a2 ln(x(2n− 1)) > a0x(2n),

if x(2n) < x̄ < x(2n − 1), then the solution of Eq. (2.11)
has damped oscillations.

Proof: Set M = r − a1 ln(x(2n))− a2 ln(x(2n− 1))
and M > a0x(2n) > 0.

Simplifying Eq. (2.11), we can write

x(2n+ 1) =
x(2n)M

a0x(2n) + [M − a0x(2n)]e−M
.

Now, we consider the three cases as follows:
Case (1), we discuss

x(2n+ 1)− x(2n) =
x(2n)(M − a0x(2n))(1− e−M )

a0x(2n) + [M − a0x(2n)]e−M
.

Clearly, x(2n + 1) − x(2n) > 0 holds, which gives us that
x(2n+ 1) > x(2n), n = 1, 2, . . ..

Likewise it can be shown that

x(2n+ 3) > x(2n+ 2), x(2n+ 5) > x(2n+ 4), . . . .

Case (2), we debate

x(2n+ 1)− x(2n− 1)

=
x(2n)M

a0x(2n) + [M − a0x(2n)]e−M
− x(2n− 1)

=
M(x(2n)− x(2n− 1))− a0x(2n)x(2n− 1)(1− e−M )

a0x(2n) + [M − a0x(2n)]e−M
.

Since ln(x(2n−1)
x(2n) ) > M > a0x(2n), thus x(2n + 1) −

x(2n− 1) < 0, and then

x(2n− 1) > x(2n+ 1) > x(2n+ 3) > x(2n+ 5) > . . . .

Case (3), we study x(2n+ 2)− x(2n) = C
D > 0.

Let M1 = r − a1 ln(x(2n+ 1))− a2 ln(x(2n)), then

x(2n+ 2) =
x(2n+ 1)M1

a0x(2n+ 1) + [M1 − a0x(2n+ 1)]e−M1
,

and then

D = a0x(2n+ 1) + [M1 − a0x(2n+ 1)]e−M1 ,

C = x(2n+ 1)M1 − x(2n)D.

First, we proof D > 0 by the conditions of theorem-self.

Since x(2n+ 1) > x(2n) and x(n) ∈ (0, e
r

a1+a2 ), hence

M1 > r − (a1 + a2) ln(x(2n+ 1))

> r − (a1 + a2)
r

(a1 + a2)
= 0

and

D = a0x(2n+ 1)(1− e−M1) +M1e
−M1 , D < M1. (4.11)

Next, we proof C > 0.
By utilizing x(2n) < x(2n+ 1) and (4.11), C > 0 holds.
So we obtain x(2n+2) > x(2n), iterating this result, we

get that for n = 1, 2, 3, . . . ,

· · · > x(2n+ 4) > x(2n+ 2) > x(2n).

This completes the proof.

V. GLOBAL BEHAVIOR

In this section, by using a suitable Lyapunov function,
we investigate the global asymptotic stability of the positive
equilibrium point of the difference equation

x(n+ 1) =
x(n)em1

1 + a0x(n)
em1−1
m1

, n = 1, 2, . . . ,

where m1 = r − a1 ln(x(n))− a2 ln(x(n− 1)).

Theorem 8. Let the conditions of Theorem 2.2 hold. Further-
more assume that m1 < 0. If x(n) > 2x̄, then the positive
equilibrium point x̄ of Eq. (2.11) is globally asymptotically
stable.

Proof: We consider a Lyapunov function V (n) defined
by

V (x(n)) = [x(n)− x̄]2, n = 1, 2, . . . .

By Theorem 1, we can know the unique equilibrium point
x̄ of Eq. (2.11) satisfy

x̄ ∈ (0, e
r

a1+a2 ).

First, we calculate the upper left derivative of V (n) along
(4.1),

∆V (x(n)) = V (x(n+ 1))− V (x(n))

= [x(n+ 1)− x̄]2 − [x(n)− x̄]2

= [x(n+ 1)− x(n)][x(n+ 1) + x(n)− 2x̄].

Applying the Theorem 6(I), we have x(n+1)−x(n) < 0.
Because m1 < 0, let E = a0x(n) + [m1 − a0x(n)]e

−m1 ,
from (3.10), E < m1 < 0,

x(n+ 1) + x(n)− 2x̄ =
x(n)m1

E
+ x(n)− 2x̄

>
x(n)m1

E
> 0.

This implies that ∆V (n) < 0, which is also the condition
for the global asymptotic stability of the positive equilibrium
point of Eq. (2.11).

VI. SOME EXAMPLES

Example 5.1 From Theorem 2.2, by determining the
parameters in Eq. (2.11) as r = a0 = a2 = 2, a1 = 1.
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Fig. 1 Red ”+” denotes the track of the graph of the
iteration solution of x(n) for x(−1) = 0.6 and x(0) = 1.3.
Green ” ⋄ ” denotes the track of the graph of the iteration
solution of x(n) for x(−1) = 1.6 and x(0) = 2. Blue ” ◦ ”
denotes the track of the graph of the iteration solution of x(n)
for x(−1) = 1 and x(0) = 1.2. When r = a0 = a2 = 2,
a1 = 1, the solution of Eq. (2.11) is locally asymptotically
stable.

By easy calculation, x̄ = 1, m = 2. Furthermore, we have
1
m − 1

mem < 1
a2

. The graph of the first 300 iterations of Eq.
(2.11) are given in figure 1. It can be seen that under the
conditions given in Theorem 2.2, the solution of Eq. (2.11)
is locally asymptotically stable.

Example 5.2 In Eq. (2.11), taking the values like
r = a0 = 0.5, a1 = 1, a2 = 2. By simple calculation,
x̄ = 1, m = 0.5. Furthermore, we have 1

m − 1
mem > 1

a2
.

The graph of the first 500 iterations of Eq. (2.11) is given
in figure 2. It can be seen that under the conditions given in
Theorem 2.3, the positive equilibrium point of Eq. (2.11) is
a repeller.

Example 5.3 In Eq. (2.11), by taking the values of r =
a0 = 1, a1 = a2 = 1.5. By simple calculation, x̄ = 1,
m = 1. Furthermore, when x(n) > 2x̄, we have m1 =
r−a1ln(x(n))−a2ln(x(n−1)) < 1−3ln2 < 0. The graph
of the first 400 iterations of Eq. (2.11) is given in figure 3.
It can be seen that under the conditions given in Theorem
4.1, the positive equilibrium point of Eq. (2.11) is global
asymptotically stable.

VII. CONCLUSION

Throughout this paper, we can know that it is difficult to
obtain the exact expression of the equilibrium point x̄ of Eq.
(2.11) about a logarithmic population model, but we have
discussed locally asymptotically stable of the equilibrium
point x̄ of Eq. (2.11) and obtained that x̄ is existent and
unique, as well as satisfies 0 < x̄ < e

r
a1+a2 . Also, we

get that the local behavior of the positive solution of the
logarithmic population model depends on the conditions of
the coefficients and proves that every positive solution tends
to the equilibrium point x̄ as t → +∞. In addition, we give a
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Fig. 2 Red ”+” denotes the track of the graph of the
iteration solution of x(n) for x(−1) = 0.6 and x(0) = 1.3.
Green ” ⋄ ” denotes the track of the graph of the iteration
solution of x(n) for x(−1) = 1.6 and x(0) = 2. Blue ” ◦ ”
denotes the track of the graph of the iteration solution of
x(n) for x(−1) = 1 and x(0) = 1.2. When r = a0 = 0.5,
a1 = 1, a2 = 2, the positive equilibrium point of Eq. (2.11)
is a repeller.
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Fig. 3 Red ”+” denotes the track of the graph of the
iteration solution of x(n) for x(−1) = 0.4 and x(0) = 0.5.
Green ” ⋄ ” denotes the track of the graph of the iteration
solution of x(n) for x(−1) = 1.2 and x(0) = 2.3. Blue ” ◦ ”
denotes the track of the graph of the iteration solution of
x(n) for x(−1) = 1.3 and x(0) = 1.5. When r = a0 = 1,
a1 = a2 = 1.5, the positive equilibrium point of Eq. (2.11)
is global asymptotically stable.
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detailed description and conditions of semicycle and damped
oscillation of the model.
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