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Global Attractivity of a Holling-Tanner Model
with Beddington-DeAngelis Functional Response:
with or without Prey Refuge

Baoguo Cheh

Abstract—A  Holling-Tanner system with Beddington- By simple computation, one could easily see that system
DeAngelis functional response and prey refuge takes the form (1.3) admits a unique positive equilibriufii* (z*, *), where

/ 201 = 2(t)) — —L=mzOY®) A+ /AT AQB T ad)aiB

a1 +b(1 —m)z(t) + cry(t)’ * =
b= m)a(r) + ey (D) x TN s
J = yoli- T .
(1 —m)z(t) Y 3
is investigated in this paper, whereai,b,c1,d, and 8 are all
positive constants,m is a honnegative constant which satisfies andA = a8 — b — 16 + 0.
0 < m < 1. For the system without prey refuge, i.e.,m = 0 For the rest of the paper, let's set
case, by developing the new analysis technique, we show that s
c1 > 2 is enough to ensure the global attractivity of the positive M, def -, (1.5)
equilibrium of the system, such a result seems amazing since it B
is independent of the parametera;,b,5 and 5. Consequently,
we can draw the conclusion that for the most of the parameters, my def MQ—M (1.6)
system admits a unique globally attractive positive equilibrium. ay + c1 Mo
For 0 < ¢1 < 2, we also investigate the stability property S
of the positive equilibrium. Two examples together with their mo def —mj. (1.7)
numerical simulations show the feasibility of the main results. B

For the system with prey refuge, we show that there exists a Concerned with the stability property of this positive
m”*, such that for all m > m*, the system always admits a

unique positive equilibrium, which means that enough large equilibrium, by constructing Lyapunov function, Lu and

prey refuge can improve the coexistence of the species. Refuge-iU[1] obtained the following result.
plays important role on the persistent property of the system.

Theorem A. If
Index Terms—Beddington-DeAngelis functional response,
Holling-Tanner, Global attractivity, Prey refuge. a1 +c1My — My >0 (1.8)
and . ) 5
I. INTRODUCTION
1—-——— - >0 1.9
a1 2(11 25m1 ( )

U and Liu [1] proposed the following Holling-Tanner
model with Beddington-DeAngelis functional responsbold, then the positive equilibriun®™* (z*, y*) is globally
asymptotically stable.

dv 12 az(t)y(t)
da ra(l- E) a+ba(t) +ey(t) At first sight, condition (1.9) is very simple, however, one
dy y(t) (1.1)  could see that (1.9) requires the following three inequalities
— = y|s(l=h—3)|, hold.
dt x(t)
b<a1, 1 < 2aq, 5<25m1. (110)
wherer, k,a,a,b,¢c,s and h are all positive constants. By , ) )
nondimensionalize system (1.1) with the following scaling NOW let's consider the following example.
~ z(t) aul(t Example 1.1.
w=rt, 3w) = 2, ) = 24
k rk dx Ty
S sh a cr (1.2) —-— = x(l - ac) -
=2 8="ag=2 =2, dt 0.44 0.3z + 3y’
r o & o dy _ oY (1.11)
System (1.1) changes to the system a y( - E)’
/ z(t)y(t z(0) > 0, y(0) > 0.
S0 = 2 a(0) - s 0 ©
Bu(t) ar + 5% ay Here, we takey; =0.4,6 =2,8=1,b=1,¢; = 3, and so
y(t) = y(t)[5— z(t)] b=1>04=a;, 1>2a; =08,
(1.3) (1.12)

§=2>4 =2x 7 =28m.

*Corresponding author. B. Chen is with the Research Institute of Scierl.rg?]at is none of the inequalities in (1 10) holds. let along
n . L . 1

Technology and Society, Fuzhou University, Fuzhou, Fujian, 350116, Chi o e ’ ]
E-mails: chenbaoguo2017@163.com(B. G. Chen). the condition (1.9), however, numeric simulation (Fig. 1)
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important effects on the coexistence of predators and prey,
research on the dynamic behaviors of predator-prey system
incorporating a prey refuge become a poplar topic during the
last decade, see [5]-[14]. Chen and Chen[11] showed that
Gause type predator prey system incorporating prey refuge
on prey species could admits more than one positive equilib-
rium, they also gave sufficient conditions which guarantee the
existence and uniqueness of limit cycle; Ma, Chen and Wu[6]
considered a Lotka-Volterra predator-prey model incorpo-
rating a prey refuge and predator mutual interference, they
showed that the system admits a unique positive equilibrium,
which is globally asymptotically stable. Also, Chen, Chen
and Xie[14] investigated the dynamic behaviors of the Leslie-
Gower predator prey model with prey refuge. They showed
that the system admits the unique positive equilibrium, which
. . . . .is globally asymptotically stable, however, the prey refuge
Fig. 1. Dynamic behaviors of system (1.11) with the InI'hag differ)(/ant %fllﬁ)ence tg the final density of bo?h [:))/rey agd
tial condition ((0),y(0)) = (1,1.5), (1'5’.1'5)’ (1.5,0.5), predator species. To the best of our knowledge, to this day,
(0.1,0.2), (1.5,0.2) and (0.5,1.5), respectively. still no scholars incorporate the prey refuge to system (1.3)
and studied the influence of the prey refuge. The success of
n and Chen[11], Ma, Chen and Wu[6] and Chen, Chen
Xie[14] motivated us to propose the following system:

0.6

0.4+

0.24

: . .Che
shows that system (1.11) admits a unique globally attractiye |
positive equilibriumEy (z3, y7), wherex} = 0.7396379247,

Yt~ 0.7396379247. ‘= ()1 — () — (1 —m)z(t)y(t)
x (t) z(t)(1 —x(t)) T OI =m)z(t) + @’
We found that if we use the method of constructing |, By(t)
the Lyapunov function, then (1.9) is necessary. But for thé/ = y)|0 - (1 —m)x(t)

system itself, this condition may not be necessary. Motivated (1.15)

by the above problem, we will revisit the stability propertwhereay,b,c1,d, and 5 are all positive constantsp is a

of the positive equilibrium of system (1.3) again. By usingonnegative constant which satisfies. m < 1, m describe

a new method which is very different to that of [1], we willthe prey refuge, anehx is the number of prey species stay
establish the following results: in the prey refuge.

By simple computation, one could easily see that system

Theorem 1.1.Assume that; > 2 holds, then the positive (1.3) admits a unique positive equilibriusr (z*, y*), where

equilibrium E*(z*,y*) of (1.3) is globally asymptotically

stable. . —Ap 4+ /A2, +4(bB + c10)(1 — m)a1 B
Theorem 1.2. Assume thad < ¢; < 2 and (1.8) hold, " 2(bB + c10)(1 —m) ’
assume further that yr = 01 — m)az,
m ﬂ k)
a1 (ay + b)B% + 8(2a1cy + bey — 20)B8 + 62c1(c1 — 1) > 0 (1.16)
(1.13) andA,, = a1 —bB(1 —m) — c16(1 —m) + 5(1 — m)>.
and As for as system (1.15) is concerned, one interesting problem
b8 > c18(or bB + 3 < ¢10) (1.14) is whether the system admits a unique positive equilibrium

which is globally asymptotically stable if the refuge is
holds, then the positive equilibriut®*(z*,y*) of (1.3) is enough large, which means that the coexistence of the two
globally asymptotically stable. species. We will give an affirm answer to this problem,

Remark 1.1.In Examplel.1, sincec; = 3, condition of indeed, we have the following result:

Theorem 1.1 holds, and consequently, the positive equilibfineorem 1.3.Assume that
um of the system (1.11) is globally attractive. a8
1

ai
Remark 1.2. Theorem 1.1 shows that for almost all of the m > max {1 Yol el ?} (1.17)

parameters (only requir@ > 2, and without any restriction h
on other parameters) of the system (1.3), two species cou
be coexist in a stable state, this seems very interes«tilng,g
can be seen as the most important parameters in the systenthe paper is arranged as follows: In Section 2, some
useful Lemmas are established and then we prove Theorem
1.1 and 1.2 in Section 3, then we prove Theorem 1.3 in
S&ction 4. In Section 5, two examples together with their
numeric simulations are presented to illustrate the feasibility
6t Theorem 1.2. We end this paper by a briefly discussion.
For more works on Leslie-Gower predator-prey model, one
On the other hand, the existence of refuges have theuld refer to [1-36] and the references cited therein.

ﬂds, then the positive equilibriud@™*(z*, y*) of (1.15) is
obally asymptotically stable.

Remark 1.3. One could easily see that if; large enough,

b large enough (or small enough, in this case, requir
1 < ¢1 < 2), inequalities (1.13)-(1.14) hold, and it follows
from Theorem 1.2 that two species could be coexist in
stable state.
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and F(z*) = 0, from the continuity of the functiod(x), it

follows that

F(z) >0 for all x e (0,z%)

Il. LEMMAS
Now we state and prove several useful Lemmas.

Lemma 2.1[4] If a > 0,b > 0 andz > z(b — ax), when

t >0 andz(0) > 0, we have
and
ltimﬁnfz(t) > 9 F(z) <0 for all z € (a*,+00),
—+00
If @ > 0,b> 0andi < z(b—az), whent > 0 andz(0) > 0, and so aep]y Theorem 2.1 in [3] to §ystem (2.1),*0ne_could
see thatz* is globally stable, i. e.%h? x(t) = x*. This
—4o00
b
limsup z(t) < 2. ends the proof of Lemma 2.4.
oo “ Lemma 2.5.Let 2*(B) be defined by (2.4), assume that the
By using Lemma 2.1, similar to the proof of Lemma Zonditions of Lemma 2.3 and (1.13) hold, thet{B), B €

and Theorem 3 in [1], we can obtain the following Lemmémg, Ms] is a strictly decreasing function dB.

2.2.and 2.3, Proof. Sincez*(B) is the positive solution of (2.3). Let's
Lemma 2.2.Let (z(t), y(t)) be any positive solution of the consider the function
G(z*, B)
(2.5)
= b(2*)?>+ (Bcy +a1 —b)z* + B(1 —c¢1) —ay,

wherez* € [mq,1], B € (mq, Ma].

< 0 0,
It then follows from (1.13) that

)

system (1.3), then
limsupz(t) <1, limsupy(t)
t— o0 t——+o0 6
Lemma 2.3.Let (z(t), y(t)) be any positive solution of the
system (1.3), assume that + ¢; M> — Mo > 0 holds, then
lim inf > lim inf > oG _ Bey +2bx* +a1 — b
o ipd o (t) 2 ma, i iuly(E) 2 ma, w0 1
wherem, andm, are defined by (1.6) and (1.7), respectively. = 2bmy A mac 4 ar—b (2.6)
. . A15% 4 A3+ A
Lemma 2.4. Assume that one of the following assumption = > 0,
holds Blarf + c19)
1 > 1 where
(1) e > 15 A1 = ai(ar +b),
(2)0<Cl < 1, (11+01M2*M2>0,
A2 = (2(1161 + b(Cl - 2))5, (27)
then system
dx B As = ¢ —1)8%
— =zl — ——M— 2.1
dt ac( * a1 +bx+ 1B (2.1) and
admits a unique positive equilibriuna®(B), which is glob- oG .
ally attractive, whereB € (mg — €, M, + ¢) is some o~ v —atlzam-—a+tl
» . (2.8)
positive constant, and > 0 is enough small such that Bay
> — >0,
—a1+ (§+¢)(1 —c1) <0 holds. a18+ ci10
Proof. The positive equilibrium of system (2.1) satisfies thdnen, it follows from implicit function theorem that
equation da* oG
B — =-4= <0 (2.9)
l-g———— = 2.2 9G ' '
. a1 +br+cB 0, (2.2) aB OB
Hence,z*(B) is the strict decreasing function @®. This
(2.3) ends the proof of Lemma 2.5.
' Remark 2.1.(1.13) can be rewrite as follows
al(al + b)ﬂ2 + 5(2(1161 + b(Cl — 2>)ﬂ
(2.10)

which is equivalent to
ba? 4 (Bey +ay —b)x + B(1 —¢1) —a; = 0.

Obviously, under the assumption of Lemma 2% —c¢;) —

a1 < 0, and so, system (2.3) has a unique positive solution
+5201 (Cl — 1) > 0.

Obviously, if¢c; > 2, (2.10) holds, and so, the conclusion of

(2.4)
Lemma 2.5 holds.

—A+ /AT = 46(B(1 - 1) — 1)

* B —
@*(B) 26
whereA; = Bey +ap — b.
Set B
Flz)=1-¢p— ———
() . a1 +bx+c1B’
. Ill. PROOF OFTHEOREM1.1AND 1.2
since
s Proof of Theorem 1.1. ¢; > 2 implies that (1.8) holds,
B >1_ gte >0 and so, the conclusions of Lemma 2.3 and 2.4 hold. Also,
ap+a B~ ay + Cl(% +¢) from remark 2.1, Lemma 2.5 holds. Lét(t),y(t)) be any
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positive solution of system (1.3), let> 0 be any positive Since ¢; > 2, according to Lemma 2.3, equation (3.12)

constant enough small which satisfies

5_A + \/A2 — 4b((% +e)(1—c1) —ar)
2b

—(B+1e>0,

where 5
A: (E +€)cl+a17b.

It follows from Lemma 2.2 that there exists7a> 0 such
that for allt > T,

a(t) <1+e% pu (3.1)
4] e
y(t) < G+ Lt i (3.2)

(3.2) together with the first equation of (1.3) leads to
MY
a1 + bx + 01M2(1)

#(t) > J:(l—x— ) for all £>T. (3.3)

Consider the auxiliary equation

M2(1) )

o(t) = v(l —v—
ai + varclMQ(l)

(3.4)

admits a unique positive equilibrium

—Asz + \/A% - 4b(m§1)(1 —c1)—ay)
= 5 . (3.13)

V21

which is globally attractive, wheré\s = mg”q +a; —b.
Hence, by using the differential inequality theory, there exists
a Ty > Ty2 such that

Sincec; > 2, according to Lemma 2.4, (3.4) admits a uniqug ¢5j1ows from (3.1) and (3.15) that

positive equilibrium

Ao+ \/Ag —4b(MV (1= 1) — @)
- - L (35)

V11

which is globally attractive, where, = M{V¢; + a; — b.

Hence, by using the differential inequality theory, there exists

aTi; > T such that

IL'(t) > V11 — € d:ef mgl) > 0 for all ¢ > T71;. (36)

(3.6) together with the second equation of (1.3) leads to

dy By
= > - = .
it = y(‘5 mgn)’ (87)
Applying Lemma 2.1 to (3.7) leads to
(1)
liminf y(¢) > om, . (3.8)

t—+oo
That is, for aboves > 0, there exists &7 > 771 such that
1
omy”

t) >
y(t) 3
It follows from (3.1),(3.2), (3.6) and (3.9) that for &l> T,

def

m$" >0 for all t > Ty (3.9)

0< mgl) <x(t) < Ml(l),
(3.10)
0< mgl) <y(t) < ]Vlz(l).
(3.10) together with the first equation of (1.3) leads to
)

:i:(t)gx(lfxf 1ty (1)) for all t > Tis.
a1+ bx + cimsy (3.11)
Consider the auxiliary equation
(1)
v=v(1-v-— le- (3.12)
D) .

a1 +bv+cimy

2(t) < va1 + g LD for all t >Thy.  (3.14)
Since
V21
—A3+ \/Ag — 4b(m§1)(1 —c1) —ay)
2b
o Agt \/(mgl)cl +ay +b)? - 4bmél) (3.15)
B 2b
—(m$Per + a1 —b) + \/(mg)q + a1 +b)?
= 2%
= 1,
MP < M. (3.16)

From (3.16) and the second equation of (1.3), we know that
for ¢ > T21,

dy By
=< y(o- Ml@)), (3.17)
Applying Lemma 2.1 to (3.17) leads to
limsup y(t) < éMfQ). (3.18)

t——+o0 6
That is, for aboves > 0, there exists &%, > T5; such that

5
y(t) < M 4 - &

M for all t> Ty, (3.19)
Jé] 2
It follows from (3.2), (3.16) and (3.19) that
MP < MV, (3.20)

Substituting (3.20) into the first equation of system (1.3), we
obtain

MY
a1 + bx + 01M2(2)

:b(t)Zx(l—x— ) for all ¢ > Tho.
Similarly to the analysis of (3.3)-(3.6), there existd'a >
Tss such that

€ def (2)

x(t) > vag — g = M >0 for all t > Tss, (3.21)
where
“As A2 —ab(MP (1 =) —
Va2 = /AL ] ) (3.22)
2b
hereA, = M2(2)c1 +a; —b.
From (3.5), (3.20) and Lemma 2.5, we have
m{® > mlV. (3.23)

(Advance online publication: 20 November 2019)
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From (3.23) and the second equation of (1.3), we know thiatom the relationship ofngn) and mé"), we have

for ¢ > Ths, mg’”’l) > mg")_ (3.40)

. By
my Therefore, we have

(€] (2)

Applying Lemma 2.1 to (3.24) leads to
0<my’ <my

‘ <-o<miM <a(t)
. (2)
> —
linf (1) > S B2 M < e <,
That is, for above: > 0, there exists &b, > Th3 such that O (2) () .
0<my’ <my <. <my’ <y(t)
(t) > ém@) _—_—
Y 6 1 2

From (3.8), (3.23) and (3.26) we have

(2)
My for all ¢t > Ts4. (326) < MQ(n) << M2(2) < M2(1)

Hence, the limits of]\/[l.(”) and ml(."), i=12n=12..

m$? > m. (3.27) exist. Denote that
It follows from (3.16), (3.20), (3.23) and (3.27) that for all lim M™M= 7 lim m{"” =z,
t > Ty, e " e " (3.42)
lim M,"” = 5, lim my’ =uy.
0< mgl) < m?’ <uz(t) < M1(2) < Ml(l)a oo 2 P .
(3.28) Thenz > z,5 > y. Letti i
1 9 9 1 T > x,y > y. Lettingn — +o0o in (3.29)-(3.33), we
0<m§)<m§)<y(t)<M2()<M2(). obtain =
Repeating the above procedure, we get four sequences 5
Mﬁl),mgn),i:1,2,n:1,2,.... such that o _K“L\/Kl —4b(y(1 —e1) — )
- 50 :
M("):vn +£, m(")zvn —E, 3.29
1 Ty 2T (3.29) — Ko+ \/Kg —4b(HA 1) —a1)  (3.43)
xr = .
gy + \/Agn_1 —4b(m§" V(1 — 1) —ar) 5 5 20
Unl = . _ - =
(3.30) p - B
—Aop /A2, —4b(MM (1 —e1) — where
VUn2 = \/ 2 21() 2 ) . (331) Kl = g61 + a1 — b7
_mg)_izmé ), _Ml( )+£:M2( )7 (332) 2 yc1 + ap
B n B " (3.43) is equivalent to
where 5 —
Aguoy = m§" Vey+ar -, bz° + (cry + a1 =0T+ y(1 — 1) —a1 =0,
Agy = MM™Mer+ay —b. bz? + (a7 + a1 —b)z +7(1 — 1) — a1 =0, (3.44)

Now, we go to show that the sequenckg™ is strictly oz = By, 0T = f3y.
decreasing, and the sequenmﬁé”) is strictly increasing for And so,
¢ = 1,2 by induction. Firstly, from (3.28), we have

1

%

(T—2)(bT+2z)+a —b)
<m®, M® < MY, i=1,2. (3.33) (3.45)
+e1(yT —yz) + (1 —c)(y —7) = 0.

m

Let us suppose that
Thus,
m" Y <m™ MM <M"Y =12, (3.34)
(T—2)(bT+2z)+a —b)
It then follows from (3.30) and Lemma 2.5 that (3.46)
+61%@57 Tx) + (1 — cl)%@ —-7T)=0.

Un1 > U(nt1)1- (3.35)
From (3.29) we have and so,
M >yt (3.36) (T —z) (b(f +a)+a—b—(1- cl)%) =0. (3.47)
By using (3.36), it follows from (3.32) that From Lemma 2.3 and, > 2 we have
M > it (3.37) bE+2)+ a1 —b— (1—ep)d

It then follows from (3.37), (3.31) and Lemma 2.5 that

> 2b§+a17b—(1701)%
U(n+1)2 > Up2. (338)
3.38) and (3.29) show th Bi5” + Baf + By
(3.38) and (3.29) show that Blarf + c10)
mgn—H) > mgn). (3.39) > 0.
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where Lemma 4.2.Let (z(t), y(t)) be any positive solution of the
system (1.15), assume that + c¢; N2 — Na(1 — >0
B = aifm+0), holds th(en : el = =m)
By = 6(2mer +ber —ay = 20), liminf 2(t) > ny, liminfy(t) > no,
t——+oo t—+oo
Bg = 6152(61 — 1) where
Hence, it follows from (3.47) that ny def LT c1lNa — No(1 — m)7 (4.1)
a1 + c1 Ny
T =u. of 0(1 —
no d:f wnl. (42)
Also, from (3.43) we have p
B Remark 4.1 If
=y m>1-— %, (4.3)

Under the assumption of Theorem 1.1, system (1.3) admits , )

a unique positive solutiofiz*,y*), hencez = z = a*,7 = then_the_ |nequalltyL1+c1J\_72—N2(1—m) > 0 always holds, _
y = y*. That is to say, that is, if the prey refuge is enough large, then the inequality
- Q1+61N27N2(17m) > 0 holds.

tlfrfoox(t) =T tl}?ooy(t) —Yv- (348) | emma 4.3.Assume that
This ends the proof of the Theorem 1.1. m>1-—cy, (4.4)

Proof of Theorem 1.2.Similarly to the proof of Theorem then system
1.1, we can finally obtain (3.45)-(3.47). Assume tifat z, d B(1 —
then from (3.47) we have 2= :c(l —z— (1=m) ) (4.5)

dt a1 +b(1 —m)x + 1B
T=-x+1— “ + i(1 — ), (3.49) admits a unique positive equilibriuny, (B), which is glob-
b b8 ally attractive, whereB € (ny — ¢, No + £) is some positive
and constant, and > 0 is enough small such that< ms holds.
)
£:75+1—a—;+%(17c1). (3.50)
o Proof. The positive equilibrium of system (4.5) satisfies the
Substituting (3.49) and (3.50) to (3.44) leads to equation
D1f2+D2f+D3 :0, B(l—m)
(3.51) ac a1 +b(1—m)x+ 1B 0, (4.6)

Dy2? + Doz 4+ D3 = 0, L .
which is equivalent to
b(1—m)z?+(Bci+a1—b(1—m))z+B(1—c;—m)—a; = 0.

Dy = bB(bB — c10), (4.7)
Obviously, under the assumption of Lemma 431 — ¢; —
Dy = - — _
2 (b8 —e1d)(@f = b5 + 15 = 9), m) —a; < 0, and so, system (4.7) has a unique positive
D3y = —(bB—c10+68)(a1B+c16— ). solution

where

I+ \/F§ — 4b(1 — m)(B(1 — ¢; — m) — ay)
2b(1 —m) '
Dy1x% + Doz + D3 = 0. 3.52 (4.8)
1 24 K ( ) wherel'y = Bey + a1 — b(1 — m).
From (1.8) and (1.14) one could see that > 0 andD3 < 0. Similarly to the proof of Lemma 2.4, we could show that
Hence, (3.52) has a unique positive solution, this shows thdtm «(t) =z}, (B). This ends the proof of Lemma 4.3.

T = z, the rest of the proof is similar to that of the proof

of Theorem 1.1, and we omit the detail here. This ends th€MMa 4.4.Letx7, (B) be defined by (4.8), assume that the
proof of Theorem 1.2. conditions of Lemma 4.3 and (4.4) hold, assume further that

And so,z andz are the positive solution of the equation z},(B) =

m>1-— “—bl (4.9)
holds, thenz},(B), B € [n2,Ng| is a strictly decreasing
Concerned with the upper and lower bound of the solutiof$nction of B.

of system (1.15), we can obtain the following Lemma 4.1 and ) _ . _ ,
42 Proof. Since z*(B) is the positive solution of (4.7). Let’s

consider the function
Lemma 4.1.Let (z(¢),y(t)) be any positive solution of the «
G(z*,B)
system (1.15), then

IV. PROOF OFTHEOREM 1.3

= b(1 —m)(x},)* + (Ber +ar —b(1 —m))z),  (4.10)
limsup z(t) <1 def Ny, limsupy(t) < o(1 =m) f N,
t—s+o0 - t—s 400 - B +B(l—c¢; —m)—a; =0,
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wherez?, € [n1,1], B € (ng, No.
It then follows from (4.9) that

oG

o Bey 4+ 2b(1 — m)ak, + a1 + b(1 —m)

‘rm

> a;—b(l—m) >0,
(4.11)
and

oG

2B = cazx,—ca+1l>cn—c +1
(4.12)

Bai(1 —m)
a18+ c16(1 —m)
Then, it follows from implicit function theorem that

>0,

du* 8ac
no— _Sm (), (4.13)

9G

dB a9G

Hence,z}, (B) is the strict decreasing function d@. This
ends the proof of Lemma 4.4.

Proof of Theorem 1.3. It follows from Lemma 4.1 that
there exists & > 0 such that for allt > T,

a(t) <1+e% m®, (4.14)
6(1— o
y(t) < % +e % V. (4.15)
(4.15) together with the first equation of (1.15) leads to
(1
1—m)M
() > :c(l —z— (L = m)M, (1)). (4.16)
a1 +b(1 —m)x + c1 M,
forallt > T.

Consider the auxiliary equation

(1 —m)Mg”
ai +b(1 —m)v+ 01M2(1)

o(t) :v<1—v7 ) (4.17)

Repeating the above procedure, we get four sequences

M™ mi™ i =1,2,n=1,2,... such that
Mt ):vnﬁg, mg>:vn2fﬁ, (4.22)
2
—Agn1 + \/A2n71 —4b(1 —m)Ly
Unl1 = (423)
2b(1 —m)
—Agp, + /A3, —4b(1 —mLs
2 = n . 4.24
Un2 2(1 —m) (424)
1) n £ n 1) n € n
Bm§ )=, BMl( o= (425)
where
Nop_1 = mg"71)01 +a; —b(1 —m),
Ay, = MQ(n)Cl +a; — b(l — m),
L = m" 1-ca-m-a),
LQ = (M2(n)(1 —C1 — m) — al).

Similar to the analysis of (3.33)-(3.41), we can show that
the sequenceMi(”) is strictly decreasing, and the sequences
mE”) is strictly increasing for = 1, 2. Hence, the limits of
M™ andm(™, i =1,2,n=1,2, .. exist. Denote that

lim M™ (n)

= 7z, lim my’ =gz,
n—-+oo n—-+o0o (4 26)
lim M™ = y, lim m{ = Y. -
n—-+oo 2 ’ n—-+o0o 2 -

Similarly to the analysis of (3.42)-(3.48), one could show
that under the assumption of Theorem 1.3,

(4.27)

i #(0) =25,

This ends the proof of the Theorem 1.3.

i y(t) =y,

According to Lemma 4.4, (4.17) admits a unique positive

equilibrium

—Ag + \/A% —4b(1 —m) (Mz(l)(l —c1—m) —ay)
- 2b(1 — m)

V11

which is globally attractive, wher&, = M{" ¢;+ay —b(1—

m). Hence, by using the differential inequality theory, there

V. NUMERIC SIMULATIONS

In section |, we gave an example to show the feasibility
of the Theorem 1.1, now let’'s consider the following two
examples which illustrate the feasibility of the Theorem 1.2.

Example 5.1Now let us consider the following system

_ e . A
exists aly; > T such that dt 4420+ Ly
2@ >vi—e Lm >0 for all t> 7Ty (4.18) % - 40-Y (5.1)
t z’’

(4.18) together with the second equation of (1.15) leads to z(0) > 0, y(0)>o0.
@Zy((;,#), (4.19) Here, we takery =4,6 =3 =1,b=2,¢; = 3, and so, by
dt (1- m)mg ) simple computation, we have

Applying Lemma 2.1 to (4.19) leads to ai(ar +b)B% +6(2a1c1 + bey — 2b)B + 8%c1(c1 — 1)

(1)
1-— 99
lim inf y(t) > 0 = m)my (4.20) = >0,
t—+o0 ﬂ 4 (5 2)
. . 1 :

That is, for aboves > 0, there exists &7y > 711 such that BB=2> £ —c)s (5.3)

o(1— m)m(l) 2

y(t) > #1 —€ def mél) >0 for all t > Ti». and 9
(4.21) a1+ 16 = 3> 1= 8 (5.4)
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large or enough small, then the system also has a positive
equilibrium which is globally attractive.

To summarize: System (1.3) admits a very simple dynamic
behaviors for most of the parameters.

On the other hand, we incorporate the prey refuge to
system (1.3), this leads to the system (1.15), Theorem 1.3
shows that if the prey refuge is enough large, then two species
could be coexist in a stable state.

s~

P NN N N N,
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