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Abstract—The problem of exponential synchronization is
considered for delayed neural networks with Lévy noise and
Markovian switching. By the technique of stochastic analysis,
sufficient conditions are proposed to guarantee the exponential
synchronization of master system and slave system. Via M-
matrix approach, the control gain can be obtained from the
solution of some linear equations and the Lyapunov exponent of
the system is derived as well. A numerical example is presented
to verify the effectiveness of our result.

Index Terms—exponential synchronization, Lévy noise,
Markovian switching, M-matrix, neural networks

I. INTRODUCTION

The synchronization issues of neural networks have re-
cently been a hot research area along with the successful
applications of neural networks such as signal processing,
secure communication, associate memory and pattern recog-
nition. Based on the Lyapunov stability theory and master-
slave system concept [1], all kinds of criteria are presented
to achieve the exponential or asymptotic synchronization of
the systems [2]–[6].

The synaptic transmission in real nervous systems, from
a practical perspective, can be viewed as a noisy process
brought on by random fluctuations from the release of
neurotransmitters and other probabilistic causes [7]. Thus
stochastic noise has become an essential component in
modeling neural networks. Even to now, Gaussian white
noise or Brownian motion has been regarded as a natural
model to describe the disturbance arising in neural networks
or nonlinear systems [2], [8]. Being a continuous process,
however, Brownian motion can not adequately picture the
instantaneous changes appear in systems. Lévy noise, which
is frequently found in fields of finance and statistical me-
chanics, is more suitable for modeling diversified noise due
to two reasons. First, Lévy process is a generalized model
which includes Brownian motion [9]. Second, Lévy process
can be decomposed into a continuous part and a jump part
through Lévy-Itô decomposition [9], [10], which means more
types of noises can be simulated by Lévy process whether
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they are continuous or not. Hence systems driven by Lévy
noise have become the subject investigated by more and more
scholars and the dynamical properties of these systems have
attracted an increasing research attention [10]–[16].

On the other hand, due to the phenomena such as com-
ponent failures or repairs, abrupt changes often emerge in
the structure and parameters of many neural networks. In
this situation, neural networks may be regarded as systems
which have finite modes, and the modes may switch from one
to another at different times [13], [17]. To this day, finite-
state Markov chain has already been an appropriate model
used to govern the switching between different modes of
neural networks. The synchronization or stability issues of
Markovian switching neural networks have therefore aroused
a lot of research interest [2]–[4], [8], [11], [16]–[20].

Motivated by the studies mentioned above, we aim to
deal with the exponential synchronization problem of neural
networks with Lévy noise and Markovian switching. In lit-
erature concerning similar issues, the vast majority of results
are exhibited in form of linear matrix inequalities (LMI) [3],
[4], [21]. Nevertheless, the defect of LMI approach lies in the
fact that the matrices in the inequalities are often with high
orders and solving these inequalities has to rely on software.
We thus utilize M-matrix approach to derive some easy-to-
solve criteria which ensure the exponential synchronization
of neural networks. The synchronization rate can be obtained
as well by calculating the Lyapunov exponent.

This paper is organized as follows. The model of neural
networks mentioned above is presented in the second part
as well as some definitions and lemmas. The p-stability
condition and M-matrix approach are stated in the third part
and are followed by a corollary which describes the synchro-
nization criteria of the neural networks. In the fourth part a
numerical example is put forward to test the effectiveness of
our result.

II. MODEL AND PRELIMINARIES

Let (Ω,F , {Ft}t≥0,P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual conditions. Let
| · | denote the Euclidean norm of vectors as well as the
matrix trace norm. Denote by λmax(A) the largest eigenvalue
of matrix A. The shorthand diag(ζ1, · · · , ζN ) stands for
a diagonal matrix with diagonal entries ζ1, · · · , ζN . Let
τ > 0 and p > 0. Denote by C([−τ, 0];Rn]) the family
of continuous functions ϕ from [−τ, 0] to Rn with the
norm ∥ϕ∥ = sup−τ≤θ≤0 |ϕ(θ)|. Lp

Ft
([−τ, 0];Rn]) denotes

the family of Ft-measurable C([−τ, 0];Rn])-valued random
variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0} such that E∥ξ∥p < ∞.
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C2,1(Rn × R+ × S;R+) denotes the family of positive
real-valued functions defined on Rn × R+ × S which are
continuously twice differentiable in x ∈ Rn and once
differentiable in t ∈ R+. In denotes the n×n identity matrix.
Let G be a matrix or vector, by G ≥ 0 we mean each element
of G is nonnegative, G ≫ 0 means all elements of G are
positive. For a, b ∈ R, a ∨ b (respectively, a ∧ b) means the
maximum (respectively, minimum) of a and b.

Let B(t) = (B1(t), B2(t), ..., Bm(t))T be an m-
dimensional Ft-adapted Brownian motion and N(t, z) be
a one-dimensional Ft-adapted Poisson random measure on
[0,+∞) × R with compensator Ñ(t, z) which satisfies
Ñ(dt, dz) = N(dt, dz) − ν(dz)dt, where N is Poisson
random measure with its characteristic measure ν coming
from a Poisson point process.

Let {r(t), t ≥ 0} be a right-continuous Markov chain on
the probability space taking values in a finite state space
S = {1, 2, · · · , N} with generator Γ = (γij)N×N given by

P{r(t+∆) = j|r(t) = i} =

{
γij∆+ o(∆) if i ̸= j

1 + γii∆+ o(∆) if i = j

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j
if i ̸= j while γii = −

∑
j ̸=i γij .

Consider the n-dimensional stochastic delayed Markovian
jumping neural network with Lévy noise

dx(t) =[−C(r(t))x(t) +A(r(t))s1(x(t))

+D(r(t))s2(x(t− δ(t)))]dt
(1)

on t ∈ R+, where the time delay δ : R+ → [0, τ ] is a differ-
entiable function whose derivative satisfies 0 ≤ δ̇ ≤ δ̄ < 1.
C is a positive diagonal matrix. A and D are the connection
weight matrix and the delayed connection weight matrix
respectively. sj , (j = 1, 2) stand for the neuron activation
functions and satisfy the Lipschitz condition

|sj(u)− sj(v)| ≤ |Wj(u− v)| ∀u, v ∈ Rn (2)

where Wj , (j = 1, 2) are known constant matrices.

We will treat system (1) as master system. The slave
system is given by

dy(t) =[−C(r(t))y(t) +A(r(t))s1(y(t))

+D(r(t))s2(y(t− δ(t)))]dt

+ u(t)dt+ g(e(t), e(t− δ(t)), t, r(t))dB(t)

+

∫
R
h(e(t), e(t− δ(t)), t, r(t), z)N(dt, dz)

(3)

where e(t) = y(t)−x(t). g : Rn×Rn×R+×S → Rn×m

and h : Rn × Rn × R+ × S → Rn are Lévy noise
intensity functions. The control input u(t) has the form
of u(t) = Ke(t), where the control gain K is a negative
diagonal matrix to be determined.

The error system derived from subtracting (1) from (3) is
of the following form

de(t) =[−C(r(t))e(t) +A(r(t))w1(e(t))

+D(r(t))w2(e(t− δ(t)))]dt

+Ke(t)dt+ g(e(t), e(t− δ(t)), t, r(t))dB(t)

+

∫
R
h(e(t), e(t− δ(t)), t, r(t), z)N(dt, dz)

(4)

where wj(e(t)) = sj(y(t)) − sj(x(t)). We assume that
the initial data of system (4) are given by {e(θ) : −τ ≤
θ ≤ 0} = ξ(θ) ∈ Lp

F0
([−τ, 0];Rn]) , r(0) = r0 and further

assume that B(t), N(t, z), r(t) in system (3) are independent.
For simplicity, we will write system (4) as the following

form temporarily.

de(t) =f(e(t), e(t− δ(t)), t, r(t))dt

+ g(e(t), e(t− δ(t)), t, r(t))dB(t)

+

∫
R
h(e(t), e(t− δ(t)), t, r(t), z)N(dt, dz)

(5)

Assumption 1. Assume that the system (5) has a unique
solution on t ≥ −τ which is denoted by e(t, ξ). The
functions f, g and h satisfy f(0, 0, t, i) ≡ 0, g(0, 0, t, i) ≡
0, h(0, 0, t, i, z) ≡ 0 for each (t, i) ∈ R+ × S and z ∈ R.

From Assumption 1, we know that (5) admits a trivial
solution e(t; 0) ≡ 0 which is necessary for the following
definition of exponential synchronization.

Definition 1. The trivial solution of (5) is said to be
exponentially stable in pth moment if

lim sup
t→∞

1

t
log(E|e(t; ξ)|p) < 0

for any ξ ∈ Lp
F0

([−τ, 0];Rn]). When p=2, it is said to be
exponentially stable in mean square. The slave system (3) is
said to be exponentially synchronized with master system (1)
if the error system (4) is exponentially stable.

For system (5), given V ∈ C2,1(Rn × R+ × S;R+), we
define the operator LV [13] by

LV (e, ē, t, i)

= Vt(e, t, i) + Ve(e, t, i)f(e, ē, t, i)

+
1

2
trace[gT (e, ē, t, i)Vee(e, t, i)g(e, ē, t, i)]

+

∫
R
[V (e+ h(e, ē, t, i, z), t, i)− V (e, t, i)]ν(dz)

+

N∑
j=1

γijV (e, t, j)

(6)

where

Ve(e, t, i) =
(∂V (e, t, i)

∂e1
, · · · , ∂V (e, t, i)

∂en

)
,

Vee(e, t, i) =
(∂2V (e, t, i)

∂eu∂ev

)
n×n

Thus the following lemma is derived.

Lemma 1. [17] Let τ1, τ2 be bounded stopping times such
that 0 ≤ τ1 ≤ τ2 a.s. If V (e(t), t, r(t)) and LV (e(t), e(t −
δ(t)), t, r(t)) are bounded on t ∈ [τ1, τ2] with probability 1,
then

EV (e(τ2), τ2, r(τ2)) = EV (e(τ1), τ1, r(τ1))

+ E
∫ τ2

τ1

LV (e(s), e(s− δ(s)), s, r(s))ds
(7)

We also need the definition and some properties of M-
matrix for subsequent work.

Definition 2. [17] A square matrix A = (aij)n×n is called
a nonsingular M-matrix if A can be expressed in the form
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A = sI−G with some G ≥ 0 and s > ρ(G), where I is the
identity n× n matrix and ρ(G) the spectral radius of G.

It is easy to see that a nonsingular M-matrix has non-
positive off-diagonal and positive diagonal entries, that is
aii > 0 while aij ≤ 0, i ̸= j. We cite the notation by letting
Zn×n = {A = (aij)n×n : aij ≤ 0, i ̸= j}.

Lemma 2. [17] If A ∈ Zn×n, then the following statements
are equivalent:
1) A is a nonsingular M-matrix.
2) A is inverse-positive; that is, A−1 exists and A−1 ≥ 0,
which means each element of A−1 is non-negative.
3) A is semi-positive; that is, there exists x ≫ 0 in Rn such
that Ax ≫ 0.

III. MAIN RESULTS

We will first present the exponential p-stability condition
for system (5), then propose the M-matrix approach to
achieve this condition. The synchronization criteria of neural
networks will be put forward in the sequel.

Theorem 1. Let Assumption 1 hold. Given p > 0, assume
that there exist a function V ∈ C2,1(Rn ×R+ × S;R+) and
positive constants a1, a2, b1, b2 such that

b1 > b2/(1− δ̄) (8)
a1|e|p ≤ V (e, t, i) ≤ a2|e|p (9)

LV (e, ē, t, i) ≤ −b1|e|p + b2|ē|p (10)

for all e, ē ∈ Rn, t ≥ 0 and i ∈ S. Then the system (5) is
exponentially stable in pth moment. More precisely,

lim sup
t→∞

1

t
log(E|e(t; ξ)|p) ≤ −λ,∀ξ ∈ Lp

F0
([−τ, 0];Rn])

(11)
where the Lyapunov exponent λ ∈ (0, b1− b2/(1− δ̄)) is the
unique root to the equation

b2e
λτ

1− δ̄
= b1 − λa2 . (12)

Proof:
Fix any ξ and write e(t; ξ) = e(t). Set

U(e(t), t, r(t)) = exp(λt)V (e(t), t, r(t)),

then we get

LU = exp(λt)(λV + LV ).

Applying Lemma 1 to U and then using conditions (9)
and (10) we can show that

a1exp(λt)E|e(t)|p

≤ EU(e(t), t, r(t))

= EU(ξ(0), 0, r0) + E
∫ t

0

LUds

= EV (ξ(0), 0, r0) + E
∫ t

0

exp(λs)(λV + LV )ds

≤ a2E|ξ(0)|p + E
∫ t

0

exp(λs)[(λa2 − b1)|e(s)|p

+ b2|e(s− δ(s))|p]ds

(13)

According to 0 ≤ δ̇ ≤ δ̄ < 1 and ∥ξ∥ = sup−τ≤θ≤0 |ξ(θ)|,

we compute∫ t

0

exp(λs)|e(s− δ(s))|pds

≤ exp(λτ)

∫ t

0

exp(λ(s− δ(s))|e(s− δ(s))|pds

≤ exp(λτ)

1− δ̄

∫ t

−τ

exp(λu)|e(u)|pdu

=
exp(λτ)

1− δ̄
(

∫ 0

−τ

exp(λu)|e(u))|pdu+

∫ t

0

exp(λu)|e(u)|pdu)

≤ τexp(λτ)

1− δ̄
E∥ξ∥p + exp(λτ)

1− δ̄

∫ t

0

exp(λu)|e(u)|pdu .

(14)

Substituting (14) into (13) and then making use of (12)
we obtain that

a1exp(λt)E|e(t)|p ≤ a2E|ξ(0)|p +
τb2exp(λτ)

1− δ̄
E∥ξ∥p

Noting that E∥ξ∥p < ∞. Dividing both side by a1exp(λt)
and then letting t → ∞, we obtain the required assertion
(11).

We now apply M-matrix approach to achieving the con-
dition of mean square exponential stability (i.e. p = 2) in
Theorem 1. The assumption with regard to system (5) below
is essential.

Assumption 2. For each i ∈ S, there exist constants
αi, βi, ρi, ηi, σi, πi such that

eT f(e, ē, t, i) ≤ αi|e|2 + βi|ē|2 (15)
|g|2 ≤ ρi|e|2 + ηi|ē|2 (16)∫
R
(|e+ h|2 − |e|2)ν(dz) ≤ σi|e|2 + πi|ē|2 (17)

for all (x, y, t) ∈ Rn × Rn × R+ and z ∈ R.

Theorem 2. Let Assumptions 1, 2 hold. Denote

ζi = 2αi + ρi + σi (18)
A = −diag(ζ1, · · · , ζN )− Γ (19)
q⃗ = [q1, · · · , qN ]T = A−11⃗, (20)

where 1⃗ = (1, · · · , 1)T . If A is a nonsingular M-matrix and

(πi + 2βi + ηi)qi < 1− δ̄, ∀i ∈ S (21)

then system (5) is exponentially stable in mean square.

Proof: It follows from Lemma 2 that A−1 is nonsingular
and A−1 ≥ 0, which means that the sum of each row of A−1

is positive. From (20), that is to say qi > 0, ∀i ∈ S.

Thus we can define the function V : Rn ×R+ × S → R+

by
V (x, t, i) = qi|x|2.

Setting a1 = mini∈S qi and a2 = maxi∈S qi, then (9) can
be satisfied.

We compute the operator LV from Rn ×Rn ×R+ × S to
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R by conditions (15)-(20) as follows:

LV =2qie
T f + qi|g|2 +

N∑
j=1

γijqj |e|2

+ qi

∫
R
(|e+ h|2 − |e|2)ν(dz)

≤2qiαi|e|2 + 2qiβi|ē|2 + qiρi|e|2 + qiηi|ē|2

+ qiσi|e|2 + qiπi|ē|2 +
N∑
j=1

γijqj |e|2

=(ζiqi +
N∑
j=1

γijqj)|e|2 + (πi + 2βi + ηi)qi|ē|2

≤− b1|e|2 + b2|ē|2

(22)

where b1 = 1, b2 = maxi∈S{(πi + 2βi + ηi)qi}.
According to condition (21), the inequality (8) holds.

Hence all the conditions of Theorem 1 have been verified,
so system (5) is exponentially stable in mean square.

We are now in a position to address the exponential
synchronization problem of neural networks (1) and (3).

Corollary 1. Let Assumption 1 and inequalities (16), (17)
hold. Assume that

αi = λmax(Ki) + λmax(−Ci) + |Ai||W1|+
|Di||W2|

2

βi =
|Di||W2|

2
(23)

and other parameters are denoted by (18), (19) and (20).
If A is a non-singular M-matrix and inequality (21) holds,
then system (4) is exponentially stable in mean square. That
is to say, neural network (1) and (3) are exponentially
synchronous in mean square.

Proof: Let

f(e(t), e(t− δ(t)), t, r(t))

=K(r(t))e(t)− C(r(t)e(t)

+A(r(t))w1(e(t)) +D(r(t))w2(e(t− δ(t)))

(24)

Comparing with Theorem 2, we only need to show that
inequality (15) holds.

From (2), we get

|wj(u)| ≤ |Wju| j = 1, 2 ∀u ∈ Rn (25)

Using (23), (24) and (25), we compute

eT f =eTKie+ eT (−Ci)e+ eTAiw1(e) + eTDiw2(ē)

≤(λmax(Ki) + λmax(−Ci) + |Ai||W1|)|e|2

+ |Di||W2||e||ē|
≤(λmax(Ki) + λmax(−Ci) + |Ai||W1|

+
|Di||W2|

2
)|e|2 + |Di||W2|

2
|ē|2

=αi|e|2 + βi|ē|2
(26)

as required. It then follows from Theorem 2 that the neural
network (1) and (3) are exponentially synchronous in mean
square.

Once all the conditions of Corollary (1) are satisfied, we
can evaluate the Lyapunov exponent from (12) right away.

Remark 1. The gain matrix K can be determined in
accordance with the following steps.
1) Choose sufficiently small qi > 0 such that the inequality
(21) holds.
2) Calculate matrix A, then find the solution of equation
Aq⃗ = 1⃗.
3) Multiply IN by the ith solution of the above equation, that
is Ki.

There is still a questionable point hidden in the above
steps. Can those solutions finally make A an M-matrix? The
answer is quite definite. Clearly A ∈ Zn×n, since q⃗ ≫ 0
and Aq⃗ = 1⃗ ≫ 0, the conclusion is drawn from Lemma 2
that A is an M-matrix.

Remark 2. We can see from the above steps that the control
law is determined by solving a set of linear equations, more
precisely, N independent equations whose solutions can be
found through simply hand calculation. So, regardless of
the more or less conservatism, M-matrix approach used in
this paper has at least the easy-to-solve and easy-to-test
properties.

IV. NUMERICAL EXAMPLE

Consider a two-neuron delayed neural network (4) with
2-state Markovian switching and Lévy noise, where the tran-

sition rate matrix of Markov chain is Γ =

[
−2 2
1 −1

]
and

the character measure of Lévy process is ν(dz) = 2ϕ(dz).
ϕ is standard normal distributed.

The delay function is given by δ(t) = exp(t)
exp(t)+1 , then we

get τ = 1, δ̄ = 0.25. The activation function is sj(·) =
tanh(·), j = 1, 2, which means W1 = W2 = I .

Other parameters are given as follows.

C1 =

[
1 0
0 0.9

]
, C2 =

[
1 0
0 1

]
,

A1 =

[
1.69 19
0.11 1.69

]
, A2 =

[
1.79 19
0.09 1.79

]
,

D1 =

[
−1.33 0.3
0.2 −1.33

]
, D2 =

[
−1.44 0.1
0.1 −1.44

]
,

g(e, ē, t, 1) =
e+ ē

2
, h(e, ē, t, 1, z) =

(e− ē)z

2
,

g(e, ē, t, 2) =
e− ē

4
, h(e, ē, t, 2, z) = e+ ēz.

By (16), (17), (23), (18) and (19), we can get

α1 = λmax(K1) + 27.5365, β1 = 1.3542,

ρ1 = 0.5, η1 = 0.5,

σ1 = 1, π1 = 1, ζ1 = 2λmax(K1) + 56.5729,

α2 = λmax(K2) + 27.5513, β2 = 1.4435,

ρ2 = 0.125, η2 = 0.125,

σ2 = 6, π2 = 2, ζ2 = 2λmax(K1) + 61.2275,

and

A = −diag(ζ1, ζ2)− Γ

=

[
−2λmax(K1)− 54.5729 −2

−1 −2λmax(K2)− 60.2275

]
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TABLE I
THE RELATION BETWEEN qi AND λ.

q⃗ λmax(K1) λmax(K2) λ

[0.17, 0.14]T -31.0512 -34.2923 0.0403

[0.15, 0.10]T -31.2864 -35.8640 0.1496

[0.10, 0.10]T -33.2865 -35.6139 0.3658

Choosing q1 = 0.15, q2 = 0.1 yields

max
i=1,2

(πi + 2βi + ηi)qi = 0.6313 < 1− δ̄ = 0.75,

which means (21) holds.
Solving the equation Aq⃗ = 1⃗, we can obtain λmax(K1) =

−31.2864, λmax(K2) = −35.864 such that A is a non-
singular M-matrix. The control gain matrix is then derived
as follows.

K1 = diag(−31.2864,−31.2864),

K2 = diag(−35.864,−35.864)

By solving equation (12), we can obtain the Lyapunov
exponent of system (4) is λ = 0.1496.

Since all the conditions in Corollary 1 are satisfied, it then
follows from Corollary 1 that the neural network (1) and (3)
are exponentially synchronous in mean square.

In addition, we are told from equation (12) that the less qi
is, the less b2 and a2 are, which means the Lyapunov expo-
nent λ may increase along with the decrease of qi. The truth
can be verified from several groups of data listed in Table
I. Obviously small qi means the high convergence rate of
system, however the control gain is enlarged simultaneously.

V. CONCLUSION

The problem of exponential synchronization has been
addressed for delayed Markovian jumping neural networks
with Lévy noise. Using stochastic analysis and M-matrix
approach, the synchronization criteria have been obtained and
the control law can be determined by solving a set of linear
equations. The easy-to-solve and easy-to-test properties of
M-matrix approach are verified in a numerical example.
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