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Abstract—This paper reports the finding of a new chaotic
system with perpendicular lines of equilibrium points. Thus,
this paper makes a valuable addition to existing chaotic
systems with infinite number of equilibrium points in the
chaos literature. Specifically, we show that the new three-
dimensional chaotic system has the y and z coordinate axes
as its line equilibrium points, which are perpendicular. The
period-1 attractor, period-2 attractor and chaotic attractor in
the system are numerically studied by Lyapunov exponents,
bifurcation diagrams and phase diagrams. In addition, the
coexisting period-1 attractors and coexisting chaotic attractors
of the system are presented. Adaptive controller is devised for
global chaos synchronization of identical new chaotic systems
with unknown parameters. An electronic circuit simulation of
the new chaotic system with perpendicular lines of equilibrium
points is shown using Multisim to check the feasibility of the
model.
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I. INTRODUCTION

SOME key important topics in chaos theory are modeling
and applications of nonlinear dynamical systems show-

ing chaotic behavior [1]-[2]. Chaos has generated good in-
terest in science and engineering applications [3]-[8]. Chaos
theory has been also applied for special applications such as
encryption [9]-[11], wireless communication [12], fingerprint
biometric [13], robotics [14], neural networks [15], jerk
systems [16]-[17], neurology [18], chemical systems [19],
biology [20], oscillators [22]-[24], weather models [25]-[26],
circuits [27]-[28] finance [29]-[30], memristors [31], etc.

In the literature, many scientists have studied the modeling
of chaotic systems with special types of equilibrium curves
such as line equilibrium [32], circle [33], axe-shaped curve
[34], heart-shaped curve [35], boomerang-shaped curve [36],
conic-shaped equilibrium [37], pear-shaped curve [38], etc.
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All these chaotic systems fall under the class of systems with
hidden chaotic attractors as they possess an infinite number
of equilibrium points [39]-[44].

In this paper, we report the finding of a new chaotic system
with perpendicular lines of equilibrium points. Thus, this
paper makes a valuable addition to existing chaotic systems
with special curves of equilibrium points. Specifically, we
show that the new 3-D chaotic system has the y and z
coordinate axes as its line equilibrium points, which are per-
pendicular. The presence of coexisting chaotic and periodic
attractors in the system is studied.

Synchronization of chaotic systems deals with a pair
of chaotic systems called master and slave systems and
the design goal is to find a suitable feedback control law
attached to the slave system so as to track the signals of
the master system asymptotically with time [45]-[46]. In this
work, we shall use adaptive control method for the complete
synchronization of the new system with itself with unknown
system parameters.

Furthermore, circuit simulation of chaotic systems is an
important area of research. In this work, we shall exhibit an
electronic circuit simulation via Multisim for the new chaotic
system with perpendicular lines of equilibrium points. We
show a good matching of the theoretical simulation results
via MATLAB and the electronic circuit simulation results
via Multisim for the new chaotic system with perpendicular
equilibrium points.

II. DYNAMICAL ANALYSIS OF THE NEW
CHAOTIC SYSTEM WITH PERPENDICULAR

LINES EQUILIBRIUM POINT

In this paper, we report a new 3-D chaotic system given
by 

ẋ = ayz

ẏ = x|z| − y|x|
ż = |x| − bx2

(1)

where x, y, z are the states and a, b are positive parameters.
In this work, we show that the system (1) exhibits a chaotic

attractor when we take the parameter values as

a = 1 and b = 1 (2)

For numerical simulations, we take the initial values as

x(0) = 0.2, y(0) = 0.2, z(0) = 0.2 (3)
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The Lyapunov chaos exponents (LCE) are determined
using MATLAB as L1 = 0.05239, L2 = 0 and L3 =
−0.72753. Since L1 > 0, we conclude that the new 3-
D system (1) is chaotic. Since the sum of LCE values
is negative, we conclude that thew chaotic system (1) is
dissipative.

The Kaplan-Yorke dimension of the new chaotic system
(1) is obtained as

DKY = 2 +
L1 + L2

|L3|
= 2.0720, (4)

which indicates the chaotic nature of the new chaotic system.
The equilibrium points of the new chaotic system (1) are

tracked by solving the following system:

ayz = 0 (5a)
x|z| − y|x| = 0 (5b)

|x| − bx2 = 0 (5c)

If we take x = 0, then both equations (5b) and (5c) are
satisfied.

From Eq. (5a), it follows that either y = 0 or z = 0.
Thus, the equilibrium points of the new chaotic system (1)

are given by the two straight lines, S1 = {(x, y, z) ∈ R3 :
x = 0, z = 0}, which is the y-axis and S2 = {(x, y, z) ∈
R3 : x = 0, y = 0}, which is the z-axis. It is obvious that
the lines S1 and S2 are perpendicular.

The phase portraits of the new chaotic system (1) with
perpendicular lines of equilibrium points S1 and S2 are
displayed in Figs. 1-3. The Lyapunov chaos exponents of
the chaotic system (1) are displayed in Fig. 4.

Fig. 1: MATLAB simulation of 2-D phase plot of the new
chaotic system (1) in (x, y) plane for X(0) = (0.2, 0.2, 0.2)
and parameter values (a, b) = (1, 1)

It is well-known that the dynamical behaviors of a non-
linear system can be explored by bifurcation diagrams and
Lyapunov exponents [47]-[48]. Multistability can lead to
very complex behaviors in a dynamical system, which has
been reported in some chaotic systems [49]-[54]. It is very
interesting that the system can exhibit multistability. Fix b =
0.5 and keep a as the control parameter. When a is varied
in the region of [1, 4], the coexisting bifurcation model
of the state variable of x and the corresponding Lyapunov
exponents with the initial conditions (0.2, 0.2, 0.2) are plotted
in Fig. 5 (a) and 5(b), respectively, where the blue orbit starts
from the initial conditions (0.2, 0.2, 0.2) and the red orbit
starts from the initial conditions (-0.2, -0.2, 0.2). From Fig.

Fig. 2: MATLAB simulation of 2-D phase plot of the new
chaotic system (1) in (y, z) plane for X(0) = (0.2, 0.2, 0.2)
and parameter values (a, b) = (1, 1)

Fig. 3: MATLAB simulation of 2-D phase plot of the new
chaotic system (1) in (x, z) plane for X(0) = (0.2, 0.2, 0.2)
and parameter values (a, b) = (1, 1)

Fig. 4: Lyapunov chaos exponents (LCE) of the new chaotic
system (1) for X(0) = (0.2, 0.2, 0.2) and (a, b) = (1, 1)

5(a), we can observe several kinds of coexisting attractors
with different initial conditions. Fig. 6 exhibits the coexisting
periodic attractors with a = 1.5 and the coexisting chaotic
attractors with a = 2.5, where the blue attractor begins with
the initial conditions of (0.2, 0.2, 0.2) and the red one begins
with (-0.2, -0.2, 0.2). Particularly, it can be found that the
system experiences a period-doubling bifurcation route to
chaos.The corresponding phase portraits are plotted in Fig. 7.
From the above analysis, it can be concluded that the system
in fact displays very complicated dynamics. The Poincare
map new chaotic system (1) with perpendicular lines, also
reflects properties of chaos (see Fig. 8). In addition, Fig.
9 shows the basin of attraction of the coexisting chaotic
attractors of the new chaotic system (1) with a = 2.5.
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(a) (b)

Fig. 5: Dynamics of the system: (a) the coexisting bifurcation diagrams of the state variable x with respect to the control
parameter a, (b) the corresponding Lyapunov exponents spectrum with the initial conditions (0.2, 0.2, 0.2)

(a) (b)

Fig. 6: Different coexisting attrators of the system: (a) coexisting period-1 attrators with a = 1.5, (b) coexisting chaotic
attractors with a = 2.5

(a) (b)

(c) (d)

Fig. 7: Period-doubling bifurcation route to chaos: (a) period-1 attrator with a = 1.5, (b) period-2 attrator with a = 2.2, (c)
chaotic attrator with a = 2.3, (d) chaotic attrator with a = 3
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Fig. 8: Poincare map analysis of the new chaotic system (1)
for X(0) = (0.2, 0.2, 0.2) and (a, b) = (1, 1)

Fig. 9: The basin of attraction of the coexisting chaotic
attractors of the the new chaotic system (1) in the y-z plane
with a = 2.5

III. CIRCUIT DESIGN OF THE NEW CHAOTIC
SYSTEM

The electronic circuits of chaotic systems has been applied
in engineering applications such as wireless mobile robot,
voice encryption, secure communications, image encryption
process, radar system and random bits generator. The new
chaotic system (1) was designed as an electronic circuit as
shown in Fig. 10. As shown in Fig. 10, the electronic circuit
includes 21 resistors, 3 capacitors, 10 operational amplifiers
(TL082CD) and 4 analog multipliers (AD633JN).

The three state variables (x, y, z) of the new chaotic system
(1) have been rescaled as X = 4x, Y = 4y and Z = 4z.
Therefore, the new chaotic system (1) is transformed into
the following equivalent system:

ẋ = ayz
4

ẏ = x|z|
4 −

y|x|
4

ż = |x| − bx2

4

(6)

By applying Kirchhoff’s circuit laws into the designed

Fig. 10: The electronic circuit schematic of the new chaotic
system

circuit, we get the following circuital equations:
ẋ = 1

C1R1
yz

ẏ = 1
C2R2

x|z| − 1
C2R3

y|x|

ż = 1
C3R4

|x| − 1
C3R5

x2

(7)

where the variables x, y and z correspond to the voltages in
the outputs of the integrators (U1A,U3A,U5A). The power
supplies of all active devices are ±15volts.

We choose the values of the circuital elements as follows:
R1 = R2 = R3 = R5 = 40 kΩ, R4 = R6 = R7 =
R8 = R9 = R10 = R11 = R12 = R13 = R14 = R15 =
R16 = R17 = R18 = R19 = R20 = R21 = 10 kΩ and
C1 = C2 = C3 = 10 nF.

Multisim outputs of the scaled system are depicted in
Fig. 11-13. It is easy to see the agreement between the
oscilloscope outputs shown in Figs. 11-13 and the MATLAB
simulations shown in Figs. 1-3 for the new chaotic system
with perpendicular lines of equilibrium points.
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Fig. 11: Multisim outputs of the scaled new chaotic system
(7) in (a) X − Y plane

Fig. 12: Multisim outputs of the scaled new chaotic system
(7) in (a) Y − Z plane

Fig. 13: Multisim outputs of the scaled new chaotic system
(7) in (a) X − Z plane

IV. ADAPTIVE SYNCHRONIZATION OF NEW CHAOTIC
SYSTEMS WITH UNKNOWN PARAMETERS

In this section, we use adaptive control theory to derive a
new controller for synchronizing the trajectories of a pair of
new chaotic systems, considered as master and slave systems.
Synchronization of chaotic systems has applications in secure
communication systems.

As the master system, we consider the new chaotic system
given by 

ẋ1 = ay1z1

ẏ1 = x1|z1| − y1|x1|
ż1 = |x1| − bx2

1

(8)

where a, b are unknown parameters and x1, y1, z1 are the
states.

As the slave system, we consider the new chaotic system
with controls given by

ẋ2 = ay2z2 + ux

ẏ2 = x2|z2| − y2|x2|+ uy

ż2 = |x2| − bx2
2 + uz

(9)

where x2, y2, z2 are the states and ux, uy, uz are the adaptive
controls.

The synchronization error between the systems (8) and (9)
is defined by

ex = x2 − x1, ey = y2 − y1, ez = z2 − z1 (10)

Then the synchronization error dynamics is derived as
follows:

ėx = a(y2z2 − y1z1) + ux

ėy = x2|z2| − x1|z1| − y2|x2|+ y1|x1|+ uy

ėz = |x2| − |x1| − b(x2
2 − x2

1) + uz

(11)

We implement the adaptive controller defined by
ux = −A(t)(y2z2 − y1z1)− kxex

uy = −x2|z2|+ x1|z1|+ y2|x2| − y1|x1| − kyey

uz = −|x2|+ |x1|+ B(t)(x2
2 − x2

1)− kzez
(12)

where kx, ky, kz are positive gains.
Implementing (12) in (11), we get the closed-loop system

ėx = [a−A(t)](y2z2 − y1z1)− kxux

ėy = −kyey
ėz = −[b−B(t)](x2

2 − x2
1)− kzez

(13)

Next, we define

ea = a−A(t), eb = b−B(t) (14)

Then we can simplify the closed-loop dynamics (13) as
ėx = ea(y2z2 − y1z1)− kxex

ėy = −kyey
ėz = −eb(x2

2 − x2
1)− kzez

(15)

We also note that

ėa = −Ȧ, ėb = −Ḃ (16)

We use Lyapunov stability theory for the main result on
global chaos synchronization of new chaotic systems.

We define the candidate Lyapunov function as

V (ex, ey, ez, ea, eb) =
1

2

(
e2x + e2y + e2z + e2a + e2b

)
, (17)

which is quadratic and positive-definite on R5.
The time-derivative of V is calculated as follows:

V̇ = −kxe2x − kye
2
y − kze

2
z + ea[ex(y2z2 − y1z1)− Ȧ]

= +eb[−ez(x2
2 − x2

1)− Ḃ]

(18)
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Based on (18), we consider the parameter update law as
follows: {

Ȧ = ex(y2z2 − y1z1)

Ḃ = −ez(x2
2 − x2

1)
(19)

Theorem 1. The new chaotic systems (8) and (9) are glob-
ally and asymptotically synchronized for all initial conditions
by the adaptive control law (12) and the parameter update
law (19), where kx, ky, kz are positive gain constants.

Proof: We prove this result by Lyapunov stability theory
[55].

First, we note that V defined by Eq. (17) is quadratic and
positive definite on R5.

Next, after substituting the parameter update law (19) into
(18), we get the time-derivative of V as

V̇ = −kxe2x − kye
2
y − kze

2
z, (20)

which is quadratic and negative semi-definite function on
R5.

Hence, by Barbalat’s lemma [55], it follows that the error
dynamics (15) is globally asymptotically stable for all initial
conditions.

This completes the proof.
For numerical simulations, we take the initial state

of the master system (8) as (x1(0), y1(0), z1(0)) =
(2.5,−3.6, 8.4) and the initial state of the slave system (9)
as (x2(0), y2(0), z2(0)) = (6.3, 7.9, 4.8).

We take the initial state of the parameter estimates as
(A(0), B(0)) = (10.5, 8.7).

We take the gain constants as kx = 10, ky = 10 and
kz = 10.

Fig. 14 shows the synchronization of the new chaotic
systems (8) and (9). Fig. 15 shows the time-history of the
synchronization errors ex, ey, ez .

V. CONCLUSION

This paper reported a new chaotic system with perpen-
dicular lines of equilibrium points. Specifically, we showed
that the new 3-D chaotic system has the y and z coordinate
axes as its line equilibrium points, which are perpendicu-
lar. Simulation determined the coexisting attractors of the
system with different parameters and initial values, such as
coexisting period-1 attrators and coexisting chaotic attractors.
We discussed the qualitative properties of the new chaotic
system and designed an adaptive controller for global chaos
synchronization of identical new chaotic systems with un-
known parameters. An electronic circuit simulation of the
new chaotic system with perpendicular lines of equilibrium
points was displayed using Multisim to check the feasibility
of the theoretical chaotic model.
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(a)
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(c)

Fig. 14: Complete synchronization of the new chaotic sys-
tems (8) and (9) : (a) x1 and x2, (b) y1 and y2, (c) z1 and
z2
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Fig. 15: Time-history of the synchronization errors ex, ey, ez
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