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Abstract—A Holling-Tanner system with Beddington-
DeAngelis functional response and prey refuge takes the form

x
′

(t) = x(t)(1− x(t))−
(1−m)x(t)y(t)

a1 + b(1−m)x(t) + c1y(t)
,

y
′

(t) = y(t)
[

δ −
βy(t)

(1−m)x(t)

]

is investigated in this paper, wherea1, b, c1, δ, and β are all
positive constants,m is a nonnegative constant which satisfies
0 ≤ m < 1. For the system without prey refuge, i.e.,m = 0
case, by developing the new analysis technique, we show that
c1 ≥ 2 is enough to ensure the global attractivity of the positive
equilibrium of the system, such a result seems amazing since it
is independent of the parametera1, b, δ and β. Consequently,
we can draw the conclusion that for the most of the parameters,
system admits a unique globally attractive positive equilibrium.
For 0 < c1 < 2, we also investigate the stability property
of the positive equilibrium. Two examples together with their
numerical simulations show the feasibility of the main results.
For the system with prey refuge, we show that there exists a
m∗, such that for all m > m∗, the system always admits a
unique positive equilibrium, which means that enough large
prey refuge can improve the coexistence of the species. Refuge
plays important role on the persistent property of the system.

Index Terms—Beddington-DeAngelis functional response,
Holling-Tanner, Global attractivity, Prey refuge.

I. I NTRODUCTION

L U and Liu [1] proposed the following Holling-Tanner
model with Beddington-DeAngelis functional response

dx

dt
= rx

(

1−
x

k

)

−
αx(t)y(t)

a+ bx(t) + cy(t)
,

dy

dt
= y

[

s
(

1− h
y(t)

x(t)

)

]

,

(1.1)

where r, k, α, a, b, c, s and h are all positive constants. By
nondimensionalize system (1.1) with the following scaling

w = rt, x̃(ω) =
x(t)

k
, ỹ(ω) =

αy(t)

rk
,

δ =
s

r
, β =

sh

α
, a1 =

a

k
, c1 =

cr

α
.

(1.2)

System (1.1) changes to the system

x
′

(t) = x(t)(1 − x(t)) −
x(t)y(t)

a1 + bx(t) + c1y(t)
,

y
′

(t) = y(t)
[

δ −
βy(t)

x(t)

]

.

(1.3)

∗Corresponding author. B. Chen is with the Research Institute of Science
Technology and Society, Fuzhou University, Fuzhou, Fujian, 350116, China.
E-mails: chenbaoguo2017@163.com(B. G. Chen).

By simple computation, one could easily see that system
(1.3) admits a unique positive equilibriumE∗(x∗, y∗), where

x∗ =
−∆+

√

∆2 + 4(bβ + c1δ)a1β

2(bβ + c1δ)
,

y∗ =
δx∗

β
,

(1.4)

and∆ = a1β − bβ − c1δ + δ.

For the rest of the paper, let’s set

M2
def
=

δ

β
, (1.5)

m1
def
=

a1 + c1M2 −M2

a1 + c1M2
, (1.6)

m2
def
=

δ

β
m1. (1.7)

Concerned with the stability property of this positive
equilibrium, by constructing Lyapunov function, Lu and
Liu[1] obtained the following result.

Theorem A. If

a1 + c1M2 −M2 > 0 (1.8)

and

1−
b

a1
−

1

2a1
−

δ

2βm1
> 0 (1.9)

hold, then the positive equilibriumE∗(x∗, y∗) is globally
asymptotically stable.

At first sight, condition (1.9) is very simple, however, one
could see that (1.9) requires the following three inequalities
hold.

b < a1, 1 < 2a1, δ < 2βm1. (1.10)

Now let’s consider the following example.

Example 1.1.

dx

dt
= x

(

1− x
)

−
xy

0.4 + 0.3x+ 3y
,

dy

dt
= y

(

1−
y

x

)

,

x(0) > 0, y(0) > 0.

(1.11)

Here, we takea1 = 0.4, δ = 2, β = 1, b = 1, c1 = 3, and so

b = 1 > 0.4 = a1, 1 > 2a1 = 0.8,

δ = 2 > 11
8 = 2× 11

16 = 2βm1.
(1.12)

That is, none of the inequalities in (1.10) holds, let along
the condition (1.9), however, numeric simulation (Fig. 1)
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Fig. 1. Dynamic behaviors of system (1.11) with the ini-
tial condition (x(0), y(0)) = (1, 1.5), (1.5, 1.5), (1.5, 0.5),
(0.1, 0.2), (1.5, 0.2) and (0.5, 1.5), respectively.

shows that system (1.11) admits a unique globally attractive
positive equilibriumE∗

1 (x
∗

1, y
∗

1), wherex∗

1 = 0.7396379247,
y∗1 ≈ 0.7396379247.

We found that if we use the method of constructing
the Lyapunov function, then (1.9) is necessary. But for the
system itself, this condition may not be necessary. Motivated
by the above problem, we will revisit the stability property
of the positive equilibrium of system (1.3) again. By using
a new method which is very different to that of [1], we will
establish the following results:

Theorem 1.1.Assume thatc1 ≥ 2 holds, then the positive
equilibrium E∗(x∗, y∗) of (1.3) is globally asymptotically
stable.

Theorem 1.2. Assume that0 < c1 < 2 and (1.8) hold,
assume further that

a1(a1 + b)β2 + δ(2a1c1 + bc1 − 2b)β + δ2c1(c1 − 1) > 0
(1.13)

and

bβ > c1δ(or bβ + δ < c1δ) (1.14)

holds, then the positive equilibriumE∗(x∗, y∗) of (1.3) is
globally asymptotically stable.

Remark 1.1. In Example1.1, since c1 = 3, condition of
Theorem 1.1 holds, and consequently, the positive equilibri-
um of the system (1.11) is globally attractive.

Remark 1.2. Theorem 1.1 shows that for almost all of the
parameters (only requirec1 ≥ 2, and without any restriction
on other parameters) of the system (1.3), two species could
be coexist in a stable state, this seems very interesting,c1
can be seen as the most important parameters in the system.

Remark 1.3. One could easily see that ifa1 large enough,
b large enough (or small enough, in this case, requires
1 < c1 < 2), inequalities (1.13)-(1.14) hold, and it follows
from Theorem 1.2 that two species could be coexist in a
stable state.

On the other hand, the existence of refuges have the

important effects on the coexistence of predators and prey,
research on the dynamic behaviors of predator-prey system
incorporating a prey refuge become a poplar topic during the
last decade, see [5]-[14]. Chen and Chen[11] showed that
Gause type predator prey system incorporating prey refuge
on prey species could admits more than one positive equilib-
rium, they also gave sufficient conditions which guarantee the
existence and uniqueness of limit cycle; Ma, Chen and Wu[6]
considered a Lotka-Volterra predator-prey model incorpo-
rating a prey refuge and predator mutual interference, they
showed that the system admits a unique positive equilibrium,
which is globally asymptotically stable. Also, Chen, Chen
and Xie[14] investigated the dynamic behaviors of the Leslie-
Gower predator prey model with prey refuge. They showed
that the system admits the unique positive equilibrium, which
is globally asymptotically stable, however, the prey refuge
has different influence to the final density of both prey and
predator species. To the best of our knowledge, to this day,
still no scholars incorporate the prey refuge to system (1.3)
and studied the influence of the prey refuge. The success of
Chen and Chen[11], Ma, Chen and Wu[6] and Chen, Chen
and Xie[14] motivated us to propose the following system:

x
′

(t) = x(t)(1 − x(t)) −
(1−m)x(t)y(t)

a1 + b(1−m)x(t) + c1y(t)
,

y
′

(t) = y(t)
[

δ −
βy(t)

(1−m)x(t)

]

(1.15)
wherea1, b, c1, δ, and β are all positive constants,m is a
nonnegative constant which satisfies0 ≤ m < 1, m describe
the prey refuge, andmx is the number of prey species stay
in the prey refuge.

By simple computation, one could easily see that system
(1.3) admits a unique positive equilibriumE∗(x∗, y∗), where

x∗

m =
−∆m +

√

∆2
m + 4(bβ + c1δ)(1−m)a1β

2(bβ + c1δ)(1 −m)
,

y∗m =
δ(1 −m)x∗

m

β
,

(1.16)
and∆m = a1β − bβ(1−m)− c1δ(1−m) + δ(1−m)2.
As for as system (1.15) is concerned, one interesting problem
is whether the system admits a unique positive equilibrium
which is globally asymptotically stable if the refuge is
enough large, which means that the coexistence of the two
species. We will give an affirm answer to this problem,
indeed, we have the following result:

Theorem 1.3.Assume that

m > max
{

1−

√

a1β

δ
, 1− c1, 1−

a1

b

}

(1.17)

holds, then the positive equilibriumE∗(x∗, y∗) of (1.15) is
globally asymptotically stable.

The paper is arranged as follows: In Section 2, some
useful Lemmas are established and then we prove Theorem
1.1 and 1.2 in Section 3, then we prove Theorem 1.3 in
Section 4. In Section 5, two examples together with their
numeric simulations are presented to illustrate the feasibility
of Theorem 1.2. We end this paper by a briefly discussion.
For more works on Leslie-Gower predator-prey model, one
could refer to [1-36] and the references cited therein.
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II. L EMMAS

Now we state and prove several useful Lemmas.

Lemma 2.1.[4] If a > 0, b > 0 and ẋ ≥ x(b − ax), when
t ≥ 0 andx(0) > 0, we have

lim inf
t→+∞

x(t) ≥
b

a
.

If a > 0, b > 0 andẋ ≤ x(b−ax), whent ≥ 0 andx(0) > 0,
we have

lim sup
t→+∞

x(t) ≤
b

a
.

By using Lemma 2.1, similar to the proof of Lemma 2
and Theorem 3 in [1], we can obtain the following Lemma
2.2 and 2.3.

Lemma 2.2.Let (x(t), y(t)) be any positive solution of the
system (1.3), then

lim sup
t→+∞

x(t) ≤ 1, lim sup
t→+∞

y(t) ≤
δ

β

def
= M2.

Lemma 2.3.Let (x(t), y(t)) be any positive solution of the
system (1.3), assume thata1 + c1M2 −M2 > 0 holds, then

lim inf
t→+∞

x(t) ≥ m1, lim inf
t→+∞

y(t) ≥ m2,

wherem1 andm2 are defined by (1.6) and (1.7), respectively.

Lemma 2.4. Assume that one of the following assumption
holds

(1) c1 ≥ 1;

(2) 0 < c1 < 1, a1 + c1M2 −M2 > 0,

then system

dx

dt
= x

(

1− x−
B

a1 + bx+ c1B

)

(2.1)

admits a unique positive equilibriumx∗(B), which is glob-
ally attractive, whereB ∈ (m2 − ε,M2 + ε) is some
positive constant, andε > 0 is enough small such that
−a1 + ( δ

β
+ ε)(1 − c1) < 0 holds.

Proof. The positive equilibrium of system (2.1) satisfies the
equation

1− x−
B

a1 + bx+ c1B
= 0, (2.2)

which is equivalent to

bx2 + (Bc1 + a1 − b)x+B(1− c1)− a1 = 0. (2.3)

Obviously, under the assumption of Lemma 2.4,B(1−c1)−
a1 < 0, and so, system (2.3) has a unique positive solution

x∗(B) =
−∆1 +

√

∆2
1 − 4b

(

B(1− c1)− a1
)

2b
.

(2.4)

where∆1 = Bc1 + a1 − b.

Set

F (x) = 1− x−
B

a1 + bx+ c1B
,

since

F (0) = 1−
B

a1 + c1B
≥ 1−

δ
β
+ ε

a1 + c1(
δ
β
+ ε)

> 0

and F (x∗) = 0, from the continuity of the functionF (x), it
follows that

F (x) > 0 for all x ∈ (0, x∗)

and
F (x) < 0 for all x ∈ (x∗,+∞),

and so apply Theorem 2.1 in [3] to system (2.1), one could
see thatx∗ is globally stable, i. e., lim

t→+∞

x(t) = x∗. This

ends the proof of Lemma 2.4.

Lemma 2.5.Let x∗(B) be defined by (2.4), assume that the
conditions of Lemma 2.3 and (1.13) hold, thenx∗(B), B ∈

[m2,M2] is a strictly decreasing function ofB.

Proof. Sincex∗(B) is the positive solution of (2.3). Let’s
consider the function

G(x∗, B)

= b(x∗)2 + (Bc1 + a1 − b)x∗ +B(1 − c1)− a1,
(2.5)

wherex∗ ∈ [m1, 1], B ∈ (m2,M2].
It then follows from (1.13) that

∂G

∂x∗
= Bc1 + 2bx∗ + a1 − b

≥ 2bm1 +m2c1 + a1 − b

=
A1β

2 +A2β +A3

β(a1β + c1δ)
> 0,

(2.6)

where
A1 = a1(a1 + b),

A2 =
(

2a1c1 + b(c1 − 2)
)

δ,

A3 = c1(c1 − 1)δ2.

(2.7)

and

∂G

∂B
= c1x

∗ − c1 + 1 ≥ c1m1 − c1 + 1

≥
βa1

a1β + c1δ
> 0,

(2.8)

Then, it follows from implicit function theorem that

dx∗

dB
= −

∂G
∂x∗

∂G
∂B

< 0. (2.9)

Hence,x∗(B) is the strict decreasing function ofB. This
ends the proof of Lemma 2.5.

Remark 2.1. (1.13) can be rewrite as follows

a1(a1 + b)β2 + δ
(

2a1c1 + b(c1 − 2)
)

β

+δ2c1(c1 − 1) > 0.
(2.10)

Obviously, if c1 ≥ 2, (2.10) holds, and so, the conclusion of
Lemma 2.5 holds.

III. PROOF OFTHEOREM 1.1 AND 1.2

Proof of Theorem 1.1. c1 ≥ 2 implies that (1.8) holds,
and so, the conclusions of Lemma 2.3 and 2.4 hold. Also,
from remark 2.1, Lemma 2.5 holds. Let(x(t), y(t)) be any
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positive solution of system (1.3), letε > 0 be any positive
constant enough small which satisfies

δ
−∆+

√

∆2 − 4b
(

( δ
β
+ ε)(1− c1)− a1

)

2b
− (β + 1)ε > 0,

where

∆ =
( δ

β
+ ε

)

c1 + a1 − b.

It follows from Lemma 2.2 that there exists aT > 0 such
that for all t ≥ T ,

x(t) < 1 + ε
def
= M

(1)
1 . (3.1)

y(t) <
δ

β
+ ε

def
= M

(1)
2 . (3.2)

(3.2) together with the first equation of (1.3) leads to

ẋ(t) ≥ x
(

1−x−
M

(1)
2

a1 + bx+ c1M
(1)
2

)

for all t ≥ T. (3.3)

Consider the auxiliary equation

v̇(t) = v
(

1− v −
M

(1)
2

a1 + bv + c1M
(1)
2

)

. (3.4)

Sincec1 ≥ 2, according to Lemma 2.4, (3.4) admits a unique
positive equilibrium

v11 =
−∆2 +

√

∆2
2 − 4b

(

M
(1)
2 (1− c1)− a1

)

2b
, (3.5)

which is globally attractive, where∆2 = M
(1)
2 c1 + a1 − b.

Hence, by using the differential inequality theory, there exists
a T11 > T such that

x(t) > v11 − ε
def
= m

(1)
1 > 0 for all t ≥ T11. (3.6)

(3.6) together with the second equation of (1.3) leads to

dy

dt
≥ y

(

δ −
βy

m
(1)
1

)

, (3.7)

Applying Lemma 2.1 to (3.7) leads to

lim inf
t→+∞

y(t) ≥
δm

(1)
1

β
. (3.8)

That is, for aboveε > 0, there exists aT12 > T11 such that

y(t) >
δm

(1)
1

β
− ε

def
= m

(1)
2 > 0 for all t ≥ T12. (3.9)

It follows from (3.1),(3.2), (3.6) and (3.9) that for allt ≥ T12,

0 < m
(1)
1 < x(t) < M

(1)
1 ,

0 < m
(1)
2 < y(t) < M

(1)
2 .

(3.10)

(3.10) together with the first equation of (1.3) leads to

ẋ(t) ≤ x
(

1− x−
m

(1)
2

a1 + bx+ c1m
(1)
2

)

for all t ≥ T12.

(3.11)
Consider the auxiliary equation

v̇ = v
(

1− v −
m

(1)
2

a1 + bv + c1m
(1)
2

)

. (3.12)

Since c1 ≥ 2, according to Lemma 2.3, equation (3.12)
admits a unique positive equilibrium

v21 =
−∆3 +

√

∆2
3 − 4b

(

m
(1)
2 (1− c1)− a1

)

2b
, (3.13)

which is globally attractive, where∆3 = m
(1)
2 c1 + a1 − b.

Hence, by using the differential inequality theory, there exists
a T21 > T12 such that

x(t) < v21 +
ε

2

def
= M

(2)
1 for all t ≥ T21. (3.14)

Since

v21

=
−∆3 +

√

∆2
3 − 4b

(

m
(1)
2 (1− c1)− a1

)

2b

=
−∆3 +

√

(m
(1)
2 c1 + a1 + b)2 − 4bm

(1)
2

2b

<
−(m

(1)
2 c1 + a1 − b) +

√

(m
(1)
2 c1 + a1 + b)2

2b

= 1,

(3.15)

it follows from (3.1) and (3.15) that

M
(2)
1 < M

(1)
1 . (3.16)

From (3.16) and the second equation of (1.3), we know that
for t ≥ T21,

dy

dt
≤ y

(

δ −
βy

M
(2)
1

)

, (3.17)

Applying Lemma 2.1 to (3.17) leads to

lim sup
t→+∞

y(t) ≤
δ

β
M

(2)
1 . (3.18)

That is, for aboveε > 0, there exists aT22 > T21 such that

y(t) <
δ

β
M

(2)
1 +

ε

2

def
= M

(2)
2 for all t ≥ T22. (3.19)

It follows from (3.2), (3.16) and (3.19) that

M
(2)
2 < M

(1)
2 . (3.20)

Substituting (3.20) into the first equation of system (1.3), we
obtain

ẋ(t) ≥ x
(

1− x−
M

(2)
2

a1 + bx+ c1M
(2)
2

)

for all t ≥ T22.

Similarly to the analysis of (3.3)-(3.6), there exists aT23 >

T22 such that

x(t) > v22 −
ε

2

def
= m

(2)
1 > 0 for all t ≥ T23, (3.21)

where

v22 =
−∆4 +

√

∆2
4 − 4b

(

M
(2)
2 (1− c1)− a1

)

2b
. (3.22)

here∆4 = M
(2)
2 c1 + a1 − b.

From (3.5), (3.20) and Lemma 2.5, we have

m
(2)
1 > m

(1)
1 . (3.23)
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From (3.23) and the second equation of (1.3), we know that
for t ≥ T23,

ẏ(t) ≥ y
(

δ −
βy

m
(2)
1

)

, (3.24)

Applying Lemma 2.1 to (3.24) leads to

lim inf
t→+∞

y(t) ≥
δ

β
m

(2)
1 . (3.25)

That is, for aboveε > 0, there exists aT24 > T23 such that

y(t) >
δ

β
m

(2)
1 −

ε

2

def
= m

(2)
2 for all t ≥ T24. (3.26)

From (3.8), (3.23) and (3.26) we have

m
(2)
2 > m

(1)
2 . (3.27)

It follows from (3.16), (3.20), (3.23) and (3.27) that for all
t ≥ T24,

0 < m
(1)
1 < m

(2)
1 < x(t) < M

(2)
1 < M

(1)
1 ,

0 < m
(1)
2 < m

(2)
2 < y(t) < M

(2)
2 < M

(1)
2 .

(3.28)

Repeating the above procedure, we get four sequences
M

(n)
i ,m

(n)
i , i = 1, 2, n = 1, 2, .... such that

M
(n)
1 = vn1 +

ε

n
, m

(n)
1 = vn2 −

ε

n
, (3.29)

vn1 =
−∆2n−1 +

√

∆2
2n−1 − 4b

(

m
(n−1)
2 (1 − c1)− a1

)

2b
.

(3.30)

vn2 =
−∆2n +

√

∆2
2n − 4b

(

M
(n)
2 (1− c1)− a1

)

2b
. (3.31)

δ

β
m

(n)
1 −

ε

n
= m

(n)
2 ,

δ

β
M

(n)
1 +

ε

n
= M

(n)
2 , (3.32)

where
∆2n−1 = m

(n−1)
2 c1 + a1 − b,

∆2n = M
(n)
2 c1 + a1 − b.

Now, we go to show that the sequencesM
(n)
i is strictly

decreasing, and the sequencesm
(n)
i is strictly increasing for

i = 1, 2 by induction. Firstly, from (3.28), we have

m
(1)
i < m

(2)
i , M

(2)
i < M

(1)
i , i = 1, 2. (3.33)

Let us suppose that

m
(n−1)
i < m

(n)
i , M

(n)
i < M

(n−1)
i , i = 1, 2. (3.34)

It then follows from (3.30) and Lemma 2.5 that

vn1 > v(n+1)1. (3.35)

From (3.29) we have

M
(n)
1 > M

(n+1)
1 . (3.36)

By using (3.36), it follows from (3.32) that

M
(n)
2 > M

(n+1)
2 . (3.37)

It then follows from (3.37), (3.31) and Lemma 2.5 that

v(n+1)2 > vn2. (3.38)

(3.38) and (3.29) show that

m
(n+1)
1 > m

(n)
1 . (3.39)

From the relationship ofm(n)
1 andm(n)

2 , we have

m
(n+1)
2 > m

(n)
2 . (3.40)

Therefore, we have

0 < m
(1)
1 < m

(2)
1 < · · · < m

(n)
1 < x(t)

< M
(n)
1 < · · · < M

(2)
1 < M

(1)
1 ,

0 < m
(1)
2 < m

(2)
2 < · · · < m

(n)
2 < y(t)

< M
(n)
2 < · · · < M

(2)
2 < M

(1)
2 .

(3.41)

Hence, the limits ofM (n)
i andm

(n)
i , i = 1, 2, n = 1, 2, ...

exist. Denote that

lim
n→+∞

M
(n)
1 = x, lim

n→+∞

m
(n)
1 = x,

lim
n→+∞

M
(n)
2 = y, lim

n→+∞

m
(n)
2 = y.

(3.42)

Thenx ≥ x, y ≥ y. Letting n → +∞ in (3.29)-(3.33), we
obtain

x =
−K1 +

√

K2
1 − 4b

(

y(1− c1)− a1
)

2b
.

x =
−K2 +

√

K2
2 − 4b

(

y(1− c1)− a1
)

2b
.

δ

β
x = y,

δ

β
x = y.

(3.43)

where
K1 = yc1 + a1 − b,

K2 = yc1 + a1 − b.

(3.43) is equivalent to

bx2 + (c1y + a1 − b)x+ y(1− c1)− a1 = 0,

bx2 + (c1y + a1 − b)x+ y(1− c1)− a1 = 0,

δx = βy, δx = βy.

(3.44)

And so,

(x− x)
(

b(x+ x) + a1 − b
)

+c1(yx− yx) + (1− c1)(y − y) = 0.
(3.45)

Thus,

(x− x)
(

b(x+ x) + a1 − b
)

+c1
δ
β
(xx− xx) + (1− c1)

δ
β
(x − x) = 0.

(3.46)

and so,

(x − x)
(

b(x+ x) + a1 − b− (1− c1)
δ

β

)

= 0. (3.47)

From Lemma 2.3 andc1 ≥ 2 we have

b(x+ x) + a1 − b− (1− c1)
δ
β

≥ 2bx+ a1 − b− (1− c1)
δ
β

=
B1β

2 +B2β +B3

β(a1β + c1δ)

> 0.
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where

B1 = a1(a1 + b),

B2 = δ(2a1c1 + bc1 − a1 − 2b),

B3 = c1δ
2(c1 − 1).

Hence, it follows from (3.47) that

x = x.

Also, from (3.43) we have

y = y.

Under the assumption of Theorem 1.1, system (1.3) admits
a unique positive solution(x∗, y∗), hencex = x = x∗, y =
y = y∗. That is to say,

lim
t→+∞

x(t) = x∗, lim
t→+∞

y(t) = y∗. (3.48)

This ends the proof of the Theorem 1.1.

Proof of Theorem 1.2.Similarly to the proof of Theorem
1.1, we can finally obtain (3.45)-(3.47). Assume thatx 6= x,

then from (3.47) we have

x = −x+ 1−
a1

b
+

δ

bβ
(1 − c1), (3.49)

and

x = −x+ 1−
a1

b
+

δ

bβ
(1 − c1). (3.50)

Substituting (3.49) and (3.50) to (3.44) leads to

D1x
2 +D2x+D3 = 0,

D1x
2 +D2x+D3 = 0,

(3.51)

where

D1 = bβ(bβ − c1δ),

D2 = (bβ − c1δ)(a1β − bβ + c1δ − δ),

D3 = −(bβ − c1δ + δ)(a1β + c1δ − δ).

And so,x andx are the positive solution of the equation

D1x
2 +D2x+D3 = 0. (3.52)

From (1.8) and (1.14) one could see thatD1 > 0 andD3 < 0.
Hence, (3.52) has a unique positive solution, this shows that
x = x, the rest of the proof is similar to that of the proof
of Theorem 1.1, and we omit the detail here. This ends the
proof of Theorem 1.2.

IV. PROOF OFTHEOREM 1.3

Concerned with the upper and lower bound of the solutions
of system (1.15), we can obtain the following Lemma 4.1 and
4.2.

Lemma 4.1.Let (x(t), y(t)) be any positive solution of the
system (1.15), then

lim sup
t→+∞

x(t) ≤ 1
def
= N1, lim sup

t→+∞

y(t) ≤
δ(1−m)

β

def
= N2.

Lemma 4.2.Let (x(t), y(t)) be any positive solution of the
system (1.15), assume thata1 + c1N2 − N2(1 − m) > 0
holds, then

lim inf
t→+∞

x(t) ≥ n1, lim inf
t→+∞

y(t) ≥ n2,

where

n1
def
=

a1 + c1N2 −N2(1 −m)

a1 + c1N2
, (4.1)

n2
def
=

δ(1−m)

β
n1. (4.2)

Remark 4.1 If

m > 1−

√

a1β

δ
, (4.3)

then the inequalitya1+c1N2−N2(1−m) > 0 always holds,
that is, if the prey refuge is enough large, then the inequality
a1 + c1N2 −N2(1−m) > 0 holds.

Lemma 4.3.Assume that

m > 1− c1, (4.4)

then system

dx

dt
= x

(

1− x−
B(1 −m)

a1 + b(1−m)x+ c1B

)

(4.5)

admits a unique positive equilibriumx∗

m(B), which is glob-
ally attractive, whereB ∈ (n2 − ε,N2 + ε) is some positive
constant, andε > 0 is enough small such thatε < m2 holds.

Proof. The positive equilibrium of system (4.5) satisfies the
equation

1− x−
B(1−m)

a1 + b(1−m)x+ c1B
= 0, (4.6)

which is equivalent to

b(1−m)x2+(Bc1+a1−b(1−m))x+B(1−c1−m)−a1 = 0.
(4.7)

Obviously, under the assumption of Lemma 4.3,B(1− c1−

m) − a1 < 0, and so, system (4.7) has a unique positive
solution

x∗

m(B) =
−Γ1 +

√

Γ2
1 − 4b(1−m)

(

B(1 − c1 −m)− a1
)

2b(1−m)
.

(4.8)
whereΓ1 = Bc1 + a1 − b(1−m).
Similarly to the proof of Lemma 2.4, we could show that
lim

t→+∞

x(t) = x∗

m(B). This ends the proof of Lemma 4.3.

Lemma 4.4.Let x∗

m(B) be defined by (4.8), assume that the
conditions of Lemma 4.3 and (4.4) hold, assume further that

m > 1−
a1

b
(4.9)

holds, thenx∗

m(B), B ∈ [n2, N2] is a strictly decreasing
function ofB.

Proof. Sincex∗(B) is the positive solution of (4.7). Let’s
consider the function

G(x∗, B)

= b(1−m)(x∗

m)2 + (Bc1 + a1 − b(1−m))x∗

m

+B(1− c1 −m)− a1 = 0,

(4.10)
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wherex∗

m ∈ [n1, 1], B ∈ (n2, N2].
It then follows from (4.9) that

∂G

∂x∗

m

= Bc1 + 2b(1−m)x∗

m + a1 + b(1−m)

≥ a1 − b(1−m) > 0,
(4.11)

and

∂G

∂B
= c1x

∗

m − c1 + 1 ≥ c1n1 − c1 + 1

=
βa1(1−m)

a1β + c1δ(1 −m)
> 0,

(4.12)

Then, it follows from implicit function theorem that

dx∗

m

dB
= −

∂G
∂x∗

m

∂G
∂B

< 0. (4.13)

Hence,x∗

m(B) is the strict decreasing function ofB. This
ends the proof of Lemma 4.4.

Proof of Theorem 1.3. It follows from Lemma 4.1 that
there exists aT > 0 such that for allt ≥ T ,

x(t) < 1 + ε
def
= M

(1)
1 . (4.14)

y(t) <
δ(1−m)

β
+ ε

def
= M

(1)
2 . (4.15)

(4.15) together with the first equation of (1.15) leads to

ẋ(t) ≥ x
(

1− x−
(1−m)M

(1)
2

a1 + b(1−m)x+ c1M
(1)
2

)

. (4.16)

for all t ≥ T.

Consider the auxiliary equation

v̇(t) = v
(

1− v −
(1−m)M

(1)
2

a1 + b(1−m)v + c1M
(1)
2

)

. (4.17)

According to Lemma 4.4, (4.17) admits a unique positive
equilibrium

v11 =
−∆2 +

√

∆2
2 − 4b(1−m)

(

M
(1)
2 (1− c1 −m)− a1

)

2b(1−m)
,

which is globally attractive, where∆2 = M
(1)
2 c1+a1−b(1−

m). Hence, by using the differential inequality theory, there
exists aT11 > T such that

x(t) > v11 − ε
def
= m

(1)
1 > 0 for all t ≥ T11. (4.18)

(4.18) together with the second equation of (1.15) leads to

dy

dt
≥ y

(

δ −
βy

(1−m)m
(1)
1

)

, (4.19)

Applying Lemma 2.1 to (4.19) leads to

lim inf
t→+∞

y(t) ≥
δ(1−m)m

(1)
1

β
. (4.20)

That is, for aboveε > 0, there exists aT12 > T11 such that

y(t) >
δ(1 −m)m

(1)
1

β
− ε

def
= m

(1)
2 > 0 for all t ≥ T12.

(4.21)

Repeating the above procedure, we get four sequences
M

(n)
i ,m

(n)
i , i = 1, 2, n = 1, 2, .... such that

M
(n)
1 = vn1 +

ε

n
, m

(n)
1 = vn2 −

ε

n
, (4.22)

vn1 =
−∆2n−1 +

√

∆2
2n−1 − 4b(1−m)L1

2b(1−m)
. (4.23)

vn2 =
−∆2n +

√

∆2
2n − 4b(1−mL2

2b(1−m)
. (4.24)

δ

β
m

(n)
1 −

ε

n
= m

(n)
2 ,

δ

β
M

(n)
1 +

ε

n
= M

(n)
2 , (4.25)

where

∆2n−1 = m
(n−1)
2 c1 + a1 − b(1−m),

∆2n = M
(n)
2 c1 + a1 − b(1−m),

L1 =
(

m
(n−1)
2 (1− c1 −m)− a1

)

,

L2 =
(

M
(n)
2 (1 − c1 −m)− a1

)

.

Similar to the analysis of (3.33)-(3.41), we can show that
the sequencesM (n)

i is strictly decreasing, and the sequences
m

(n)
i is strictly increasing fori = 1, 2. Hence, the limits of

M
(n)
i andm(n)

i , i = 1, 2, n = 1, 2, ... exist. Denote that

lim
n→+∞

M
(n)
1 = x, lim

n→+∞

m
(n)
1 = x,

lim
n→+∞

M
(n)
2 = y, lim

n→+∞

m
(n)
2 = y.

(4.26)

Similarly to the analysis of (3.42)-(3.48), one could show
that under the assumption of Theorem 1.3,

lim
t→+∞

x(t) = x∗

m, lim
t→+∞

y(t) = y∗m. (4.27)

This ends the proof of the Theorem 1.3.

V. NUMERIC SIMULATIONS

In section I, we gave an example to show the feasibility
of the Theorem 1.1, now let’s consider the following two
examples which illustrate the feasibility of the Theorem 1.2.

Example 5.1Now let us consider the following system

dx

dt
= x

(

1− x
)

−
xy

4 + 2x+ 1
2y

,

dy

dt
= y

(

1−
y

x

)

,

x(0) > 0, y(0) > 0.

(5.1)

Here, we takea1 = 4, δ = β = 1, b = 2, c1 = 1
2 , and so, by

simple computation, we have

a1(a1 + b)β2 + δ(2a1c1 + bc1 − 2b)β + δ2c1(c1 − 1)

=
99

4
> 0,

(5.2)

bβ = 2 >
1

2
= c1δ (5.3)

and
a1β + c1δ =

9

2
> 1 = δ (5.4)
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Fig. 2. Dynamic behaviors of system (4.1) with the initial
condition (x(0), y(0)) = (0.2, 1.5), (1.5, 1.5), (1.5, 0.5),
(0.1, 0.3), (1.5, 0.2) and (0.5, 1.5), respectively.

hold, then the positive equilibriumE∗

2 (x
∗

2, y
∗

2) of (4.1)
is globally asymptotically stable. Numeric simulation
(Fig. 2) shows that system (4.1) admits a unique
globally attractive positive equilibriumE∗

2 (x
∗

2, y
∗

2), where
x∗

2 = y∗2 ≈ 0.8601470509.

Example 5.2Now let us consider the following system

dx

dt
= x

(

1− x
)

−
xy

4 + 1
10x+ 3

2y
,

dy

dt
= y

(

1−
y

x

)

,

x(0) > 0, y(0) > 0.

(5.5)

Here, we takea1 = 4, δ = β = 1, b = 1
10 , c1 = 3

2 , and so,
by simple computation, we have

2a1c1 + bc1 − 2b = 12−
1

20
> 0, c1 − 1 =

1

2
> 0, (5.6)

that is, (1.13) holds. Also,

bβ + δ =
1

10
<

3

2
= c1δ, (5.7)

then the positive equilibriumE∗

3 (x
∗

3, y
∗

3) of (5.5) is globally
asymptotically stable, wherex∗

3 = y∗3 ≈ 0.8424688318.
Since the numeric simulation is similar to Fig. 2, we omit
the detail here.

VI. D ISCUSSION

In this paper, we revisit the Holling-Tanner system with
Beddington-DeAngelis functional response, which was pro-
posed by Lu and Liu[1]. By developing some new analysis
technique and using the new method, two set of sufficient
conditions which ensure the global attractivity of the positive
equilibrium are obtained.

It is nature to conjecture that system (1.3) admits complex
dynamic behaviors, since the system contains five parameter-
s. However, Theorem 1.1 shows that ifc1 ≥ 2, then the rest
of the parameters have no influence on the dynamic behaviors
of the system, and the system always admits a unique positive
equilibrium, which is globally attractive. Theorem 1.2 shows
that for the case0 < c1 < 2, if a1 enough large,b enough

large or enough small, then the system also has a positive
equilibrium which is globally attractive.

To summarize: System (1.3) admits a very simple dynamic
behaviors for most of the parameters.

On the other hand, we incorporate the prey refuge to
system (1.3), this leads to the system (1.15), Theorem 1.3
shows that if the prey refuge is enough large, then two species
could be coexist in a stable state.
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