
i-CODAS: An Improved Online Data Stream
Clustering in Arbitrary Shaped Clusters

Md Kamrul Islam, Md Manjur Ahmed, and Kamal Zuhairi Zamli

Abstract—Nowadays a lot of IT-based applications are gen-
erating huge data streams continuously, and clustering of these
streams provide many advantages in data mining. In the field
of clustering of data stream, density-based technique is the
most popular as it is able to generate arbitrary shaped cluster
with high cluster quality in a noisy environment. However,
most of the existing density-based algorithms for data stream
clustering are either offline or hybrid of offline and online
phase or can handle only hyper-elliptical clusters. But offline
algorithms are not good choice for data stream clustering as
storing the data stream is impractical and often the shape
of the cluster is arbitrary rather than regular in data space.
Recently, an online clustering method called CODAS has been
proposed where the generated clusters are arbitrary in shape.
However, like other existing density based clustering algorithms,
the radius of all micro-cluster in CODAS is global and constant.
But it is really hard to set the optimal value of micro-cluster
radius in practical, and a global radius may not be optimal
for each micro-cluster. An erroneous choice of radius decreases
the clustering quality remarkably. In this paper, we present
an improved version of CODAS called i-CODAS based on
the concept of maintaining local radius for each micro-cluster
independently. The radius is updated in an online manner
towards its local optimal value as new data sample lies in
the cluster. The data samples are summarized in a metadata,
called micro-cluster. The micro-clusters are presented in a clus-
tering graph based on the connectivity among micro-clusters.
The clustering graph is finally used to generate arbitrary
shaped clusters. The performance of the proposed i-CODAS
is measured and compared with other density-based clustering
algorithms. The experimental result proves the superiority of
i-CODAS over other clustering algorithms in terms of noise
sensitivity, accuracy, purity, processing speed and scalability.

Index Terms—data stream, online clustering, arbitrary shape,
Euclidean distance, cluster graph.

I. INTRODUCTION

THE fast development of information technology (IT)
leads to generate a massive amount of data continu-

ously from several emerging applications known as the data
stream. The example of such data stream sources include
sensor networks, anomaly detection, financial transactions,
call records, social data, multimedia data, advertising, etc.
Modern societies are increasingly interested to exploit and
utilize these data stream to solve social problems [1]. The
knowledge inside these data streams are discovered using
data mining technique. Clustering is one of the vital tasks

Manuscript received on October 11, 2018; revised on May 23, 2019.
Md Kamrul Islam is a postgraduate student in the faculty of Computer

Systems and Software Engineering, Universiti Malaysia Pahang, 26300
Gambang, Pahang, Malaysia. He is also with Jashore University of Science
and Technology, Bangladesh. (e-mail: polash2k48@gmail.com)

Md Manjur Ahmed is with the department of Computer Science and
Engineering, University of Barisal, Kornokathi, Patuakhali Highway, Barisal
8200, Bangladesh. (Corresponding author, phone: +880-1851-924944; e-
mail: manjur 39@yahoo.com).

Kamal Zuhairi Zamli is with the faculty of Computer Systems and Soft-
ware Engineering, Universiti Malaysia Pahang, 26300 Gambang, Pahang,
Malaysia. (e-mail: kamalz@ump.edu.my)

in data mining to identify the abstract of hidden themes in a
coherent manner those characterize the stream [2]. Clustering
of data stream is defined as the technique for partitioning the
data in data stream into clusters where the similar data are
placed in the same cluster, and dissimilar data are placed in
another cluster [3], [4], [5]. It is an unsupervised learning that
has become a useful, ubiquitous and essential tool in machine
learning, data mining, bio-informatics, image processing, and
other fields, in data stream analysis increasingly [6], [7], [8].
There are a lot of research on clustering of static datasets
in offline mode, but they cannot be applied on data stream
due to its uncertainty in volume, arrival speed and gradual
change with time [9], [10]. This storing problem is solved by
providing online clustering algorithms where only the data
point summarization (or cluster) is stored and updated as new
data arrives [11]. The tendency for developing online clus-
tering algorithm is a growing and challenging phenomenon
to deal with data stream [12]. Many clustering algorithms
exist in literature those are categorized into five categories
and they are partitioning, hierarchical, density-based, grid-
based, and model-based methods [13]. Among them, density-
based clustering has been found a natural and most attractive
clustering technique as it has the ability to generate arbitrarily
shaped clusters in dense areas and to detect noises and act
accordingly in noisy environment [14].

In recent years, researchers have proposed many density-
based clustering algorithms for data stream. DBSCAN is
considered to be the primitive density-based clustering algo-
rithm that generates arbitrarily shaped clusters in an incre-
mental manner [15]. However, it is not preferable for high
dimensional data set as it suffers from the so-called ”curse
of dimensionality” [16]. Recently, DBSCAN is enhanced
in GISN-DBSCAN by enabling it to process complex data
stream, detect noise, and reduce the computational time [17].
However, the cluster quality degrades in GISN-DBSCAN.
Two density-based clustering algorithms; CluStream [18]
and DenStream [19] summarizes the data stream by storing
the temporal locality of data which is termed as micro-
cluster. Though, they improve cluster quality, but CluS-
tream is limited to generate only spherical shaped cluster
and DenStream suffers from the time-consuming task of
pruning the outlier micro-cluster. C-DenStream [20], rDen-
Stream [21], SDStream [22], HDenStream [23], HDDStream
[24], VDStream [25] are all improvement of DenStream.
The semi-supervised C-DenStream, retrospect learning-based
rDenStream and SNN (Shared Nearest Neighbor)-based VD-
Stream focuses on improving cluster quality. However, they
require high processing time and memory space, and they are
not applicable to high dimensional data stream. For handling
the evolving nature, sliding window based SDStream and
HDenStream are introduced. SDStream can detect the noise
efficiently, but not scalable to high dimensional data stream.

Engineering Letters, 27:4, EL_27_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



HDenStream can process heterogeneous data stream, but
does not describe the idea to store the categorical attributes
in an efficient way. On the other hand, HDDStream is
able to handle high-dimensional data stream and generate
cluster with high quality, but the clusters do not evolve.
The efficiency of HDDStream was further improved in the
PreDeConStream [26] by adapting the fading function [19] in
order to detect the evolving nature in data stream. However,
PreDeConStream suffers from its time consuming pruning
phase. SOStream [27] is another density-based clustering ap-
proach that achieves high clustering quality with occupying
less memory, but the processing time is quite high.

Based on affinity propagation clustering [28], two density-
based clustering algorithms were proposed, namely APDen-
Stream [29] and ADStream [30]. They improve the cluster
quality. However, APDenStream is not suitable for high
dimensional data stream and ADStream is not suitable for
noisy data stream. The bio-inspired model like FlockStream
[31] and ACSC [32] are fast and generate high quality clus-
ters. However FlockStream does not clarify about removing
the outliers from memory and ACSC suffering from time
consuming cluster merging operation.

The aforementioned algorithms are either online-offline
hybrid or incremental clustering process. Baruah and An-
gelov developed two online evolving clustering algorithm
called ELM [33] and DEC [34]. They provide high cluster
purity and low processing time but are unable to generate
arbitrary shaped clusters. An adaptive clustering technique
was introduced in [35] for dynamic IoT data streams.
The technique shows good cluster quality, but it requires
predetermining the number of clusters in the system and
cannot generate arbitrarily shaped clusters. Recently, an
online clustering algorithm, CODAS [11] has been proposed
which generates arbitrary shaped clusters from data streams.
The purity and accuracy of CODAS are quite high and it
shows good performance in terms of processing time and
memory requirement. However, the problems of setting the
micro-cluster radius are still unsolved in the field of density-
based clustering of data stream. Using constant and global
radius of micro-clusters creates two problems. Firstly, it is
tough to set the constant value of optimal radius of micro-
cluster prior to the execution due to variable density in the
data space, and an erroneous choice of radius degrades the
clustering performance remarkably. Secondly, a global value
of radius may cause inefficient clustering as some micro-
clusters may contain more sparse areas than other micro-
clusters in the system and a unique radius may not be a
good choice for both of them. In this paper, we present
an online clustering algorithm called i-CODAS (improved
CODAS) for data stream that maintains the local radius of
each micro-cluster independently. In i-CODAS, rather than
predicting a global and constant radius, a range of radius is
set during the initialization of micro-cluster. The maximum
radius confirms the cluster separation and minimum radius
confirms the formation of the cluster. Moreover, the radius
is then updated recursively towards its local optimal based
on spatial information of the data sample. The metadata of
micro-cluster is updated as data sample falls into it. The
circular shaped micro-clusters forms a cluster graph based on
their connectivity. The arbitrary shaped clusters are generated
from the cluster graph.

Section 2 describes the proposed i-CODAS (improved
CODAS) algorithm in details. After that, the performance
of i-CODAS has been measured and compared with the
existing data stream clustering algorithms (Section 3). The
measured performance shows that the proposed i-CODAS
algorithm outperforms other existing clustering algorithms
including CODAS. Finally, Section 4 concludes the article
and describes future research directions.

II. THE PROPOSED APPROACH

The proposed i-CODAS clustering algorithm is an im-
proved version of the existing CODAS algorithm. i-CODAS
is a fully online algorithm for clustering of data stream
that reduces the dependency on user in setting the optimal
value of algorithm parameter. Contrast to traditional offline
clustering methods, the online i-CODAS algorithm stores
the metadata of data samples. Similar to other density-
based clustering algorithms, the proposed i-CODAS algo-
rithm maintains the metadata in the forms of micro-clusters
and macro-clusters or simply clusters. The data structure of
micro-cluster is shown in Fig.1.

Fig. 1: Structure of Micro-cluster in i-CODAS

The data structure of micro-cluster includes the following
information

1) Centre: The centre of a micro-cluster is computed as
the mean of the data samples in the micro-cluster. It
shows the position of a micro-cluster in the data space.

2) Radius: The radius of the micro-cluster describes the
spread of the micro-cluster from the centre. The outer
region which is covered by half of the radius is known
as shell region whereas the inner half part is known as
the kernel region.

3) Local density: Local density of a micro-cluster is
simply the number of data samples within a micro-
cluster.

4) Edge list: If the kernel region of a micro-cluster
intersects with shell or kernel region of another micro-
cluster then they are said to be edged or intersected.
The intersected micro-clusters of a micro-cluster are
collectively build the edge list of the micro-cluster. An
empty edge list of a micro-cluster indicates that no
micro-cluster intersect with that micro-cluster.

5) Macro-cluster: The intersecting micro-clusters form a
single macro-cluster. Other words, intersecting micro-
clusters belong to the same macro-cluster. A micro-
cluster with the local density more than threshold
but with no intersecting micro-cluster forms a macro-
cluster itself. The macro-cluster is also called as the
cluster.

Engineering Letters, 27:4, EL_27_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



i-CODAS algorithm defines the term density threshold to
differentiate between the true clusters from background noise
in the data stream. Based on the threshold value, i-CODAS
maintains the following two types of metadata.

1) Micro-cluster: A metadata with local density above
or equal to the density threshold is identified as a
micro-cluster. They actively participate in the cluster
graph for generating the micro-cluster/clusters.

2) Outlier: The metadata with the local density less than
the density threshold is said to be an outlier. Outliers
are actually the noisy samples. They dont participate
in cluster graph for cluster generation.

A. Description of i-CODAS algorithm

The proposed i-CODAS algorithm requires three parame-
ters to be set prior to the execution of the algorithm. The
parameters are set based on expert knowledge about the
application. The parameters include the following constants.

1) Radius Growth factor (Gr): The radius growth factor
describes that how fast the radius of micro-cluster
grows to its optimal value. The parameter contributes
to increasing the radius of the micro-cluster recursively
every time a data sample falls in the shell region of the
micro-cluster.

2) Maximum Radius (Rmax) and Minimum Radius
(Rmin): Maximum radius is the maximum distance be-
tween data so that any data outside this radius belongs
to a different micro-cluster. Whereas, minimum radius
is the lowest value of the distance between data so
that any data outside this radius belongs to a different
micro-cluster. A radius more than the maximum radius,
affects the cluster separation and smoothness of the
micro-cluster. On the other hand, a radius less than
the minimum radius, prevents the formation of micro-
cluster in dense region with enough samples.

3) Density Threshold (Thresholdmin): The minimum
number of data samples that is required to form
a micro-cluster is referred to as the density
threshold. This value separates the micro-clusters
from background noise in data stream.

The i-CODAS algorithm composed of the following four
distinct sub-algorithms excluding parameter setting.

i Micro-cluster Initiation (Algorithm 2.2)
ii Search the Micro-Cluster (Algorithm 2.3)

iii Update Micro-Clusters (Algorithm 2.4)
iv Update Cluster Graph (Algorithm 2.5)

A data stream (X) is defined as a series of data samples
X = {X0, X1, X2, ...., Xi, Xi+1, ....}, where Xi is the ith

data sample [36]. As a data sample comes from the data
stream, these four sub-algorithms are executed under the
supervision of the master algorithm (Algorithm 2.1) of
i-CODAS. The master algorithm (Algorithm 2.1) is executed
till samples are coming from the data stream.

Algorithm 2.1: i-CODAS
This algorithm supervises the whole clustering pro-
cess. It calls the other four sub-algorithms to cluster
the data stream and update the cluster metadata.
Input: Data Stream, X = {X0, X1, .., Xi, Xi+1, ..},
Rmin, Rmax,Thresholdmin .

Step 1: Repeat from Step 2 to Step 5 for each data
sample, Xi in data stream X

Step 2: Call Algorithm 2.4 to check whether the
current sample resides in any micro-cluster.

Step 3: If Algorithm 2.4 returns false then
Go to Step 4.

Else
Go to Step 5.

End If
Step 4: Create new micro-cluster using Algorithm 2.2
Step 5: Call Algorithm 2.5 to update the cluster graph

and assign macro-cluster number.
Step 6: Exit

For each data sample, the algorithm tries to find the desired
micro-cluster using micro-cluster searching sub-algorithm
(Algorithm 2.3). If no such micro-cluster exists then the
master algorithm creates a new micro-cluster using the
micro-cluster creation sub-algorithm (Algorithm 2.2). If the
data sample lies in a micro-cluster, then the metadata of the
micro-cluster is updated (Algorithm 2.4). Finally, the cluster
graph is updated if any the edge list of any micro-cluster
is changed or a new micro-cluster is created in the graph.
The macro-cluster number is updated for each micro-cluster
from the cluster graph using (Algorithm 2.5). In this way,
a new data sample comes, find its cluster and update the
cluster information and remove the data sample. The process
eliminates the need to store the data sample which is the
requirement to create an online clustering algorithm.

i Micro-cluster Initiation
The newly arrived data sample from the data stream generally
falls into either in the empty space or within a micro-cluster.
In case of empty space, the data sample itself creates a new
micro-cluster using algorithm 2.2.

Algorithm 2.2: New Micro-cluster Initiation
This sub-algorithm initializes a new micro-cluster
structure for any sample which is not inside any
existing micro-clusters.
Input: Sample Xi , Minimum radius (Rmin), Micro-
cluster set, MC

Step 1: Set N=Maximum macro-cluster number in
graph MC

Step 2: Create new micro-cluster(C)
C.Centre = Xi

C.Radius= Rmin

C.Count = 1
C.Macro = N+1
C.Edge = {}

Step 3: Add C to the micro-cluster set MC
Step 4: Exit.

Engineering Letters, 27:4, EL_27_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



In the micro-cluster initialization algorithm 2.2, the
sample works as the Centre of the micro-cluster. As this
is the first sample, so the local density variable Count
is initialized to 1. The radius of micro-cluster is set to
minimum radius. The identification number of the newly
generated micro-cluster is considered as the macro-cluster
number (or Macro) of this micro-cluster. Initially, the newly
generated micro-cluster is not a stable micro-cluster at all.
Thus, the micro-cluster has no intersecting micro-cluster
and it does not participate in the cluster-graph structure.
The micro-cluster is added to the micro-cluster set in the
system.

ii Search the Micro-Cluster
When a new data sample comes from the data stream,
i-CODAS searches for the micro-cluster where the data
sample resides. The micro-cluster searching operation is
written as the following sub-algorithm (Algorithm 2.3).

Algorithm 2.3: Micro-cluster Search
This sub-algorithm searches the desired micro-cluster
for a new data sample. If the search operation is
successful then it updates the micro-cluster
information. Input:Sample Xi and micro-cluster set
MC

Step 1: Set dmin = the distance from sample Xi to
its nearest micro-cluster (C) centre

Step 2: If dmin is less than radius of C then
Update the information of micro-cluster C
by algorithm 2.3, and return true.
End If

Step 3: Return false.

Initially, the Euclidean distance from the data sample to each
micro-cluster centre is computed and the micro-cluster with
minimum distance is also searched. If the minimum distance
is less than the radius of the micro-cluster then the data
sample falls in the micro-cluster with minimum distance.
In case of multiple micro-clusters with minimum distance
exist; one of them is selected randomly. The metadata
of the micro-cluster is updated using the micro-cluster
updating sub-algorithm (Algorithm 2.3). Otherwise, the
sub-algorithm (Algorithm 2.4) returns false to the master
algorithm (Algorithm 2.1) for notifying that the data sample
does not belong to any micro-clusters.

iii Update Micro-Clusters
If the data sample falls within any micro-cluster region,
then metadata of the mapped micro-cluster is updated in a
fully online manner. The local density of the micro-cluster is
incremented is simply by 1 as in Eq. (1). However, the micro-
cluster centre is updated using Eq. (2) in case data sample
falls into shell region as the data sample in kernel region has
little effect on shifting the micro-cluster centre. If the data
sample lies in the shell region then the micro-cluster radius
is updated using Eq. (3). Suppose that, at tth time instant,
the local density/count, centre and radius of a cluster k are

Nk
t , Ck

t and Rk
t respectively. Then at (t+1)th time instant,

micro-cluster count, centre, and radius are updated using the
recursive Eq. (1), Eq. (2) and Eq. (3) respectively.

Nk
t+1 = Nt + 1 (1)

Ck
t+1 =

(Nt+1 − 1)× Ck
t +Xk

t+1

Nk
t+1

(2)

Rk
t+1 = min

([
Rk

t +
{2× dXk

t+1,C
k
t+1

Rk
t

− 1
}
×Gr

]
, Rmax

)
(3)

where Gris the radius growth factor.

The procedure for updating the metadata of the micro-
cluster is written in the following sub-algorithm(Algorithm
2.4).

Algorithm 2.4: Update Micro Cluster
When a new data sample belongs to an existing
micro-cluster, this sub-algorithm updates the
information of micro-cluster.
Input: Sample, Xi and micro-cluster C

Step 1: Increase the sample count of the
micro-cluster, C using Eq. (1).

Step 2: If Xi is in shell region of C then
Update the centre of micro-cluster C
using Eq. (2).
Update the radius of micro-cluster C
using Eq. (3).
End If

Step 3: Exit

Every time a new data sample falls in a micro-cluster,
the micro-cluster information is updated. In the updating
process, the local density or sample count of the micro-
cluster is incremented using Eq. (1). The centre the
micro-cluster are recursively updated if the data sample
falls into the shell region of the micro-cluster using Eq. (2).
The micro-cluster radius is updated based on the spatial
information of data sample. The updating process is an
online operation as written in Eq. (3). The micro-cluster
is checked whether it has the local density equal or more
than the density threshold. The micro-cluster with local
density equal or above the density threshold is added to
micro-cluster set and is considered for macro-cluster or
cluster generation process. The edge list and macro-cluster
number of the micro-cluster is updated.

iv Update Cluster Graph

Every time a new micro-cluster is added to the micro-cluster
set, the cluster graph is updated by adding the new micro-
cluster into graph. The cluster graph is also updated in case
of relocating the centre of a micro-cluster. The procedure
for updating the clustering graph is given in the following
sub-algorithm (Algorithm 2.5).

Engineering Letters, 27:4, EL_27_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



Algorithm 2.5: Update Cluster Graph
This sub-algorithm executes when a new micro-
clusters local density meets the minimum density
threshold to become a micro-cluster to participate
in cluster graph or the centre of micro-cluster is
relocated.
Input: A micro-cluster,C that has been modified,
Micro-cluster set, MC

Step 1:Update the edge list of C and any
micro-cluster intersecting C

Step 2:If any micro-cluster edge list is changed then
Set a new macro-cluster number
throughout the graph

End If
Step 3: Exit

From the cluster graph updating procedure, initially the
edge list of the modified or newly added micro-cluster is
computed and updated based on the intersection between the
micro-cluster and all other micro-cluster. Two micro-clusters
are said to be intersected if the shell region intersects with the
kernel region of another micro-cluster. The intersected micro-
clusters are assigned to the same macro-cluster. Thus, if the
edge list of any micro-cluster is modified then new macro-
cluster number is assigned throughout the cluster graph with
the help of Breadth First Search (BFS) algorithm.

III. EXPERIMENTAL RESULT AND DISCUSSION

The performance of the proposed i-CODAS (improved
CODAS) algorithm is analyzed and compared with existing
popular clustering algorithms in this section. To analyze the
performance, the i-CODAS has been coded in MATLAB
R2014a and run on a run on a Core i7 processor with 8GB
primary memory environment.

In sub-section 3.A, we demonstrate the ability of i-CODAS
algorithm in generating arbitrary shaped clusters. We eval-
uate the noise sensitivity of i-CODAS and compare with
CODAS in sub-section 3.B. In sub-section 3.C, we compute
the cluster accuracy and purity, and compare with other
popular clustering algorithms like ADStream, DenStream,
CODAS. The memory efficiency of the proposed algorithm
is also measured in sub-section 3.D. Finally, we measure
the sample processing time of i-CODAS for low to high
dimensional data stream and compared with other alternative
clustering algorithms in sub-section 3.E. The scalability
property of i-CODAS is also described in this sub-section.

A. Cluster Formation

To evaluate the ability of i-CODAS in forming clusters in
dense areas, it is executed on four data sets namely DS1,
DS2, R15 and Spiral data sets. The data sets are benchmark
data sets which are used in several clustering algorithms
[37], [38]. DS1, DS2, R15 and Spiral data sets contain 8000,
10000, 600 and 312 data samples respectively. DS1 and DS2
contain 10% noise. Naturally, DS1 has 6 clusters, DS2 has
9 clusters, R15 has 15 clusters and Spiral data set has 3
clusters. The clustering results from i-CODAS are visualized
in Fig. 2(a)-2(d).

−0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

(a) DS1 data set

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

(b) DS2 data set

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(c) R15 data set

−0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

(d) Spiral data set

Fig. 2: i-CODAS clustering result on different test data sets

The small circles represent the micro-clusters and they
joined with each other for forming clusters. In Fig. 2, the

Engineering Letters, 27:4, EL_27_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



micro-clusters with same color belong to a single clus-
ter.The data samples from each data set come sequentially
to simulate an online execution of i-CODAS and after
clustering, each sample is removed immediately. Fig. 2(a)-
2(d) illustrates the ability of the proposed algorithm in
identifying all the clusters accurately as present naturally in
all the experimental data sets. In Fig. 2(a) and Fig. 2(b),
some outliers are also visualized which represent the noisy
samples in data sets. The figures clearly show the existence of
minimum distance among the sample from a single clusters
and the maximum distance among the samples from other
clusters in all data sets. The well separation among clusters
is clearly visible in all clustering result in Fig. 2. Though, the
micro-clusters are spherical in shaped, they connects each
other based on the cluster graph to form arbitrary shaped
clusters. Thus, Fig. 2 confirms the formation of clusters in a
natural way and the detection of noises in data set.

B. Noise Sensitivity

To evaluate the behavior of the proposed i-CODAS
algorithms in a noisy environment, we execute it on a
benchmark data stream called MacKey-Glass data stream
[39], [40], [41]. Mackey-Glass data stream is a synthetic
three dimensional (3D) time series which is generated using
the following differential Eq. (4).

dx(t)

dt
=

ax(t− τ)
1 + x(t− τ)10 − bx(t)

(4)

This equation is solved using 4th order RungeKutta numer-
ical method and the data stream is generated using different
values for a and b for different time period t. Furthermore, the
noisy Mackey-Glass data stream is generated by replacing
every 5th data sample with a noisy data sample. Thus the
noisy Mackey-Glass data stream contains 20% noisy data
samples. To measure the noise sensitivity, we compare the
data coverage or data point assignment of i-CODAS and
CODAS in clean and noisy Mackey-Glass data stream. The
data coverage is defined as the percentage of data samples in
data stream those reside in a cluster [11]. In this experiment,
the algorithm parameters namely density threshold, radius
growth rate, minimum and maximum radius are set to 15,
0.001, 0.03 and 0.07 respectively. Fig. (3), shows the data
coverage for clean and noisy Mackey-Glass data stream using
the CODAS and i-CODAS algorithms.
In Fig. (3), the proposed i-CODAS shows an initial data
coverage of approximately 95% while the existing CODAS
algorithm shows nearly 98% data coverage. As new data
sample lies in a micro-cluster, the micro-cluster radius is
updated in an online manner towards its local optimal value.
This online operation creates the fact that the micro-clusters
are getting stable in terms of their radius. The stability is
reflected in Fig. 3(a) where the data coverage is increased
continuously and finally reaches to around 100% in the
following time periods. The data coverage stays close to
100% for both CODAS and i-CODAS algorithms. In other
words, all data samples are identified as true samples. On the
other hand, Fig. 3(b) shows the data coverage for noisy Mac-
key Glass data stream by both i-CODAS and CODAS. Unlike
Fig. 3(a), both of CODAS and i-CODAS show much less
data coverage as noisy Mackey-Glass data stream contains

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

80

82

84

86

88

90

92

94

96

98

100

Data coverage over time for clean data stream

Time

D
a

ta
 C

o
v
e

ra
g

e

 

 

CODAS

i−CODAS

(a) Clean data stream

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

80

82

84

86

88

90

92

94

96

98

100

Data coverage over time for noisy data stream

Time

D
a

ta
 C

o
v
e

ra
g

e

 

 

CODAS

i−CODAS

(b) Noisy data stream

Fig. 3: Data coverage over time in Mac-key Glass data stream

noisy data samples with clean samples. The data coverage by
i-CODAS stays below the data coverage by CODAS in all
the time periods. Though the data coverage is nearly 94%, it
goes below 90% as time progresses and micro-cluster radius
is updated. CODAS algorithm shows over 95% data coverage
in the noisy environment whereas the proposed i-CODAS
shows less than approximately 88% data coverage at most of
the time periods. Thus the proposed i-CODAS detects more
than 60% noisy data samples whereas CODAS algorithm
detects only 25% of noisy data samples. Hence, the proposed
i-CODAS clustering algorithm is more efficient to detect the
noisy samples than CODAS in the noisy environment.

C. Cluster Quality

The quality of cluster is defined in terms of two pa-
rameters, cluster accuracy and purity [11]. High accuracy
means high correctness whereas high purity means low errors
in data sample assignment during clustering process [3].
Cluster purity cannot express the cluster quality alone. If
in an application the number of low-density clusters is much
higher than the high-density clusters then overall purity is
high which creates the misinterpretation about clustering. If
there are i n data samples in a cluster and among them, d i n
samples lies in the dominant cluster then for N such clusters,
the mean purity and accuracy is measured using Eq. (5) and

Engineering Letters, 27:4, EL_27_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



Eq. (6) respectively.

Purity =

∑N
i=1 n

d
i

ni
(5)

Accuracy =

∑N
i=1 n

d
i∑N

i=1 ni
(6)

The KDDCup99 [42] is a popular benchmark data stream
for evaluating quality of clusters in the field of clustering.
This data stream consists of network intrusion data packets
with 41 features and 1 truth cluster. KDDCup99 data stream
contains 22 types of network attacks with normal network
traffic data sets. In this experiment, we use the KDDCup99
data stream to measure the cluster accuracy and purity of
clusters using Eq. (5) and Eq. (6). In this experiment, the al-
gorithm parameters namely density threshold, radius growth
rate, minimum radius and maximum radius are configured
as 4, 0.001, 0.07 and 0.12 respectively. The experimental
results are evaluated in a window of 10000 data samples.
Fig. 4 compares the mean purity and accuracy of i-CODAS
with exiting CODAS clustering algorithms as CODAS is a
fully online and arbitrary shaped cluster generating algorithm
that outperformed the existing algorithms. In Fig. 4(a) and
Fig. 4(b), both of CODAS and i-CODAS shows impressive
cluster purity and accuracy.

0 1 2 3 4 5

x 10
5

99.4

99.5

99.6

99.7

99.8

99.9

100

Purity Over time

Time

P
u
ri
ty

 

 

CODAS

i−CODAS

(a) Cluster Purity

0 1 2 3 4 5

x 10
5

94

95

96

97

98

99

100

Accuracy Over time

Time

A
c
c
u
ra

c
y

 

 

CODAS

i−CODAS

(b) Cluster Accuracy

Fig. 4: Cluster Purity and Accuracy in KKDCup99 data
stream

In Fig. 4(a), the purity is 100% for both algorithms in
almost all the time period except some time periods such
as 50K, 170K, 400K. However, in those time periods, i-
CODAS clearly produce more pure clusters than CODAS.
The fact behind this improvement is that i-CODAS maintains
the individual micro-cluster radius and updates it to its local
optimal value while CODAS maintains a global radius for
all micro-cluster that is not optimal for some micro-clusters.
Following this fact, more samples are miss clustered, and
as a result the purity is degraded. Similarly, the accuracy
in i-CODAS algorithm is better than in CODAS algorithm.
It is also seen that the accuracy is fall down to 94.54%
at 50K time period, whereas the purity is 99.668% in that
time period. In that time period, the number of low-density
clusters is much higher than the high-density clusters and
thus the overall purity is high.

To measure the numerical result, the clustering results of i-
CODAS are evaluated in 50K data samples window. In each
window, the purity and accuracy is computed and tabulated
in Table I. The cluster purity and accuracy are compared
with popular data stream clustering algorithms, ADStream,
and DenStream.

TABLE I: Purity and Accuracy for KDDCup99 data stream
by different algorithms

Purity(%)
Accuracy(%) ADStream DenStream CODAS i-CODAS

98.91 97.89 99.668 99.78150K 93.65 91.43 94.54 95.39
96.37 92.43 100 100100K 91.99 89.93 100 100
94.58 91.25 99.899 99.924150K 93.23 90.67 99.27 99.42
93.83 89.39 100 100200K 92.14 87.18 100 100
94.76 92.33 100 100250K 91.27 88.41 100 100
99.21 97.89 100 100300K 89.62 87.28 100 100
98.23 97.53 99.964 99.984350K 93.38 88.82 99.94 99.94
90.77 89.68 99.432 99.58400K 90.43 90.16 99.99 99.99
92.81 91.23 99.943 99.963

Ti
m

e

450K 91.78 88.57 99.93 99.94

Similar to Fig. 4, the accuracy and purity is 100% for the
time period of 100K and from 200K to 300K. In other
time periods, the clustering accuracy and purity value stay
very close to 100% except the time period of 50K. At the
time from 0 to 50K, the micro-cluster radius is developing
and much drifting in data stream is found. These two facts
together degrade the cluster accuracy in i-CODAS. However,
the clustering accuracy is still better than the other comparing
algorithms. From Table I, it is clearly found that both of the
cluster purity and accuracy are highest for the proposed i-
CODAS in all time period due to maintaining local optimal
radius. It is clear from Fig. 3 and Table I that i-CODAS
shows better performance than other algorithms in terms of
cluster purity and accuracy.

D. Memory Efficiency

The memory efficiency is measured as the storage required
when clustering the data stream. The memory is required to

Engineering Letters, 27:4, EL_27_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



store the cluster information, application parameters (radius
and density threshold). As the radius is constant, so the
memory usage is directly proportional to the number of
micro-cluster.

To measure the memory usage by the clustering algorithm,
the same KKDCup99 [42] data stream as Section 3.B was
used. The clustering parameters are configured with the same
constant as described in Section 3.B. The number of micro-
clusters is computed in window of 10K data sample basis.
We consider only the micro-clusters with density above the
density threshold. Fig. 5(a) and Fig. 5(b) show the memory
uses by CODAS and i-CODAS in terms of total number of
micro-clusters for medium and long time stamp.

0 1 2 3 4 5

x 10
4

0

100

200

300

400

500

600

700

800

Number of micro−clusters generated with time

Time

N
u

m
b

e
r 

o
f 

M
ic

ro
−

c
lu

s
te

rs

 

 

CODAS

i−CODAS

(a) Medium time period

0 0.5 1 1.5 2

x 10
5

0

200

400

600

800

1000

1200

1400

1600

1800

Number of micro−clusters generated with time

Time

N
u

m
b

e
r 

o
f 

M
ic

ro
−

c
lu

s
te

rs

 

 

CODAS

i−CODAS

(b) Long time period

Fig. 5: Memory usage by clustering algorithm in KKDCup99
data stream

Fig. 5(a) describes that initially the number of micro-
cluster is more in i-CODAS than the CODAS by a small
amount as many micro-clusters have the radius lower than the
optimal radius. With time the amount of micro-clusters rises
for both algorithms. As time progresses new data samples
fall into the micro-clusters and their radii get close to their
local optimal radius and new micro-clusters are generated
by a low amount. This fact is reflected in Fig. 5(a), where
the number of micro-clusters in i-CODAS is lower than the
micro-cluster in CODAS algorithm. The trend exists in the
following time periods. The same trend is found for the
micro-cluster amount measuring for long time period. It is

seen from Fig. 5(b) that in some period like from 60K to 70K
no new micro-cluster is generated as no drifting is detected in
this window and the data samples fall into a micro-cluster in
the current system. On the other hand, rapid growth in micro-
cluster amount is found in some time period like from 150K
to 160K where frequent drifting in data stream is detected
and many new micro-clusters are generated. It is also clear
from Fig. 5(b) that the number of micro-cluster is lower in
i-CODAS than CODAS for long time periods.

E. Speed and dimensionality
1) Processing Time: To evaluate the processing speed,

we record the total clustering time and compute the mean
processing time for the data sets (DS1, DS2, R15, Spiral)
used in visualizing the cluster formation (Section 3.A) and
for KDDCup99 data stream. We execute these experiments
for five times and compute their mean processing time. Fig. 6
compares the mean sample processing time of the proposed i-
CODAS algorithm with other popular data stream clustering
algorithm.

DS1 DS2 R15 Spiral
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n 
Pr

oc
es

si
ng

 T
im

e 
(m

s)

Data Sets

 i-CODAS     CODAS    DEC

(a) DS1, DS2, R15 and Spiral data sets

50K 100K 150K 200K 250K

2
3
4
5
6
7
8
9
10
11
12
13
14
15

M
ea

n 
Pr

oc
es

si
ng

 T
im

e 
(m

s)

Time

 i-CODAS
 CODAS
 VDStream
 DenStream
 CluStream

(b) KDDCup99 data stream

Fig. 6: Mean processing time by different clustering algo-
rithms

Fig. 6(a) compares the processing time with two online
clustering algorithms for data stream namely CODAS and
DEC. Though the data sets contains small amount of data
samples, the data samples are processed in fully online man-
ner and removed immediately processing. DEC clustering

Engineering Letters, 27:4, EL_27_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



algorithm is popular for low processing time. However, it
is seen from the Fig. 6(a) that the mean processing time of
i-CODAS and CODAS is less than the processing time of
DEC.

The data sets in Fig. 6(a) contains small amount of
data samples. To measure the processing speed on data
stream containing big amount of data samples, we use the
KDDCup99 data stream and record the processing time in
a 50000 samples per window. The mean sample processing
time of i-CODAS is computed and compared with other clus-
tering algorithms namely CODAS, VDStream, DenStream,
CluStream in Fig. 6(b). In Fig. 6(b), the processing time rises
as time progresses. For first 50K data samples, the processing
time of i-CODAS and CluStream algorithms are higher than
the processing time of VDStream, DenStream and CODAS.
In this window, the radii of micro-clusters are updating in an
online way, but some of them are still less than their optimal
value. In the next window period the processing time of i-
CODAS is near to the lowest time period which is shown by
VDStream and DenStream as many of the micro-clusters has
already their optimal radii. At the time period of 200K, the
sample processing time of i-CODAS is lowest among the
algorithms. And the processing time of i-CODAS remains
lowest in the following time windows. Initially VDStream
shows good processing speed, but it is not fully online
algorithm. The most noticeable trend from the figure is that
the mean processing time increasing rate is lower for i-
CODAS algorithm than other comparing algorithm in this
experiment. Thus, it can be concluded from Fig. 6 that the
proposed i-CODAS algorithm.

2) Scalability: To evaluate the behavior of proposed
i-CODAS algorithm from low to high dimensional data
stream, we use the popular helical data streams [43].
This experiment describes the scalability characteristics of
i-CODAS algorithm to high dimensional data stream. The
original helical data stream consists of three helical data
series and generated using Eq. (7).

X = rsin(t)

Y = rcos(t)

Z = ct

(7)

The helical data stream is generated using the above time
series equation for different values of t and the constant value
of c. Then, the data series are moved into higher dimen-
sional data space by adding additional data coordinates. In
this application, the density threshold, radius growth rate,
minimum and maximum radius are set to 4, 0.001, 0.03
and 0.07 respectively. The mean sample processing time for
the low and high dimensional helical data stream is shown
in Fig. 7(a) and Fig. 7(b) respectively. In the experiment,
data stream with less than 250 dimensions is referred to
as low dimensional data stream where as more than 250
dimensions size is referred to as high dimensional data
stream. For high dimensional data stream, 5000 is considered
as the maximum number of dimensions. There is a very
small processing time penalty for recursively updating the
micro-cluster radius in i-CODAS until the radius reaches
its optimal. As seen in Fig. 4(a) and Fig. 4(b) in Section
3.C, the number of micro-clusters are more in i-CODAS
than CODAS initially. However, the trend reverses after some

0 50 100 150 200 250
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Sample processing speed vs dimension.

Number of Dimensions

M
e

a
n

 p
ro

c
e

s
s
in

g
 s

p
e

e
d

(S
e

c
)

 

 

CODAS

i−CODAS

(a) Low dimensional data stream

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sample processing speed vs dimension.

Number of Dimensions

M
e

a
n

 p
ro

c
e

s
s
in

g
 s

p
e

e
d

(S
e

c
)

 

 

CODAS

i−CODAS

(b) High dimensional data stream

Fig. 7: Mean sample processing time over low to high
dimensional data stream

time where the number of micro-clusters is more in CODAS
than i-CODAS. Thus, the mean sample processing time in
CODAS exceeds the processing time in i-CODAS. From
Fig. 7(a), the mean sample processing time is less by a
small amount in i-CODAS than CODAS for low dimensional
data stream. As the dimension size increases, so the mean
processing time increases. The difference between the sample
processing time in CODAS and i-CODAS is not significant
for low dimensional data stream. However, the average
sample processing time is larger by a significant amount in
CODAS than i-CODAS for high dimensional data stream. As
the dimension increases, this difference is noticeable in Fig.
7(b). This cause behind this trend is that number of micro-
cluster is more in CODAS than i-CODAS, though the number
of macro-cluster is quite same in both algorithms. Though
this time penalty does not affect in CEDAS so much for the
low dimensional data stream, they are significant in the high
dimensional data stream. Thus, for the high dimensional data
stream, the mean sample processing time is more in CODAS
than i-CODAS. This experiment explains the good scalability
property of the proposed i-CODAS algorithm.

IV. CONCLUSION

Data stream clustering has become one of the hot topics
to research for scientist recently. In this article, we present

Engineering Letters, 27:4, EL_27_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



an improved version of recently proposed CODAS cluster-
ing algorithm. The proposed i-CODAS algorithm offers a
fully online clustering of data stream. i-CODAS algorithm
removes the requirement of setting the global and optimal
micro-cluster radius. Instead, it maintains the local optimal
radius for each micro-cluster independently. The micro-
cluster radius is updated towards its local optimal value using
an online operation. In Section 2, the proposed algorithm
is described in details. We evaluate i-CODAS clustering
algorithm to demonstrate its ability to form arbitrary shaped
clusters and detect noise. The algorithm is compared with
other clustering algorithms with respect to cluster quality,
memory usage, processing speed and scalability. The ex-
perimental result shows that i-CODAS can detect arbitrary
shaped cluster in highly dense region which are separated
by sparse regions. The algorithm shows superior perfor-
mance for identifying the noisy sample than the existing
algorithms in noisy environment. The efficient formation of
micro-cluster contributes to show excellent cluster quality
in terms of purity and accuracy comparing to other popular
data stream clustering algorithms. The memory efficiency
experiment shows that i-CODAS require less memory to
complete its clustering process comparing to other cluster-
ing algorithm. The proposed algorithm shows more sample
processing speed and more scalability performance when
comparing to other clustering algorithms like VDStream,
DenStream, DEC, CODAS.

In this study, the proposed clustering algorithm is an
online approach for clustering the data stream into arbitrarily
shaped with high accuracy, purity and noise sensitivity.
This algorithm is scalable to high-dimensional data stream.
Future research could reduce the memory requirement by
a significant amount without deteriorating other clustering
performance criteria.

ACKNOWLEDGMENT

The work reported in this paper is funded by Fundamental
Research Grant from Ministry of Higher Education (MoHE),
Malaysia titled ”A Reinforcement Learning Sine Cosine
based Strategy for Combinatorial Test Suite Generation”
(Grant no RDU170103). We thank MoHE, Malaysia for the
contribution and support.

REFERENCES

[1] D. Y. Kim, S. T. Park and M. H. Ko, ”A study on the analysis of
IT-related occupational cluster using big data,” IAENG International
Journal of Computer Science, vol. 45, no. 1, pp. 7-11, 2018.

[2] K. Abdalgader, ”Clustering short text using a centroid-based lexical
clustering algorithm,” IAENG International Journal of Computer Sci-
ence, vol. 44, no. 4, pp. 523-536, 2017.

[3] Q. Duan, Y. L. Yang and Y. Li, ”Rough k-modes clustering algorithm
based on entropy,” IAENG International Journal of Computer Science,
vol. 44, no. 1, pp. 13-18, 2017.

[4] M. Ghesmoune, M. Lebbah and H. Azzag, ”State-of-the-art on cluster-
ing data streams,” Big Data Analytics, vol. 1, no. 1, pp. 13, 2016.

[5] F. Zhao, Y. Yang and W. Zhao, ”Adaptive clustering algorithm based on
max-min distance and bayesian decision theory,” IAENG International
Journal of Computer Science, vol. 44, no. 2, pp. 180-187, 2017.

[6] L. F Zhu and J. S Wang, ”Data clustering method based on bat algorithm
and parameters optimization,” Engineering Letters, vol. 27, no. 1, pp.
241-250, 2019.

[7] S. Sen, S. Narasimhan and A. Konar, ”Biological data mining for
genomic clustering using unsupervised neural learning,” Engineering
Letters, vol. 14, no. 2, pp. 61-71, 2007.

[8] K. Deshmukh and G. Shinde, ”Adaptive color image segmentation using
fuzzy min-max clustering,” Engineering Letters, vol. 13, no. 2, pp. 57-
64, 2006.

[9] S. Mansalis, E. Ntoutsi, N. Pelekis and Y. Theodoridis, ”An evaluation
of data stream clustering algorithms,” Statistical Analysis and Data
Mining: The ASA Data Science Journal, vol. 11, no. 4, pp. 167-187,
2018.

[10] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Car-
valho and J. Gama, ”Data stream clustering: A survey,” ACM Computing
Surveys, vol. 46, no. 1, pp. 13, 2013.

[11] R. Hyde and P. Angelov, ”A new online clustering approach for data in
arbitrary shaped clusters,” in Proc. 2nd IEEE International Conference
on Cybernetics 2015, pp. 228-223.

[12] H. Li, R. Liu, J. Wang and Q. Wu, ”An enhanced and efficient cluster-
ing algorithm for large data using MapReduce,” IAENG International
Journal of Computer Science, vol. 46, no. 1, pp. 61-67, 2019.

[13] H. L. Nguyen, Y. K. Woon and W. K. Ng, ”A survey on data stream
clustering and classification,” Knowledge and Information Systems, vol.
45, no. 3, pp. 535-569, 2015.

[14] A. Amini, T. Y. Wah and H. Saboohi, ”On density-based data streams
clustering algorithms: A survey,”Journal of Computer Science and
Technology, vol. 29, no. 1, pp. 116-141, 2014.

[15] M. Ester, H. P. Kriegel, J. Sander and X. Xu, ”A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proc. 2nd International Conference on Knowledge Discovery and
Data Mining 1996, pp. 226-231.

[16] T. Ali, S. Asghar and N. A. Sajid,”Critical analysis of DBSCAN
variations,” in Proc. International Conference on Information and
Emerging Technologies 2010, pp. 1-6.

[17] J. Yang, Q. Wu, Z. Qu and Z. Liu, ”An enhanced density clustering
algorithm for datasets with complex structures,” IAENG International
Journal of Computer Science, vol. 44, no. 2, pp. 150-156, 2017.

[18] C. C. Aggarwal, S. Y. Philip, J. Han and J. Wang, ”A framework
for clustering evolving data streams,” in Proc. 29th International
Conference on Very Large Databases 2003, pp. 81-92.

[19] F. Cao, M. Estert, W. Qian and A. Zhou, ”Density-based clustering
over an evolving data stream with noise,” in Proc. SIAM International
Conference on Data Mining 2006, pp. 328-339.

[20] C. Ruiz, E. Menasalvas and M. Spiliopoulou, ”C-DENSTREAM:
Using domain knowledge on a data stream,” in Proc. International
Conference on Discovery Science”, pp. 287-301.

[21] L. X. Liu, Y. F. Guo, J. Kang and H. Huang, ”A three-step clustering
algorithm over an evolving data stream,” in Proc. IEEE International
Conference on Intelligent Computing and Intelligent Systems 2009, pp.
160-164.

[22] J. Ren and R. Ma, ”Density-based data streams clustering over sliding
windows,” in Proc. 6th International Conference on Fuzzy Systems and
Knowledge Discovery 2009, pp. 248-252.

[23] J. Lin and H. Lin, ”A density-based clustering over evolving het-
erogeneous data stream,” in Proc. ISECS International Colloquium on
Computing, Communication, Control, and Management 2009, pp. 275-
277.

[24] I. Ntoutsi, A. Zimek, T. Palpanas, P. Krger and H. P. Kriegel, ”Density-
based projected clustering over high dimensional data streams,” in Proc.
SIAM International Conference on Data Mining 2012, pp. 987-998.

[25] N. Su, J. Liu, C. Yan, T. Liu and X. An, ”An arbitrary shape clustering
algorithm over variable density data streams,” Journal of Algorithms and
Computational Technology, vol. 11, no. 1, pp. 93-99, 2017.

[26] M. Hassani, P. Spaus, M. M. Gaber and T. Seidl, ”Density-based
projected clustering of data streams,” in Proc. International Conference
on Scalable Uncertainty Management 2012, pp. 311-324.

[27] C. Isaksson, M. H. Dunham and M. Hahsler, ”SOStream: Self orga-
nizing density-based clustering over data stream,” in Proc. International
Workshop on Machine Learning and Data Mining in Pattern Recogni-
tion 2012, pp. 264-278.

[28] B. J. Frey and D. Dueck, ”Clustering by passing messages between
data points,” Science, vol. 315, no. 5814, pp. 972-976, 2007.

[29] J. P. Zhang, F. C. Chen, L. X. Liu and S. M. Li, ”Online stream
clustering using density and affinity propagation algorithm,” in Proc.
4th Proc. IEEE International Conference on Software Engineering and
Service Science 2013, pp. 828-832.

[30] S. Ding, J. Zhang, H. Jia and J. Qian, ”An adaptive density data stream
clustering algorithm,” Cognitive Computation, vol. 8, no. 1, pp. 30-38,
2016.

[31] A. Forestiero, C. Pizzuti and G. Spezzano, ”A single pass algorithm
for clustering evolving data streams based on swarm intelligence,” Data
Mining and Knowledge Discovery, vol. 26, no. 1, pp. 1-26, 2013.

[32] C. Fahy, S. Yang and M. A. Gongora, ”Ant colony stream clustering:
A fast density clustering algorithm for dynamic data streams,” IEEE
Transactions on Cybernetics, vol. 49, no. 6, pp. 2215 - 2228, 2018.

Engineering Letters, 27:4, EL_27_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



[33] R. D. Baruah and P. Angelov, ”Evolving local means method for
clustering of streaming data,” in Proc. IEEE International Conference
on Fuzzy Systems 2012, pp. 1-8.

[34] R. D. Baruah and P. Angelov,”DEC: Dynamically evolving clustering
and its application to structure identification of evolving fuzzy models,”
IEEE Transactions on Cybernetics, vol. 44, no. 9, pp. 1619-1631, 2014.

[35] D. Puschmann, P. Barnaghi and R. Tafazolli, ”Adaptive clustering for
dynamic IoT data streams,” IEEE Internet of Things Journal, vol. 4,
no. 1, pp. 64-74, 2017.

[36] V. S. Moertini, G. W. Suarjana, L. Venica and G. Karya, ”Big data re-
duction technique using parallel hierarchical agglomerative clustering,”
IAENG International Journal of Computer Science, vol. 45, no. 1, pp.
188-205, 2018.

[37] J. Hou and A. Zhang, ”Enhanced dominant sets clustering by cluster
expansion,” IEEE Access, vol. 6, pp. 8916-8924, 2018.

[38] L. Jiang and D. Xie, ”An efficient differential memetic algorithm for
clustering problem,” IAENG International Journal of Computer Science,
vol. 45, no. 1, pp. 118-129, 2018.

[39] M. K.Islam, M. M. Ahmed and K. Z. Zamli, ”A buffer-based online
clustering for evolving data stream,” Information Sciences, vol. 489, pp.
113-135, 2019.

[40] L. Glass and M. Mackey, ”Mackey-glass equation,” Scholarpedia, vol.
5, no. 3, pp. 6908, 2010.

[41] R. Hyde, P. Angelov and A. R. MacKenzie, ”Fully online clustering
of evolving data streams into arbitrarily shaped clusters,” Information
Sciences, vol. 382, pp. 96-114, 2017.

[42] S. D. Bay, D. Kibler, M. J. Pazzani and P. Smyth, ”The UCI KDD
archive of large data sets for data mining research and experimentation,”
ACM SIGKDD Explorations Newsletter, vol. 2, no. 2, pp. 81-85, 2000.

[43] H. Steinhaus, Mathematical snapshots, 3rd ed., New York: Dover:
Courier Corporation, 1999.

Engineering Letters, 27:4, EL_27_4_12

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 




