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Abstract—This article presents a novel sliding plane
control approach by using differential geometry applied to
multi-input multi-output coupled nonlinear systems. The design
methodology is based on the decoupling of the output signals,
which are controlled as independent loops. Smooth functions
are used for the switching control signal to decrease the
chattering in the outputs. Experimental results are validated
over a simulated stirred tank where the robustness of the
proposed control method to disturbances is observed. Besides,
the chattering effect is effectively decreased by using a smooth
function to approximate the discontinuous term in the control
signal.

Index Terms—Sliding mode control, variable structure,
MIMO systems.

I. INTRODUCTION

THE sliding mode control approach is a variable structure
method with inherent robust features where the stability

of the closed-loop system is ensured [1]. This control
approach has been developed since the 1950s for many
types of continuous and discrete systems, such as non-linear,
scalar and multivariable systems with outstanding results
in comparison with classical methods [2], [3]. The main
drawback of the method is the chattering obtained in the
outputs of the system due to a high-frequency switching
control signal [4]. However, this drawback can be reduced
through several methods as proposed in [5], [6]. It is
worth noting that the application of the sliding mode control
to multi-input multi-output (MIMO) systems is a complex
task, especially when the MIMO system is coupled or
nonlinear [1], [7].

In this paper, a sliding mode control applied to MIMO
systems is presented, based on the decoupling of the output
signals. The paper is organized as follows: in section II is
shown the sliding mode control of MIMO systems based
on output signals decoupling through of equivalent control
calculus and its ideal sliding dynamics. In section III
the design of the controller for a stirred tank, detailing
its corresponding mathematical modeling is presented, and
finally, in section IV the experimental results based on a
simulated model with and without step disturbances are
presented and discussed.

II. SLIDING MODE CONTROL OF MIMO SYSTEMS

Consider a time-invariant MIMO system of the form:
ẋ = f(x) + Gu

y = h(x)
(1)
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where f is a vector-valued. There are m sliding surfaces,
such as m control signals, whose intersection describes the
sliding mode, as follows:

S =
m⋂
i=1

{x ∈ X ⊂ Rn : σi(x) = 0} (2)

ui =

{
u+i (x, t) for σi(x) > 0
u−i (x, t) for σi(x) < 0

(3)

The sliding mode dynamics can be described through the
equivalent control:

σ(x) = 0 σ̇(x) = ∇σ(x) f(x) +∇σ(x) Gueq (4)

where ∇σ(x) is a matrix with m rows, equal to m sliding
surfaces; and n columns, equal to n state variables, and
where the equivalent control is defined by:

ueq = − (∇σ(x) G)
−1

(∇σ(x) f(x)) (5)

And also fulfilling the transversality condition as the
determinant of the matrix defined by ∇σ(x) and G as
follows:

det (∇σ(x) G) 6= 0 (6)

the following sliding dynamics is obtained, as proposed
in [1]:

ẋ = f(x) + Gueq =
(
I−G (∇σ(x)G)

−1∇σ(x)
)
f(x)

(7)
Now, consider a time-invariant linear MIMO system with

n states, m inputs and p outputs:

ẋ = Ax+Bu

y = Cx
(8)

which can be described through a closed-loop transference
matrix, that contents the transfer functions relating each
output to each reference signal [8]. In this transference
matrix can be observed changes in some or all system
outputs due to each reference signal, so the design problem
is to control each output separately without to affect the
other system outputs.

The integral action in sliding mode control helps to
achieve this separation by minimizing the tracking error,
being zero in the sliding mode, allowing each output to
be controlled independently. This separation is possible
by minimizing the interaction between the output signals [4].

To minimize the interaction, the closed-loop transference
matrix must have very slight terms outside of its main
diagonal (diagonal matrix), as follows:

Y (s) = H(s)R(s) H(s) =


H11 0 · · · 0

0 H22 · · · 0
...

...
. . .

...
0 0 · · · Hpp


(9)
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Therefore, m sliding planes are defined according to the
n state variables and p integral actions of the tracking error,
as follows:

σ(x) = Kax+Kb

∫
(y − r)dτ (10)

From (8) and applying the invariance condition the
following equivalent control can be obtained:

σ̇(x) =
dσ(x)

dt
= Kaẋ+Kb(y − r) = 0 (11)

σ̇(x) = Ka(Ax+Bueq) +KbCx−Kbr

σ̇(x) = (KaA+KbC)x+KaBueq −Kbr

KaBueq = −(KaA+KbC)x+Kbr

ueq = −(KaB)−1(KaA+KbC)x+ (KaB)−1Kbr (12)

Replacing in (8), the ideal sliding dynamics is obtained:

ẋ = Ax+B
(
−(KaB)−1 (KaA+KbC)x+ (KaB)−1Kbr

)
ẋ = Ax−B(KaB)−1 (KaA+KbC)x+B(KaB)−1Kbr

ẋ =
(
A−B(KaB)−1 (KaA+KbC)

)
x+B(KaB)−1Kbr

ẋ = APDx+BPDr

APD = A−B(KaB)−1 (KaA+KbC)

BPD = B(KaB)−1Kb

(13)

The closed-loop transference matrix is obtained from the
ideal sliding dynamics, as follows:

H(s) = C (sI −APD)
−1
BPD

By defining:
K = B(KaB)−1Kb (14)

the closed-loop transference matrix can be found like this:

H(s) = C
(
sI −A+B(KaB)−1 (KaA+KbC)

)−1
K
(15)

From (14), a relationship between Ka and Kb is obtained:

KaK = Kb (16)

The matrix Ka is selected, such that det(KaB) 6= 0. Then,
assuming K unknown, H(s) is calculated for the system to
be stable and by considering that their elements outside of
its main diagonal are close to zero or zero [7].

From (11), the following expression is obtained:

σ̇(x) = KaAx+KaBueq +Kb(y − r) = 0

where the control signal is defined as follows:

ueq = −(KaB)−1 (Ψax+ Ψb(y − r))

σ̇(x) = (KaA−Ψa)x+ (Kb −Ψb)(y − r)

By considering the reachability condition:

σ̇i(x)σi(x) < 0

a control signal is defined, such that if σi(x) is positive,
σ̇i(x) is negative and vice versa. Therefore, the resulting
control signal is defined by:

u = −(KaB)−1 (Ψa|x|+ Ψb|y − r|) sign(σ(x)) (17)

where

(Ψa)ij > |(KaA)ij | (Ψb)ij > |(Kb)ij |

An adjustment parameter ku is included, such that the
previous inequality is met.

(Ψa)ij = ku|(KaA)ij | (Ψb)ij = ku|(Kb)ij | (18)

To solve the drawback of chattering, which is related to
the discontinuous function that ensures a sliding mode on
the sliding plane, functions such as hyperbolic tangent or the
saturation function are used to approximate the sign function
[7], as follows:

sign(x) ≈ tanh(x)

sign(x) ≈ sat(x) =
x

|x|+ δ

(19)

III. MATHEMATICAL MODEL STIRRED TANK

Consider the stirred tank of Fig. 1 with constant
cross-sectional area A, which is fed with two time-varying
inflows F1(t) and F2(t), both with constant concentrations
c1 and c2, respectively, and also an outflow F (t) with
concentration c(t) equals to the concentration in the tank.
The tank in steady-state has a 1 m3 of constant volume and
a 0.02 m3/s of constant outflow, with a 1.25 kmol/m3 of
constant concentration. The input concentrations c1 and c2
are 1 kmol/m3 and 2 kmol/m3, respectively [9].

Fig. 1. Stirred tank.

First consider the mass and flow balance equations:

F1(t) + F2(t)− F (t) = V̇ (t)

c1F1(t) + c2F2(t)− c(t)F (t) =
d

dt
(c(t)V (t))

where the outflow F (t) depends on the volume and the
cross-sectional area, as follows:

F (t) = k

√
V (t)

A

By assuming slight deviations and linearizing the system
at the steady-state conditions, the following equations are
obtained:

∆F1(t) + ∆F2(t)− Fo

2Vo
∆V (t) = ∆V̇ (t)
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c1∆F1(t) + c2∆F2(t)− co
Fo

2Vo
∆V (t)

− Fo∆c(t) = co∆V̇ (t) + Vo∆ċ(t)

By considering ∆V (t) and ∆c(t) state variables x1 and
x2, ∆F1(t) and ∆F2(t) the inputs ∆u1 and ∆u2, and ∆F (t)
and ∆c(t) the outputs, respectively, the state space system
can be rewritten as follows:

ẋ =

[
− Fo

2Vo
0

0 −Fo

Vo

]
x+

[
1 1

c1−co
Vo

c2−co
Vo

]
∆u[

∆F (t)
∆c(t)

]
=

[
Fo

2Vo
0

0 1

]
x

and therefore, by replacing the initial value conditions, the
following linear system is obtained:

ẋ =

[
−0.01 0

0 −0.02

]
x+

[
1 1

−0.25 0.75

]
∆u[

∆F (t)
∆c(t)

]
=

[
0.01 0

0 1

]
x

IV. ANALYSIS OF RESULTS

The design and implementation of the stirred tank
controller, is performed in the Simulink environment of
c©MATLAB. In Fig. 2 can be seen the block diagram,

where the saturation function of (19), with δ = 0.1, is used
to approximate the discontinuous function of the sliding
plane resulting in and therefore decrease the chattering. The
poles of the closed-loop system are p1 = −0.5 and p2 = −1.

Fig. 2. Stirred tank using Simulink.

In order to evaluate the system performance, the control
signals are activated independently. In Fig. 3 is shown control
and output signals for the reference signals ∆F (t) = 0.01

and ∆c(t) = 0 for t ≥ 0. It can be seen that the solid line,
corresponding to the outflow, follows the reference signal
with steady value of 0.01.

In addition, the dashed line, corresponding to the
concentration in the tank, has a small transient. This
transient is not comparable with the concentration level
at steady-state (which is less than 0.002 kmol/m3). It is
noticeable that, when the outflow reaches the reference
signal, the concentration returns to the steady-state value.

In Fig. 4 is shown the control and the output signals by
considering reference signals ∆F (t) = 0 and ∆c(t) = 0.2
for t ≥ 0. It can be seen that the dashed line, corresponding
to the concentration into the tank, follows the reference signal
(steady-state equal to 0.2). Also, the solid line, corresponding
to the outflow, does not move of its steady-state value. In
this case, variations on the concentration in the tank do not
affect the outflow.

Fig. 3. Control signals and stirred tank output signals to ∆F (t) = 0.01
and ∆c(t) = 0 reference signals.

In Fig. 5 and Fig. 6 are shown the output signals for
their corresponding reference signals by considering state
feedback and tracking control. It is worth noting that the
eigenvalues of the closed-loop system are λ1 = −0.5 and
λ2 = −1, and the K feedback matrix is calculated by using
eigen-structure assignment described in [10].

Engineering Letters, 27:4, EL_27_4_18

(Advance online publication: 20 November 2019)

 
______________________________________________________________________________________ 



Fig. 4. Control signals and stirred tank output signals to ∆F (t) = 0 and
∆c(t) = 0.2 reference signals.

Fig. 5. Stirred tank output signals to ∆F (t) = 0.01 and ∆c(t) = 0
reference signals.

In order to analyze the robustness of the closed loop
system to disturbances, step disturbances are added to both
control signals ∆u1 and ∆u2 for the previously procedure,
using a constant ku = 300. At the 20 simulation seconds the
disturbance for the second control signal ∆u2 is activated,
and at the 10 seconds after the disturbance for the first
control signal ∆u1 is activated.

In Fig. 7 are presented the control and output signals with

Fig. 6. Stirred tank output signals to ∆F (t) = 0 and ∆c(t) = 0.2
reference signals.

Fig. 7. Control signals and stirred tank output signals to ∆F (t) = 0.01
and ∆c(t) = 0 reference signals and step disturbances.

their corresponding reference signals and by considering step
disturbances of 0.03 and 0.1 to ∆u1 and ∆u2, respectively.
It can be seen that the solid line, corresponding to the
outflow, follows the reference signal (with steady state 0.01)
despite the disturbances. Also, the dashed line corresponding
to the concentration in the tank, has a transient near a half
of the reference value. This transient is not comparable
with the level concentration at the steady state (less than
0.005 kmol/m3). It is noticeable that the concentration in
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Fig. 8. Control signals and stirred tank output signals to ∆F (t) = 0 and
∆c(t) = 0.2 reference signals and step disturbances.

the tank returns to the steady state value 10 seconds before
the second disturbance.

In Fig. 8 are shown the control and output signals for
their corresponding reference signals with step disturbances
of 0.04 and −0.04 to ∆u1 and ∆u2, respectively. The
dashed line, corresponding to the concentration into the tank,
follows the reference signal (with steady-state of 0.2) despite
the disturbances. Also, the solid line, corresponding to the
outflow, does not move of its steady-state value. In this case,
variations on the concentration in the tank do not affect the

outflow despite the disturbances at each control signals.

V. CONCLUSIONS

In this paper, a novel sliding plane control approach
by using differential geometry applied to multi-input
multi-output coupled nonlinear systems is presented, with
an application to systems with internal coupling. The design
methodology, which is based on the decoupling of the
output signals, takes advantage of the fact that sliding
dynamics successfully decouple each of the outputs. This
effect is achieved by controlling the outputs individually as
independent loops, and by considering the coupling effect
as external disturbances. These results are validated over
a stirred tank with additive disturbances. The difficulty in
the sliding mode control approach known as chattering, it
is decreased effectively, replacing the discontinuous control
function sign(x) with a smooth function around zero, such
as the functions in (19).
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