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Abstract—In this article, the problem of an incom-
pressible viscous fluid between non parallel plane walls
as known Jeffery-Hamel flow has been studied by using a
new scheme. This new scheme depends on integrating nth

order of differential equation with known data which was
performed using Taylor series expansion. The resulting
solution is a new analytical approximate solution that
represents a power series with physical parameters.
The comparison between the present result from anew
scheme with a numerical result and other methods
was investigated. Interestingly the results confirm the
applicability, efficiency, validity and converge of the new
scheme.

Index Terms—Jeffery-Hamel flow, Magnetohydrody-
namics, power series, analytical-approximate solution,
convergence analysis.

I. INTRODUCTION

J effery-Hamel flow of an incompressible viscous
fluid between non-parallel walls was firstly in-

troduced by Jeffery and Hamel [1], [2]. The study
of Jeffery-Hamel flow has been expanded to involve
the effects of an external magnetic field on an elec-
trical conducting fluid [3]. The Jeffery-Hamel flow
is one of the most applicable types of the flow in
fluid mechanics[4]. This type of flow possess diverse
applications particularly in chemical, mechanical and
bio-mechanical engineering. The Jeffery- Hamel flow
can be described using the similar solution of the
Navier-Stokes equations in the special case of two-
dimensional flow. It was reported that the presence of
a magnetohydrodynamics (MHD) field can affect on
the Jeffery- Hamel flow [5], [6]. The theoretical study
of MHD channel has offered many applications in the
design of cooling systems, liquid metals accelerators,
pumps and flow meters[7], [8], [9]. The magnetic field
acts as a control parameter beside the flow Reynolds
number and the angle of the walls. The mechanic
problems of Jeffery-Hamel flow are considered as the
most scientific inherently nonlinear problems. Howev-
er there is a limited number of these problems, most
of them don’t have exact solutions. Therefore, several
methods have been investigated to solve these prob-
lems. Esmaeilpour and Ganji [10] employed optimal
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homotopy asymptotic method (OHAM) to solve these
problems. The adomian decomposition method (ADM)
was used by many authors to solve the ordinary differ-
ential equation (ODE) which revealed the problems of
this flow. Cherruault et al. [11], [12] also reported the
convergence of the ADM. An advantage of this method
is to provide an analytical approximation solution for
a wide class of nonlinear equations without use of
linearization, perturbation and discretization methods.
Jin and Liu [13] modified ADM for solving a kind
of evolution equation. Ganji et al [14] used ADM to
obtain an analytical approximate solution of nonlinear
differential equation governing Jeffery- Hamel flow
with high magnetic field. Dib et al [15] modified
adomian decomposition method to solve the MHD
Jeffery- Hamel flow. In this work we design new
scheme to obtain an analytical-approximate solution
of the MHD Jeffery-Hamel problem at an external
magnetic field and to make a comparison with ADM
[14], the Runge-Kutta fourth order method and the
Duan-Rach approach[15]. This method is fundamen-
tally based on the integration of differential equation
as well as using Taylor series. This solution from
this new scheme was used to study the effects of
physical parameters and angle varies on the problem.
The present solution which obtained from the new
scheme is an infinite power series for appropriate
initial approximation. Consequently, the success of this
new scheme for solving the highly nonlinear problem
will be considered as a useful tool for solution of a
nonlinear problem in science and engineering.

II. MATHEMATICAL FORMULATION

It was considered the steady two-dimensional flow
of an incompressible conductive viscous fluid between
two rigid plane walls that meet at an angle 2α as shown
in Figure (1). The velocity is purely radial and depends
on r and θ. We can define the continuity equation and
Navies -Stokes in polar coordinates as follows:

ρ

r

∂

∂r
(ru(r, θ)) = 0, (1)

u(r, θ)
∂u(r, θ)

∂r
+

1

ρ

∂p

∂r
+

σB2
0

ρr2
u(r, θ)

− µ[
∂2u(r, θ)

∂r2
+

1

r

∂u(r, θ)

∂r
+

1

r2
∂2u(r, θ)

∂θ2
− u(r, θ)

r2
] = 0,

(2)
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1

ρr

∂p

∂θ
− 2µ

r2
∂u(r, θ)

∂θ
= 0, (3)

where p is the fluid pressure, B0 the electromagnetic
induction, σ the conductively of the fluid, ρ the fluid
density and µ is the coefficient of kinematic viscosity.

Fig. 1. The geometry of the MHD Jeffery-Hamel flow.

The Equation (1) can be deduced to yield equation

g(θ) = ru(r, θ), (4)

with the use of dimensionless parameters award the
Equation (5) can be written

f(η) =
g(θ)

gmax
, η =

θ

α
, (5)

A third-order ordinary differential equation for the
normal function profile f(η) after removing from the
equations (2) and (3)

f ′′′(η) + 2αRef(η)f ′(η) + (4−Ha)α2f ′(η) = 0,
(6)

when Ha = 0 Equation (6) become

f ′′′(η) + 2αRef(η)f ′(η) + 4α2f ′(η) = 0, (7)

since a symmetric geometry, the boundary conditions
become

f(0) = 1, f ′(0) = 0, f(1) = 0. (8)

The Reynolds number is

Re =
Umaxrα

µ

(
divergent : α > 0, Umax > 0
convergent : α < 0, Umax < 0

)
,

(9)

the Hartmann number is

Ha =

√
σB2

0

ρµ
. (10)

III. DESCRIPTION OF THE NEW SCHEME

This section described how can obtain a new scheme
to calculate the coefficients of the power series solution
which result from solving nonlinear ordinary differ-
ential equations and find an analytical-approximate
solution. These coefficients are important bases to
construct the solution formula, therefore they should
be computed by differential ways. To illustrate the
computations and operations of these coefficients in
order to derive the new scheme, the detailed new

outlook can be summarized in the following steps:
Step 1: The non-linear differential equation can be
considered as follows:

H(f(η), f ′(η), f ′′(η), ..., f (n−1)(η), f (n)(η)) = 0,
(11)

integration of Equation (11) with respect to η on [0, η]
yields

f(η) = f(0) + f ′(0)η + f ′′(0)
η2

2!
+ ...+

f (n−1)(0)
ηn−1

(n− 1)!
+ L−1G[f(η)], (12)

where,

G[f(η)] = H(f(η), f ′(η), f ′′(η), ..., f (n−1)(η)),

L−1 =

∫ η

0

∫ η

0

...

∫ η

0

(dη)n, (13)

Step 2 : Taylor series expansion of the function
G[f(η)] about η = η0 can be taken as follows

G[f(η)] =
∞∑

n=0

(∆η)n

n!

dnG(f0(η))

dηn
, (14)

The Equation (14) can be written in the following

G[f(η)] =
(∆η)0

0!
G[f0(η)] +

(∆η)1

1!
G′[f0(η)]+

(∆η)2

2!
G′′[f0(η)] +

(∆η)3

3!
G′′′[f0(η)] + ..., (15)

Now, it was assumed that ∆η = Max{η, η0} and the
substitution Equation (15) in Equation (12) gives

f(η) = f0 + f1 + f2 + f3 + f4 + ..., (16)

where,

f0 = f(0)+f ′(0)η+f ′′(0)
η2

2!
...+f (n−1)(0)

η(n−1)

(n− 1)!
,

f1 = L−1 (Max{η, η0})0

0!
G[f0(η)],

f2 = L−1 (Max{η, η0})1

1!
G′[f0(η)],

f3 = L−1 (Max{η, η0})2

2!
G′′[f0(η)],

f4 = L−1 (Max{η, η0})3

3!
G′′′[f0(η)], ... (17)

Step 3 : The computation of the derivatives G with
respect to η was indicated as a crucial part of the
proposed method. Calculation can be started from
G[f(η)], G′[f(η)], G′′[f(η)], G′′′[f(η)], ....

G[f(η)] = H(f(η), f ′(η), f ′′(η), ..., f (n−1)(η)),
(18)

G′[f(η)] =
dG[f(η)]

dη
= Gf .fη +Gf ′ .(fη)

′

+...+Gf(n−1) .(fη)
(n−1), (19)
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G′′[f(η)] =
d2G[f(η)]

dη2
= Gff .(fη)

2 +Gff ′ .(fη)
′
fη

+Gff ′′ .fη(fη)
′′ + ...+Gff(n−1) .(fη)(fη)

(n−1) +Gf

.fηη +Gf ′f .(fη)
′.fη +Gf ′f ′ .(fη)

′2 + ...+Gf ′f(n−1)

.(fη)
′(fη)

(n−1)+Gf ′ .(fηη)
′+Gf ′′f .(fη)

′′.fη+Gf ′′f ′ .

(fη)
′
(fη)

′′ +Gf ′′f ′′ .(fη)
′′2 +Gf ′′f ′ .(fη)

′
(fη)

′′+

...+Gf ′′f(n−1) .(fη)
′′(fη)

(n−1) +Gf ′′ .(fηη)
′′ + ...+

Gf(n−1)f .(fη)
(n−1).fη+Gf(n−1)f ′(fη)

(n−1).(fη)
′+...+

Gf(n−1)f(n−1) .(fη)
(n−1)2+Gf(n−1) .(fηη)

(n−1), (20)

G′′′[f(η)] =
d3G[f(η)]

dη3
= Gfff .(fη)

3 +Gfff ′ .(fη)
2

(fη)
′+...+Gfff(n−1) .(fη)

2.(fη)
(n−1)+Gff .2(fη).fηη

+Gff ′f .(fη)
′(fη)

2+Gff ′f ′ .(fη)
′2(fη)+...+Gff ′f(n−1)

.(fη)
′(fη).(fη)

(n−1) +Gff ′ .[(fηη)
′.fη + (fη)

′.fηη]+

.(fη)
′′
(fη)

2 +Gff ′′f ′ .(fη)
′′
(fη).(fη)

′ + ...+

.(fη)
′′
(fη).(fη)

(n−1) +Gff ′′ .[fηη.(fη)
′′ ++...+

Gff(n−1)f .(fη)
2.(fη)

(n−1) +Gff(n−1)f′ .(fη).(fη)
′.

+...+G
ff(n−1)f(n−1) .(fη).(fη)

(n−1)2+Gff(n−1) .[(fηη)

.(fη)
(n−1) + (fη)(fηη)

(n−1)] +Gff .fηη.(fη) +Gff ′

+..+Gff(n−1) .fηη.(fz)
(n−1) +Gη.fηηη +Gf ′ff .(fη)

Gf ′f ′f .(fη)
′2(fη) + ...+Gf ′ff(n−1) .(fη)

′(fη).

+Gf ′f .[(fηη)
′.fη + (fη)

′.fηη] +Gf ′f ′f .(fη)
′2.fη+

.(fη)
′3+...+Gf ′f ′f(n−1) .(fη)

′2.(fη)
(n−1)+Gf ′f ′ .2(fη)

′

.(fηη)
′ + ...+Gf(n−1)f(n−1)f .(fη)

(n−1)2.fη+

(fη)
(n−1)2.(fη)

′+ ...+Gf(n−1)f(n−1)f(n−1) .(fη)
(n−1)3

.(fηη)
(n−1).fη +Gf(n−1)f ′ .(fηη)

(n−1).(fη)
′ + ...+

f (n−1).(fηη)
(n−1).(fη)

(n−1) +Gf(n−1) .(fηηη)
(n−1).

(21)
...

The calculations are more complicated in the second
and third derivatives due to the product rules. Con-
sequently, the systematic structure on calculation is
important due to the assumption that the operator G
and the solution f are analytic functions as well as
the mixed derivatives are equivalent. It was noted that
the derivatives function f was unknown, therefore the
following hypothesis can be illustrated

fη = f1 = L−1 (Max{η, η0})0

0!
G[f0(η)],

fηη = f2 = L−1 (Max{η, η0})1

1!
G′[f0(η)],

fηηη = f3 = L−1 (Max{η, η0})2

2!
G′′[f0(η)],

fηηηη = f4 = L−1
(Max{η, η0})3

3!
G′′′[f0(η)], ...

(22)
Therefore Equations (18)- (21) are evaluated by

G[f0(η)] = H(f0(η), f
′
0(η), ..., f

(n−1)
0 (η)), (23)

G′[f0(η)] = Gf0 .f1+Gf ′
0
.(f1)

′+...+G
f
(n−1)
0

.(f1)
(n−1),

(24)
G′′[f0(η)] = Gf0f0 .(f1)

2 +Gf0f ′
0
.(f1)

′
f1 +Gf0f ′′

0
.f1

(f1)
′′+ ...+G

f0f
(n−1)
0

.(f1)(f1)
(n−1)+Gf0 .f2+Gf ′

0f0

.(f1)
′.f(1) +Gf ′

0f
′
0
.(f1)

′2 + ...+G
f ′
0f

(n−1)
0

.(f1)
′

(f1)
(n−1) +Gf ′

0
.(f2)

′ +Gf ′′
0 f0 .(f1)

′′.f1 +Gf ′′
0 f ′

0
.

(f1)
′
(f1)

′′ +Gf ′′
0 f ′′

0
.(f1)

′′2 + ...+G
f ′′
0 f

(n−1)
0

.

(f1)
′′(f1)

(n−1) +Gf ′′
0
.(f2)

′′ +Gf(n−1)f .(f1)
(n−1).f1

+G
f
(n−1)
0 f ′

0
.(f1)

(n−1).(f1)
′ + ...+G

f
(n−1)
0 f

(n−1)
0

.(f1)
(n−1)2 + ...+G

f
(n−1)
0

.(f2)
(n−1), (25)

G′′′[f0(η)] = Gf0f0f0 .(f1)
3 +Gf0f0f ′

0
.(f1)

2(f1)
′+

...+G
f0f0f

(n−1)
0

.(f1)
2.(f1)

(n−1) +Gf0f0 .2(f1).f2

+Gf0f ′
0f0

.(f1)
′(f1)

2 +Gf0f ′
0f

′
0
.(f1)

′2(f1) + ...+

G
f0f ′

0f
(n−1)
0

(f1)
2 +Gf0f ′′

0 f ′
0
.(f1)

′′
.(f1)

′(f1)

.(f1)
(n−1) +Gf0f ′

0
.[(f2)

′.fz + (f1)
′.f2] +Gf0f ′′

0 f0 .

(f1)
′′
(f1).(f1)

′+...+G
f0f ′′

0 f
(n−1)
0

.(f1)
′′
f1).(f((1)

(n−1)

+Gf0f ′′
0
.[f2.(f1)

′′+f1.(f2)
′′]+ ...+G

f0f
(n−1)
0 f0

.(f1)
2

.(f1)
(n−1) +G

f0f
(n−1)
0 f ′

0
.(f1).(f1)

′.(f1)
(n−1) + ...+

G
f0f

(n−1)
0 f

(n−1)
0

.(f1).(f1)
2(n−1) +G

f0f
(n−1)
0

.[(f2).(f2)
(n−1)+(f1)(f2)

(n−1)]+Gf0f0 .f2.(f1)+Gf0f ′
0

.f2.(f1)
′+..+G

f0f
(n−1)
0

.f2.(f1)
(n−1)+Gf0 .f3+Gf ′

0f0f0

.(f1)
′(f1)

2 +Gf ′
0f

′
0f0

.(f1)
′2(f1) + ...+G

f ′
0f0f

(n−1)
0

.(f1)
′

(f1).(f1)
(n−1)+Gf ′

0f0
.[(f2)

′.f1+(f1)
′.f1]+Gf ′

0f
′
0f0

.

(f1)
′2.f1 +Gf ′

0f
′
0f

′
0
.(f1)

′3 + ...+G
f ′
0f

′
0f

(n−1)
0

.(f1)
′2.

(f1)
(n−1) +Gf ′

0f
′
0
.2(f1)

′.(f2)
′ + ...+G

f
(n−1)
0 f

(n−1)
0 f0

.(f1)
(n−1)2

.f1+G
f
(n−1)
0 f

(n−1)
0 f ′

0
.(f1)

(n−1)2.(f1)
′+...+G

f
(n−1)
0 f

(n−1)
0 f

(n−1)
0

.(f1)
(n−1)3+G

f
(n−1)
0 f

(n−1)
0

.2.(f1)
(n−1).(f2)

(n−1)+G
f
(n−1)
0 f0

.(f
(n−1)
2 .f1+G

f
(n−1)
0 f ′

0
.(f2)

(n−1).(f1)
′+...+G

f
(n−1)
0 f

(n−1)
0
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.(f2)
(n−1).(f1)

(n−1) +G
f
(n−1)
0

.(f3)
(n−1), (26)

...

Step 4 : Substitution of Equations( 23)-(26) in E-
quation (16) offers the required analytical-approximate
solution for the Equation (11).

IV. APPLICATION OF THE NEW SCHEME TO
JEFFERY-HAMEL FLOW

The new scheme described which in the previous
section can be used as a powerful solver for the non-
linear differential equations of Jeffery-Hamel flow (6)-
(8) and to find a new analytical-approximate solution.
From step(1)

f(η) = f(0) + f ′(0)η + f ′′(0)
η2

2!
+ L−1[−2αRe

f(η)f ′(η)− (4−Ha)α2f ′(η)], (27)

the Equation (27) can be rewritten as follows

f(η) = B1 +B2η +B3
η2

2!
+ L−1G[f(η)], (28)

where,

B1 = f(0), B2 = f ′(0), B3 = f ′′(0),

G[f ] = −2αRef(η)f ′(η)− (4−Ha)α2f ′(η),

and L−1(.) =

∫ η

0

∫ η

0

∫ η

0

(dη)3. (29)

From the boundary conditions the Equation (28) be-
comes

f(η) = 1 +B3
η2

2!
+ L−1[G[f(η)], (30)

From step(2) it was supposed that ∆η =
Max{1, 0} = 1, we get

f0 = 1 +B3
η2

2!
, f1 = L−1G[f0(η)],

f2 = L−1G′[f0(η)], f3 = L−1G′′[f0(η)], .......
(31)

From step(3) the following equations become

G[f(η])] = −2αRef(η)f ′(η)− (4−Ha)α2f ′(η),
(32)

G′[f(η)] =
dG[f(η)]

dη
= Gf .fη +Gf ′ .(fη)

′, (33)

G′′[f(η)] =
d2G[f(η)]

dη2
= Gff .(fη)

2 + 2.Gff ′ .

+Gf ′f ′ .(fη)
′2 +Gf .fηη +Gf ′ .(fηη)

′ (34)

G′′′[f(η)] =
d3G[f(η)]

dη3
= Gfff (fη)

3+3.Gfff ′(fη)
2.

+3.Gf ′f .(fηη)
′(fη) + 3.Gf ′f ′ .(fηη)

′(fη)
′

+Gf ′ .(fηηη)
′ (35)

...

It was observed that the derivatives of f with respect
to η as given in (22) can be computed by Equations
(32)-(35) as followed

G[f0(η)] = −2αRef0(η)f
′
0(η)− (4−Ha)α2f ′

0(η),
(36)

G′[f0(η)] = Gf0 .f1 +Gf ′
0
.(f1)

′, (37)

G′′[f0(η)] = Gf0f0 .(f1)
2+2.Gf0f ′

0
.f1(f1)

′+Gf ′
0f

′
0
.(f1)

′2

+Gf0 .f2 +Gf ′
0
.(f2)

′, (38)

G′′′[f0(η)] = Gf0f0f0(f1)
3 + 3.Gf0f0f ′

0
(f1)

2.(f1)
′+

3.Gf0f ′
0f

′
0
.(f1)(f1)

′2+Gf ′
0f

′
0f

′
0
.(f1)

′3+3.Gf0f0 .f2.f1

3.Gf0f ′
0
.f2.(f1)

′+Gf0 .f3+3.Gf ′
0f0

.(f2)
′(f1)+3.Gf ′

0f
′
0

.(f2)
′(f1)

′ +Gf ′
0
.(f3)

′ (39)

...

Now, the extraction of the first derivatives of G are
needed to be as followed:

Gf0 = −2αRef ′
0(η), Gf0f0 = 0, Gf0f ′

0
= −2αRe,

Gf0f0f0 = Gf0f ′
0f0

= Gf0f ′
0f

′
0
= Gf0f0f ′

0
= 0,

Gf ′
0
= −2αRef0(η)− (4−Ha)α2, Gf ′

0f0
= −2αRe,

Gf ′
0f

′
0
= 0, Gf ′

0f0f0
= Gf ′

0f
′
0f0

= Gf ′
0f0f

′
0
= Gf ′

0f
′
0f

′
0
= 0,

(40)

from Equation (31) and using Equations (36)-(40) the
below equations can be obtained

f0 = 1 +
1

2
B3η

2, (41)

f1 = − 1

120
αReB2

3η
6 − (

1

12
αReB3 +

1

6
α2B3

− 1

24
α2HaB3)η

4, (42)

f2 =
1

10800
α2Re2B3

3η
10 + (

1

280
α3ReB2

3 − 1

1120

α3ReHaB2
3 +

1

560
α2Re2B2

3)η
8 + (

1

180
α2

Re2B3 +
1

45
α3ReB3 −

1

180
α3ReHaB +

1

45
α4

B3 +
1

90
α4ReHaB3 +

1

720
α4ReHa2B3)η

6, (43)

f3 = − 1

1572480
α3Re3B4

3η
14 − (

359

9979200
α4Re2
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B3
3 − 359

39916800
α4Re2HaB3

3 +
359

19958400

α3Re3B3
3)η

12 + (
29

226800
α4Re2HaB2

3 +
29

113400

α5ReHaB2
3 − 29

907200
α5ReHa2B2

3 − 29

56700

α4Re2B2
3α

3Re3B2
3 − 29

56700
α5ReB2

3)η
10

−(
1

10080
α3Re3B3 +

1

1680
α4Re2B3 −

1

6720

− 1

1680
α5ReHaB3 +

1

13440
α5ReHa2B3 +

1

1260

α6B3α
4Re2HaB3 +

1

840
α5ReB3 −

1

1680

α6HaB3 +
1

6720
α6Ha2B3 −

1

80640
α6Ha3B3)η

8,

(44)

...

From step(4) the substitution of Equations(41)-(44)
in Equation (16), the analytical-approximate solution
becomes

f(η) = 1 +
1

2
B3η

2 − (
1

12
αReB3 +

1

6
α2B3 −

1

24

α2HaB3)η
4 + (

1

180
α2Re2B3 −

1

120
αReB2

3+

1

45
α3ReB3 −

1

180
α3ReHaB3 +

1

45
α4B3

+
1

90
α4ReHaB3 +

1

720
α4 +ReHa2B3)η

6

+(
1

280
α3ReB2

3 − 1

1120
α3ReHaB2

3 +
1

560

α2Re2B2
3 − (

1

10080
α3Re3B3 +

1

1680
α4Re2B3

− 1

6720
α4Re2HaB3 +

1

840
α5ReB3 −

1

1680

α5ReHaB3 +
1

13440
α5ReHa2B3 +

1

1260

α6B3 −
1

1680
α6HaB3 +

1

6720
α6Ha2B3

− 1

80640
α6Ha3B3)η

8 +
1

10800
α2Re2B3

3η
10 + ...,

(45)

V. CONVERGENCE ANALYSIS

The analysis of convergence for the analytical-
approximate solution (45) that was resulted from the
application of new power series scheme for solving
the Jeffery-Hamel flow problem has been extensively
investigated.
Definition 5.1. H is supposed as Banach space, R the
real numbers and G[F ] is a nonlinear operator which is
defined G[F ] : H −→ R. Consequently, the solutions
that generated from the new scheme can be written as

Fn+1 = G[Fn], Fn =
n∑

k=0

fk, n = 0, 1, 2, 3, ...

(46)
where G[F] satisfies Lipchitz condition such that for
γ > 0, γ ∈ R, as follows

∥ G[Fn]−G[Fn−1] 6 γ ∥ Fn − Fn−1 ∥, (47)

Theorem 5.1. The series of the analytical-
approximate solution f(η) =

∑∞
k=0 fk(η) was gen-

erated by new scheme converge :

∥ Fn − Fm ∥−→ 0, m −→ ∞ for 0 6 γ < 1,
(48)

Proof. From the above definition the next equation
should be written as

∥ Fn − Fm ∥=∥
n∑

k=0

fk −
m∑

k=0

fk ∥,

=∥ [f0 + L−1
n∑

k=1

∆(k−1)

(k − 1)!

d(k−1)G[f0(η)]

dη(k−1)
]−

[f0 + L−1
m∑

k=1

∆(k−1)

(k − 1)!

d(k−1)G[f0(η)]

dη(k−1)
] ∥,

=∥ L−1G[
n−1∑
k=0

fk]−L−1G[
m−1∑
k=0

fk] ∥, (since Fn = G[Fn−1])

6|Ł−1| ∥ G[

n−1∑
k=0

fk]−G[

m−1∑
k=0

fk] ∥,

6|L−1| ∥ G[Fn−1]−G[Fm−1] ∥

6 γ ∥ Fn−1 − Fm−1 ∥, (49)

since G[F] satisfies Lipchitz condition. Let n = m+1,
then

∥ Fm+1 − Fm ∥6 γ ∥ Fm − Fm−1 ∥, (50)

hence,

∥ Fm−Fm−1 ∥6 γ ∥ Fm−1−Fm−2 ∥6 ... 6 γm−1 ∥ F1−F0 ∥,
(51)

from Equation (51) we get

∥ F2 − F1 ∥6 γ ∥ F1 − F0 ∥,

Triangle inequality was used as follows

∥ Fn−Fm ∥=∥ Fn−Fn−1−Fn−2−...−Fm+1−Fm ∥,
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6∥ Fn + Fn−1 ∥ +...+ ∥ Fm+1 − Fm ∥,

6 [γn−1 + γn−2 + ...+ γm] ∥ F1 − F0 ∥,

= γm[γn−m−1 + γn−m−2 + ...+ 1] ∥ F1 − F0 ∥,

6 γm

1− γ
∥ F1 − F0 ∥,

as m −→ ∞, leads to ∥ Fn − Fm ∥−→ 0, then Fn is
a Cauchy sequence in Banach space H .�

Theorem 5.2. The convergence of the
analytical-approximate solution

∑∞
k=0 ak0

η4k

(4k)! +∑∞
k=0 ak1

η4k+2

(4k+2)! which generated by the new scheme
can be verified when

∃0 6 γ < 1, ∥ Fn+1 − Fn ∥−→ 0, asn −→ ∞,
(52)

Proof. Let denote to the series solution using Fk

where k is the nth term of solution (45), the results
become

F0 = f0 = a00η
0 + a01

η2

2!
,

F1 = f0 + f1 = a00η
0 + a01

η2

2!
+ a10

η4

4!
+ a11

η6

6!
,

F2 = f0+f1+f2 = a00η
0+a01

η2

2!
+...+a20

η8

8!
+a21

η10

10!
,

= a00η
0 + a01

η2

2!
+ ...+ a21

η10

10!
+ a30

η12

12!
+ a31

η14

14!
,

...

Fn = f0 + f1 + f2 + f3 + f4 + f5...+ fn−1 + fn,

= a00η
0 + a01

η2

2!
+ ...+ an0

η4n

(4n)!
+ an1

η4n+2

(4n+ 2)!
,

∥ Fn+1 − Fn ∥=∥
n+1∑
k=0

(ak0
z4k

(4k)!
+ ak1

z4k+2

(4k + 2)!
)

−
n∑

k=0

(ak0
η4k

(4k)!
+ ak1

η4k+2

(4k + 2)!
) ∥,

6 γ ∥
n∑

k=0

(ak0
η4k

(4k)!
+ ak1

η4k+2

(4(k + 2)!
)

−
n−1∑
k=0

(ak0
η4k

(4k)!
+ ak1

η4k+2

(4k + 2)!
) ∥

6 γ2 ∥
n−1∑
k=0

(ak0
η4k

(4k)!
+ ak1

η4k+2

(4k + 2)!
)

−
n−2∑
k=0

(ak0
η4k

(4k)!
+ ak1

η4k+2

(4k + 2)!
) ∥,

...

6 γn ∥
1∑

k=0

(ak0
η4k

(4k)!
+ ak1

η4k+2

(4(k + 2)!
)

−
0∑

k=0

(ak0
η4k

(4k)!
+ ak1

η4k+2

(4k + 2)!
) ∥,

= γn ∥ a00η
0 + a01

η2

2!
+ a10

η4

4!
+ a11

η6

6!
− η0 − η2

2!
∥

= γn ∥ F1 − F0 ∥, (53)

as n −→ ∞, then ∥ Fn+1 − Fn ∥−→ 0 for
0 6 γ < 1.�

In practice, the theorems 5.1 and 5.2 propose to
compute the value of γ as described in the following
definition
Defention 5.2 For k = 1, 2, 3, ...

γk =

{
∥Fk+1−Fk∥
∥F1−F0∥ = ∥fk+1∥

∥f1∥ , ∥ f1 ∦= 0,

0, ∥ f1 ∥= 0,
(54)

Now, the definition 5.2 can be applied on Jeffery-
Hamel flow to find convergence for examples as
below:

if Re = 1, α = 3◦, Ha = 100, B3 = −1.970428543
the value of γ becomes

∥ F2−F1 ∥26 γ ∥ F1−F0 ∥2=⇒ γ = 0.0056732847 < 1,

∥ F3−F2 ∥26 γ2 ∥ F1−F0 ∥2=⇒ γ2 = 0.000014627 < 1,

∥ F4−F3 ∥26 γ3 ∥ F1−F0 ∥2=⇒ γ3 = 3.286145∗10−8 < 1,

...

∥ F2−F1 ∥+∞6 γ ∥ F1−F0 ∥+∞=⇒ γ = 0.005275191 < 1,

∥ F3−F2 ∥+∞6 γ2 ∥ F1−F0 ∥+∞=⇒ γ2 = 0.00001252 < 1,

∥ F4−F3 ∥+∞6 γ3 ∥ F1−F0 ∥+∞=⇒ γ3 = 3.06462∗10−8 < 1,

...

Also, if Re = 10, α = −5◦,Ha = 120, B3 =
−1.6563099 the results become

∥ F2−F1 ∥26 γ ∥ F1−F0 ∥2=⇒ γ = 0.087564650 < 1,

∥ F3−F2 ∥26 γ2 ∥ F1−F0 ∥2=⇒ γ2 = 0.003569926 < 1,

∥ F4−F3 ∥26 γ3 ∥ F1−F0 ∥2=⇒ γ3 = 0.000124651 < 1,

...

∥ F2−F1 ∥+∞6 γ ∥ F1−F0 ∥+∞=⇒ γ = 0.087564650 < 1,

∥ F3−F2 ∥+∞6 γ2 ∥ F1−F0 ∥+∞=⇒ γ2 = 0.00291155 < 1,

∥ F4−F3 ∥+∞6 γ3 ∥ F1−F0 ∥+∞=⇒ γ3 = 0.000118 < 1,

...
When compensation of Re = 50, α = 5◦,Ha =
1000, B3 = −1.916858326 therefor the results be-
come

∥ F2−F1 ∥26 γ ∥ F1−F0 ∥2=⇒ γ = 0.12877333 < 1,

∥ F3−F2 ∥26 γ2 ∥ F1−F0 ∥2=⇒ γ2 = 0.0104528 < 1,
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∥ F4−F3 ∥26 γ3 ∥ F1−F0 ∥2=⇒ γ3 = 0.00056938 < 1,

...

∥ F2−F1 ∥+∞6 γ ∥ F1−F0 ∥+∞=⇒ γ = 0.1226718 < 1,

∥ F3−F2 ∥+∞6 γ2 ∥ F1−F0 ∥+∞=⇒ γ2 = 0.0103297 < 1,

∥ F4−F3 ∥+∞6 γ3 ∥ F1−F0 ∥+∞=⇒ γ3 = 0.0005162 < 1,

...
Then

∑∞
k=0 fk(η) converges to the solution f(η) when

0 6 γk < 1, k = 1, 2, ....

VI. RESULTS AND DISCUSSIONS

The objective of the present study is to apply
the new scheme and to obtain an analytical solution
of the MHD Jeffery-Hamel problem. The influence
of magnetic field (Hartmann number) and Reynold
number in Jeffery-Hamel flow was discussed. Tables
(I) and (II) elucidate that the new scheme allows to
evaluate the coefficient B3 which can be extracted
from the boundary condition f(1) = 0. It can also
be observed that the values of B3 is convergent and
being fixed in the fourth approximation. The Tables
(III) and (IV) explain the comparison of the analytical
solutions between the new scheme with ADM [14] and
DRA[15] respectively. From this comparison, it was
realized that the solutions are well matched. In another
comparison between the new scheme and Runge-kutta
fourth order scheme as indicated in Tables (V) and
(VI), the resulting solution and numerical solution have
prefect agreement. The most important effects of the
present work were displayed as follows:

• The effect of Hartmann number.
Figure (2 )shows the magnetic field effect on
the velocity profiles for convergent and divergent
channels for fixed Reynolds numbers respective-
ly. The results prove that an increasing in the
velocity with increasing Hartmann numbers as
no backflow. The fluid velocity becomes flat and
thickness of the boundary layer decreased for all
Hartmann numbers.

• The effect of Reynolds number.
Figure (3) indicates the effect of an increasing
Reynold numbers on the fluid velocity for fixed
Hartmann numbers. The case of converging chan-
nels comprises exclusion of backflow while the
case of divergent channels is possible for large
Reynolds numbers.

• The effect of angle α.
Finally, Figures (4 - 7) show the influence of
varied angles for fixed values of Hartmann num-
ber and Reynolds number. Figure (4) represents
the velocity profile which becomes a flat with
backflow when Re = 40 and Hartmann number
is small Ha = 0 in the divergent channel. In
addition, the situation of the convergent channel
is similar except that no backflow. The backflow

can be seen in Figure (5) in both cases (diver-
gent and convergent channels) when Re = 40
and the Hartmann number is high Ha = 1000
with observation of the velocity profile is a flat
and thickness of boundary layer decreases in the
divergent channel. Figure (6) shows the backflow
and the opening angle α in the divergent channel
when the Re = 50 and Ha = 0 therefor, there is
no backflow in convergent channel case. Figure
(7) displays the effect of large Hartmann number
Ha = 1000 and the curves which represent the
increase of the velocity profile with the increase
the angle α have no backflow in the convergent
and divergent channels.

Finally, the results confirm that the fluid velocity
increases with an increasing the Hartman numbers.
Moreover the resulting solutions from the new scheme
are more convergent than the resulting solutions from
the numerical method when the Reynolds numbers are
small and Hartmann number is high.

TABLE I
CONVERGENCE OF THE VALUES B3 = f ′′(0) WHEN

Re = 1, Ha = 100.

(α = 3◦) (α = −3◦ )
Approximation B3 B3

1 term -1.970624254 -1.94375349
2 term -1.970429116 -1.94316613
3 term -1.970428544 -1.93165334
4 term -1.970428543 -1.93165345
5 term -1.970428543 -1.93165345
6 term -1.970428543 -1.93165345
7 term -1.970428543 -1.93165345
8 term -1.970428543 -1.93165345

TABLE II
CONVERGENCE OF THE VALUES B3 = f ′′(0) WHEN

Re = 10, Ha = 120.

(α = 5◦) (α = −5◦ )
Approximation B3 B3

1 term -2.08658567 -1.6742382
2 term -2.08684806 -1.6566137
3 term -2.08679124 -1.6562876
4 term -2.08679148 -1.6563098
5 term -2.08679148 -1.6563098
6 term -2.08679148 -1.6563098
7 term -2.08679148 -1.6563098
8 term -2.08679148 -1.6563098

VII. CONCLUSION

In this article the magnetohydrodynamic Jeffery-
Hamel flow in a diverging and converging channel was
analytically studied using the new scheme. The conver-
gence of the results is explicitly introduced. Graphical
results and tables were presented to investigate the
influence of physical parameters on the velocity. An
analytical solution was obtained using the new scheme
and compared with the numerical results. The resulting
solution confirms that the new scheme converges with
the numerical solution was successfully applied to
solve a variety of nonlinear boundary value problems.
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TABLE III
COMPARISON BETWEEN ADM[14], NEW SCHEME AND R−K4

SCHEME FOR THE ANALYTICAL SOLUTION f(η).

Re = 25, Ha = 0, α = 5◦

η ADM[14] present result (R−K4)

0.0 1.000000 1.000000 1.000000
0.1 0.986637 0.986677 0.986677
0.2 0.947129 0.947285 0.947286
0.3 0.883178 0.883478 0.883482
0.4 0.797347 0.797799 0.797867
0.5 0.692820 0.693338 0.693398
0.6 0.573015 0.573616 0.573655
0.7 0.441265 0.441806 0.441896
0.8 0.300475 0.300867 0.300574
0.9 0.152914 0.153097 0.153441
1.0 0.000000 0.000000 0.000000

TABLE IV
COMPARISON BETWEEN DRA [15], NEW SCHEME AND RK-4

SCHEME FOR THE ANALYTICAL SOLUTION f(η).

Re = 50, Ha = 1000, α = 5◦

η DRA[15] present results (R−K4)

0.00 1.000000 1.000000 1.000000
0.05 0.997665 0.997604 0.997604
0.10 0.990427 0.990425 0.990425
0.15 0.978486 0.978480 0.978480
0.20 0.961810 0.961800 0.961800
0.25 0.940436 0.940422 0.940422
0.30 0.914404 0.914383 0.914383
0.35 0.883748 0.883716 0.883716
0.40 0.848474 0.848440 0.848440
0.45 0.808593 0.808553 0.808553
0.50 0.764064 0.764018 0.764018
0.55 0.714805 0.714755 0.714755
0.60 0.660677 0.660623 0.660623
0.65 0.601462 0.601406 0.601406
0.70 0.536852 0.536796 0.536797
0.75 0.466421 0.466368 0.466370
0.80 0.389651 0.389555 0.389559
0.85 0.305652 0.305613 0.305623
0.90 0.213611 0.213583 0.213603
0.95 0.112250 0.112234 0.112272
1.00 0.000000 0.000000 0.000000
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Fig. 2. The velocity profile f(η) for the value Re = 50 when Ha
is varied
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Fig. 3. The velocity profile f(η) for the value Ha = 50 when
Re is varied

Fig. 4. The velocity profile f(η) for the value Re = 40, Ha = 0
when the angle α is varied
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Fig. 5. The velocity profile f(η) for the value Re = 40, Ha =
1000 when the angle α is varied

Fig. 6. The velocity profile f(η) for the value Re = 50, Ha = 0
when the angle α is varied
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Fig. 7. The velocity profile f(η) for the value Re = 50, Ha =
1000 when the angle α is varied
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