
 

 

Abstract—In this paper, some exact nonlocal boundary 

conditions are derived on an elliptical arc artificial boundary, 

and they are applied to solving the exterior anisotropic 

problems in concave angle domains. Based on the above 

artificial boundary conditions, the Schwarz alternating 

algorithm is presented. The convergence of this algorithm is 

examined. Finally, some numerical examples are given to show 

the effectiveness of our methods.. 

 
Index Terms—Schwarz alternating algorithm, elliptical arc 

artificial boundary condition, anisotropic problem 

 

I. INTRODUCTION 

ANY scientific and engineering computing 

problems can be modeled by boundary value problems 

of partial differential equations in unbounded domains. There 

is a variety of numerical methods to solve such problems. 

One of the commonly used techniques is the method of 

artificial boundary conditions [1]-[9]. The method may be 

summarized as follows: (i) Introduce an artificial boundary  , 

which divides the original unbounded domain into two 

non-overlapping subdomains: a bounded computational 

domain   and an infinite residual domain  . (ii) By 

analyzing the problem in the infinite residual domain  , 

obtain a relation on the artificial boundary   involving the 

unknown function and its derivatives. (iii) Using the relation 

as a boundary condition on  , to obtain a well-posed problem 

in the bounded computational domain  . (iv) Solve the 

problem in the bounded computational domain   be the 

standard finite element methods or some other numerical 

methods. 

Based on artificial boundary conditions, the overlapping 

and non-overlapping domain decomposition methods can be 

viewed as effective ways to solve problems in unbounded 

domains. These techniques have been used to solve many 

linear or nonlinear problems [10]-[17]. Recently, the authors 

used a new elliptical arc artificial boundary and some 

iteration methods to solve Poisson problems and anisotropic 

 
Manuscript received April 8, 2019; revised August 5, 2019. This work 

was supported by the National Natural Science Foundation of China (Grant 

No. 11371198). 

Yajun Chen is with the School of Mathematical Sciences, Nanjing 
Normal University, Nanjing 210023 and the Department of Mathematics, 

Shanghai Maritime University, Shanghai 200136, China. (E-mail: 

chenyajun@shmtu.edu.cn). 
Qikui Du is with the School of Mathematical Sciences, Nanjing Normal 

University, Nanjing 210023, China. 

 

problems [18]-[22]. In this paper, we derive an exact 

elliptical arc artificial boundary condition for anisotropic 

problems in an unbounded domain with a concave angle, and 

apply the methods in [10] to solving the above problems. 

Let   be an exterior concave angle domain with angle  , 

and       . The boundary of domain   is decomposed 

into three disjoint parts:      and    (see Fig. 1), i.e. 

          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,        ,       ,       . 

The boundary   is a simple smooth curve part,    and    are 

two half lines. 

 

Fig. 1.  The illustration of domain   

We consider the following anisotropic problem: 
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and 

{

   (   )              
                     

             
                         

     (2) 

where   ( 
  
  

),   is a constant and      ,   is 

the unknown function,     ( )  and       ( )  are 

given functions,     ( ) is compact. 
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The outline of the paper is as follows. In Section 2, we 

derive an exact elliptical arc artificial boundary condition 

for the above anisotropic problem. In Section 3, we 

construct a Schwarz alternating method.  In Section 4, we 

give the convergence of the method, and analyze the 

convergence rate for a typical domain. Finally, in Section 5 

we present some numerical results to show its accuracy and 

the effectiveness of our methods 

II. THE EXACT ARTIFICIAL BOUNDARY CONDITION 

Let    denote the half distance between the two foci of 

an ellipse, we introduce an elliptic system of co-ordinates 

(   ) such that the artificial boundary   coincides with the 

elliptical arc *(   )           +, where 

   
√    

 
 ,       

   

√    
. 

Thus, the Cartesian co-ordinates (   ) are related to the 

elliptic co-ordinates (   ) , that is              , 

             . The domain exterior to  , namely the 

*(   )           + is denoted by  . Let   be a 

circle arc with radius   at the origin, enclosing   and 

    ( ). We first introduce the following transformation 

    ,    ,  then the anisotropic problem (1) become the 

following Poisson problem: 

{

               ̃ 

            ̃   ̃  
  

  
  ̃         ̃ 

                        (3) 

where  ̃  
 

 √ 
 ,   

  

  
(             ). The artificial 

boundary is an elliptical arc 

 ̃  *(   )           , (   )   ̃+, 
and the exterior domain to  ̃ is 

 ̃  *(   )            (   )   ̃+. 

Assume that     in the domain  ̃, then problem (3) 

confines in  ̃ is 

{
               ̃ 

            ̃   ̃  
                        

                (4) 

By separation of variables, we know that the solution of 

problem (4) has the form 

 (   )  ∑    
(    )

  

   
      

   

 
,      (5) 

where 

   
 

 
∫  (    )    

   

 
  

 

 
         .         (6) 

Thus (6) can be written as 

 (   )                      

 
 

 
∑  (    )

  

   
   

  (      )          

∫  (    )    
   

 
   

   

 

 

 
       (7) 

We differentiate (7) with respect to   and set      to 

obtain 

  

  
  ̃   

  

  
∑  ∫  (    )    

   

 
   

   

 
  

 

 
  
   .    (8) 

Since 
  

  
  ̃   

 

√ 

  

  
  ̃, we obtain the exact artificial 

boundary condition on  ̃: 

  

  
  ̃  

  

  √ 
∑  ∫  (    )    

   

 
   

   

 

 

 
    

   

    (    )                                                  
     (9) 

 

III. SCHWARZ ALTERNATING METHOD 

We introduce two elliptical arc artificial boundaries  ̃  

and  ̃  with the same foci,  ̃  *(   )           +, 

     , which enclose  ̃  such that     ( ̃  ̃ )    and 

       . Then  ̃  is divided into two overlapping 

subdomains  ̃  and  ̃  (see Fig. 2). Let  ̃  be the bounded 

domain among  ̃  ̃   ̃  and  ̃ , and  ̃  be the unbounded 

domain outside  ̃   ̃  and  ̃ . Let   
( )
  ( )  ̃ ,      .  

 

 

Fig.2: The illustration of domain   ̃  and  ̃  

 

The Schwarz alternating method is given by 

{
 
 

 
     

( )
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( )
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         ,          (10) 
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( )
            ̃  

  
( )
           ̃   ̃  

  
( )
   

( )
         ̃  

  
( )
                       

         .         (11) 

For problem (2), we can also construct the following 

Schwarz alternating method: 

{
 
 

 
     

( )
            ̃  

   
( )

  
           ̃   ̃  

  
( )
  ̃         ̃ 

  
( )
   

(   )
         ̃  

         ,          (12) 

and 

{
 
 

 
     

( )
            ̃  

   
( )

  
           ̃   ̃  

  
( )
   

( )
         ̃  

  
( )
                        

         .         (13) 

Taking some initial value of function    on boundary  ̃ , 

e.g.    ̃   . Combining it with the given boundary 

condition on  ̃   ̃   ̃, we can solve the interior boundary 

value problem in domain  ̃ , get the value of solution     ̃  

on  ̃ , and then solve the exterior boundary value problem in 

domain  ̃ , get the value of solution     ̃  on  ̃ , and then 

solve the problem in  ̃  again, ..., and so on. 

In the following sections, we just consider the 

convergence and convergence rate of problem (1), we can 

obtain corresponding result of problem (2) in the same way. 

 

IV. CONVERGENCE OF THE METHOD 

The solution of problems (3) is in space 

  *    
 ( ̃)         ̃   ̃ +, 

where 

  
 ( )  *  

 

√         (       )
 
  

  
 
  

  
   ( ̃) +. 

Functions   
( )
   ( ̃ ) and   

( )
   

 ( ̃ ) can be 

extended to functions in  . Let 

   *   
 ( ̃ )         ̃   ̃   ̃ +, 

   *    
 ( ̃ )         ̃   ̃   ̃ +. 

Then 

  
( )
   

(   )       
( )    

( )
   . 

We can look upon    and    as the subspaces of    . Define 

the bilinear form as follows 

 (   )  ∫       
 

. 

From this, the inner product  (   ) and the norm ‖ ‖  in   

can be defined. Then (10) and (11) are equivalent to 

variational problems 

{
       

( )
      

(   )              

 (  
( )      )                

                  (14) 

and 

{
       

( )
      

( )              

 (  
( )      )                

                   (15) 

Let                denote the orthogonal projectors 

under the inner product  (   ). We have 

{
  
( )
   

(   )     (    
(   )) 

  
( )    

( )     (    
( )) 

                (16) 

or equivalently 

{
    

( )      (    
(   )) 

    
( )      (    

( )) 
                    (17) 

where   
        are the orthogonal complementary spaces 

of    in  . Let 

  
( )
     

( )
      , 

be errors. Then (17) is 

{
  
( )        

(   ) 

  
( )        

( ) 
                         (18) 

Therefore 

{
  
(   )            

( )             

  
(   )            

( )             
  

This implies that, if *  
( )
+      , are convergent, then their 

limits are in   
    

 . Similar to the proofs given in [10] we 

can show the following results 

Theorem 1.        ‖  
( )
‖
 
   for      . 
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Theorem 2. There exists a constant        , such 

that 

‖  
( )
‖
 
     ‖  

( )‖
 
     ‖  

( )
‖
 
   ‖  

( )‖
 
. 

Theorems 1 and 2 show that the Schwarz alternating 

method converges geometrically, and the contraction factor 

is  . We find it is quite difficult to analyze the rate of 

convergence   for general unbounded domain  ̃. However, it 

is possible to find   when  ̃ is an elliptical arc. 

For simplicity, we let  ̃  ̃  and  ̃  be elliptical arcs with 

the same foci,  ̃  *(   )           + ,  ̃  
*(   )            + ,      , and         . 

Let 

      
( )(    )  ∑   

  
      

   

 
,      (19) 

is given on the artificial boundary  ̃  and 

   
( )

  
        ̃.                       (20) 

And let 

  
( )(   )  ∑ (   
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     ̃ . 

From (18) and (19) we have 
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Hence 
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Therefore 
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 (     )  

  
 (     )
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Using (7), we can obtain the value of function on  ̃ : 
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Similarly, we can obtain 

‖  
( )‖ 

 
  ̃ 

 
  

  

 
(     )‖  

( )‖ 
 
  ̃ 

 
. 

Using mathematics induction, we have 

‖  
( )‖ 

 
  ̃ 

 
  

   

 
(     )‖  

( )‖ 
 
  ̃ 

 
        , 

‖  
(   )‖ 

 
  ̃ 

 
  

   

 
(     )‖  

( )‖ 
 
  ̃ 

 
        . 

Therefore, we have 

Theorem 3.  Let  ̃  ̃  and  ̃  be elliptical arcs with the 

same foci,  ̃  *(   )           + ,  ̃  *(   )  
          + ,      , and         . If we 

apply the Schwarz alternating method (10) and (11) to 

problem (3), then 

‖  
( )‖ 

 
  ̃ 
   ‖  

( )‖ 
 
  ̃ 
        , 

‖  
(   )‖ 

 
  ̃ 
   ‖  

( )‖ 
 
  ̃ 
        , 

where    
 

 
(     ). 

Finally, using the trace theorem we have 

‖  
( )‖ 

 
  ̃ 
            , 

‖  
(   )‖ 

 
  ̃ 
            . 

The smaller the       is, the faster the convergence is. 

 

V. NUMERICAL EXAMPLES 

In this section, we give a numerical example to show the 

effectiveness of Schwarz alternating method. The finite 

element method with liner elements is used in the 

computation. 

Example 1. We consider problem (1), where   
*(   )           + ,   *(   )         

Engineering Letters, 27:4, EL_27_4_16

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



 

  + ,    *(   )        + , and    *(   )     
    +. By using coordinate transformation     ,    , 

we turn the original problem into the problem as the 

following 

{

               ̃ 

            ̃   ̃  
  

  
  ̃         ̃ 

                          (21) 

where   ̃  *(   )            +,  ̃  *(   )   
         + ,  ̃  *(   )         + ,  ̃  

*(   )          + ,    
 √    

 
, and      

   

√    
. 

Let  (   )  
   

       
 be the exact solution of original 

problem and   
  

  
  . 

    is the finite element solution in  ̃ ,   and    denote 

the maximal error of all node functions in  ̃ , respectively, 

i.e., 

 ( )         ̃   (  )     
 (  )    

  ( )         ̃     
   (  )     

 (  )    

  ( ) is the approximation of the convergence rate, i.e., 

  ( )  
  (   )

  ( )
 . 

Let  ̃  *(   )               + ,       

be the artificial boundaries, and     . Fig. 3 shows the 

mesh   of subdomain  ̃ , Table 1 shows the convergence 

rate for different anisotropic coefficient   (Mesh    , 

       ). Table 2 shows the relation between convergence 

rate and mesh (     ,        ). Table 3 shows the 

relation between convergence rate and overlapping degree 

(      , Mesh    ). Fig. 4 shows   ( ̃ )  errors for 

different mesh. Fig. 5 shows   ( ̃ )  errors for different 

overlapping degree. 

 

 

Fig. 3: Mesh   of domain   ̃ . 

 

Fig. 4:   ( ̃ ) errors for different mesh. 

 

 

Fig. 5:   ( ̃ ) errors for different overlapping degree. 

 

TABLE 1: THE CONVERGENCE RATE FOR DIFFERENT ANISOTROPIC 

COEFFICIENT    (MESH    ,        ). 

    Numbers of iteration and corresponding values 

  0 1 2 3 4 5 

0.8  ( ) 0.166  0.054  0.024  0.017  0.015 0.014  

   ( )  0.112  0.034  0.011  0.003  0.001  

   ( )   3.257  3.194  3.192  3.192  

0.5  ( ) 0.128  0.044  0.027  0.022  0.021  0.020  

   ( )  0.088  0.026  0.008 0.003  0.001  

   ( )   3.399  3.207  3.198  3.197  

0.2  ( ) 0.097  0.070  0.062  0.059  0.059  0.058  

   ( )  0.047  0.013  0.004  0.001  0.000  

   ( )   3.629  3.229  3.212  3.210  

 

 
TABLE 2: THE RELATION BETWEEN CONVERGENCE RATE AND MESH 

 (     ,        ). 

M   Numbers of iteration and corresponding values 

  0 1 2 3 4 5 

     ( ) 0.136  0.087  0.072  0.067  0.066  0.066  

   ( )  0.083 0.024  0.007  0.002  0.001  

   ( )   3.475  3.293  3.279  3.267  

     ( ) 0.128  0.044  0.027  0.022  0.021  0.020  

   ( )  0.088  0.026  0.008  0.003  0.001  

   ( )   3.399  3.207  3.198  3.197  

     ( ) 0.128  0.039  0.013  0.008  0.006  0.006  

   ( )  0.089  0.026  0.008  0.003  0.001  

   ( )   3.380  3.184  3.175  3.175  

 

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iteration l

E
rr

o
r

h/2

h/4

h/8

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iteration l

E
rr

o
r

0.25

0.5

0.75

Engineering Letters, 27:4, EL_27_4_16

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



 

 
TABLE 3: THE RELATION BETWEEN CONVERGENCE RATE AND OVERLAPPING 

DEGREE (     , MESH    ). 

     Numbers of iteration and corresponding values 

  0 1 2 3 4 5 

0.25  ( ) 0.128  0.044  0.027  0.022  0.021  0.020  

   ( )  0.088  0.026  0.008  0.003  0.001  

   ( )   3.399  3.207  3.198  3.197  

0.5  ( ) 0.128  0.050  0.035  0.027  0.023  0.021  

   ( )  0.072  0.030  0.013  0.006  0.003  

   ( )   2.426  2.288  2.272  2.270  

0.75  ( ) 0.128  0.082  0.054  0.041  0.034  0.029  

   ( )  0.046  0.028  0.018  0.012  0.008  

   ( )   1.638  1.570  1.547  1.539  

The numerical results show that the Schwarz alternating 

method is feasible and convergent quickly. Its convergence 

rate is related to the degree of overlapping of subdomains. 

The higher the overlapping degree of the two subdomains is, 

the faster the convergence is. Moreover, the convergence rate 

is nearly not affected by finite element mesh. 
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