
Adaptive Stabilization of Fractional-order
Nonlinear System Considering Input Saturation

Phenomenon
Xiaomin Tian, Zhong Yang

Abstract—This paper investigates the adaptive control of
fractional-order nonlinear system. The system is fluctuated
by unmodeled dynamics and external disturbances, and the
bounds of these uncertainties are unknown in advance. The
effects of input saturation and unknown system parameters are
taken into account in this paper. To deal with these unknown
parameters, a robust adaptive control strategy is proposed.
Then a fractional-order version of Lyapunov function is given
to verify the stability of uncertain fractional-order nonlinear
system. Simulation results are given to prove the feasibility and
effectiveness of the given control strategy.

Index Terms—fractional-order nonlinear system, adaptive
stabilization, input saturation, robust control.

I. INTRODUCTION

ALTHOUGH fractional calculus is a mathematical topic
with long history, its application in physics and en-

gineering fields has attracted more and more researchers’
attention only in the recent two decades [1-3]. It is has
been proven that fractional calculus can supply a superb
instrument for describing the processes with memory and
hereditary properties.

Fractional-order nonlinear system has more significant
advantages, for example, fractional-order system has more
wider stability region compared to the corresponding integer-
order system, and fractional-order mathematical model can
reveal more dynamic attributes of a system. In fractional-
order nonlinear system, fractional-order chaotic system is a
distinguished phenomenon that is characterized with some
special features.

Recently, studying fractional-order system has become an
active research area. In particular, control and synchroniza-
tion of the fractional-order chaotic systems have attracted
much attention from various scientific fields. Some meth-
ods have been proposed to achieve chaos synchronization
in fractional-order chaotic systems. Such as sliding mode
control [4-6], nonlinear feedback control [7], a nonlinear
state observer [8], active control [9], adaptive control [10-
12], etc.

Nevertheless, in most of the above mentioned method-
s, parameters of the fractional-order chaotic systems are
assumed to be known. In fact, the effects of unknown
parameters maybe destroy the system’s behavior and even
cause unbounded outputs, so it is urgent to design a con-
trol engineer to deal with this problem. Meanwhile, many
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controllers are designed based on full information about the
systems’ dynamics, but due to the complexity of the practical
condition, most physical systems need to be described by ad-
ditional unmodeled dynamics and external disturbances, even
when the bounds of these system uncertainties are unknown
beforehand, the researcher should pay much attention to the
controller design.

In the other hand, all control methods in the abovemen-
tioned works are derived based on the ideal assumption of
the control inputs, actually, because of the limited operation
of control actuators, most of the actual systems are subjected
to input constraint. The saturation nonlinearity is often en-
countered in various engineering systems, which can cause
unpredictable and undesirable motions in systems. Thus it is
imperative to consider the effects of the input saturation. Re-
cently, Aghababa proposed some control strategy for integer-
order switched system with input saturation [13-15]. While,
the stabilization of fractional-order nonlinear system with
unknown parameters and saturation nonlinear phenomenon in
control input are not considered simultaneously. Furthermore,
almost all control scheme in existing literature are focus on
the stability analysis of fractional-order systems based on tra-
ditional Lyapunov theory, the application of fractional-order
Lyapunov stability theory is still an challenging problem and
very few articles are dedicated to this problem.

Motivated by the above discussion, the main goal of this
paper is to propose a new adaptive control strategy to realize
the stabilization of fractional-order nonlinear system with
unknown system parameters, unknown bounded uncertainties
and saturation nonlinear inputs. The structure of this paper
is organized as follows. In section 2, relevant definitions,
lemmas are given. Main results are presented in section 3.
Simulation results are shown in section 4. Finally, conclu-
sions are included in section 5.

II. PRELIMINARIES

The Riemann-Liouville, Caputo definition are main defi-
nitions of fractional calculus.
Definition 1 The α th-order Riemann-Liouville fractional
integration of function f(t) is given by

t0I
α
t f(t) =

1

Γ(α)

∫ t

t0

f(τ)

(t− τ)
1−α dτ (1)

where Γ(·) is the Gamma function.
Definition 2 For n − 1 < α ≤ n, n ∈ R, the Riemann-
Liouville fractional derivative of order α of the function f(t)
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is defined as

t0D
α
t f(t) =

1

Γ(n− α)

dn

dtn

∫ t

t0

f(τ)

(t− τ)α−n+1
dτ

=
dn

dtn
In−αf(t) (2)

Definition 3 The Caputo fractional derivative of order α of
the function f(t) is defined as

t0D
α
t f(t)=

{
1

Γ(m−α)

∫ t

t0

f(m)(τ)

(t−τ)α−m+1 dτ,m− 1<α<m
dm

dtm f(t), α = m
(3)

where m is the smallest integer number, larger than α.
Lemma 1 (see [16, 17]) Consider the autonomous system

Dαx = Ax or Dαx = f(x) (4)

where α ∈ (0, 1] is the fractional order and x =
(x1, x2, ..., xn)

T is the state variable. A ∈ Rn×n is a
constant matrix. If there is a real symmetric positive definite
matrix P such that the inequation J = xTPDαx ≤ 0 always
holds for any states, then system (4) is asymptotically stable.

For the detailed application of the above lemma in
fractional-order chaotic systems, the reader can refer to Refs.
[16-20].

III. MAIN RESULTS

In this section, a robust adaptive controller and unknown
parameter update laws are designed to achieve the stabi-
lization of fractional-order nonlinear system with saturation
nonlinearity in control input.

The dynamic mathematical model of fractional-order non-
linear system with unknown parameters, unknown bounded
unmodeled dynamics and external disturbances can be de-
scribed by

Dαx1 = F1(x)δ1+f1(x)+∆f1(x)+d1(t)+sat(u1(t))

Dαx2 = F2(x)δ2+f2(x)+∆f2(x)+d2(t)+sat(u2(t))

...
Dαxn = Fn(x)δn+fn(x)+∆fn(x)+dn(t)+sat(un(t)) (5)

where α ∈ (0, 1) is fractional order of the system,
x = (x1, x2, · · · , xn)

T is the state vector of the system,
Fi(x) is the row vector of system, δi is the column vector of
unknown system parameters, fi(x) is the nonlinear section
of system, ∆fi(x) and di(t) are unmodeled dynamics
and external disturbances, respectively. Sat(ui(t)) is the
nonlinear saturation input, i=1, 2, ..., n.
Assumption 1 The nonlinear saturation function is defined
as follows:

Sat(u(t)) =

 uH , ifu(t) ≥ uh

θu(t), iful ≤ u(t) ≤ uh

uL, ifu(t) ≤ ul
(6)

where uH , uh ∈ R+, and uL, ul ∈ R− are bounds of
the saturation function and θ ∈ R is the saturation slope.
Subsequently, the above saturation function can be rewritten
as

Sat(u(t)) = u(t) + ∆u(t) (7)

and ∆u(t) is satisfied as

∆u(t) =

 uH − u(t), if u(t) ≥ uh

(θ − 1)u(t), if ul ≤ u(t) ≤ uh

uL − u(t), if u(t) ≤ ul
(8)

A typical nonlinear saturation function is described in Fig.1.

Fig. 1: A typical nonlinear saturation function

Assumption 2 It is assumed that the system uncertainties
∆fi(x) + di(t), i=1, 2, 3, are bounded by:

|∆fi(x) + di(t)| ≤ γi (9)

where γi is an unknown positive constant.
Assumption 3 It is reasonable that to assume the uncertain-
ties ∆ui(t), i=1, 2, 3, are bounded as follows:

|∆ui(t)| ≤ ϕi (10)

where ϕi is an unknown positive constant.
Our goal in this paper is to design a robust controller to

realize the adaptive stabilization of fractiona-order nonlin-
ear system (5) with unknown system parameters, unknown
bounded uncertainties and nonlinear saturation inputs, then
use the fractional-order version of Lyapunov theory to prove
the controlled system’s stability.
Theorem 1 Consider the fractional-order nonlinear system
(5), if the bounds of model uncertainties and external dis-
turbances are unknown in advance, then the controller can
designed as

ui(t) = −(|Fi(x)||δ̂i|+ |fi(x)|+ ϕ̂i + γ̂i + ki)sgn(xi) (11)

where i = 1, 2, ..., n. δ̂i, ϕ̂i and γ̂i are estimation of δi, ϕi, γi,
respectively. ki is positive constant, sgn(·) is a sign function,
for avoiding chattering, tanh(·) can be used to substitute the
sign function. To deal with these unknown parameters, the
following estimation update rules are proposed.

Dαδ̂i = FT
i (x)xi (12)

Dαϕ̂i = ρi|xi| (13)

Dαγ̂i = ηi|xi| (14)

in which, ρi and ηi are positive adaptive constants, then the
adaptive stabilization of fractional-order nonlinear system (5)
can be realized.
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Proof On the basis of Lemma 1, the positive definite matrix
P can be select as

P = diag
(
Im,

1

ρ1
, · · · , 1

ρn
,
1

η1
, · · · , 1

ηn

)
(15)

where Im represents m-dimensional identity matrix, and
m-n is the dimension of (δ̂T1 , ..., δ̂Tn ). Denote XT =
(x1, x2, ..., xn, δ̃

T
1 , ..., δ̃

T
n , ϕ̃1, ..., ϕ̃n, γ̃1, ..., γ̃n), then a func-

tion can be established to prove the stability of the closed-
loop system, that is

J = XTPDαX (16)

according to the above denotation, we have

J = x1D
αx1 + x2D

αx2 + · · ·+ xnD
αxn + δ̃T1 D

αδ̃1

+ · · ·+ δ̃TnD
αδ̃n +

1

ρ1
ϕ̃1D

αϕ̃1 + · · ·+ 1

ρn
ϕ̃nD

αϕ̃n

+
1

η1
γ̃1D

αγ̃1 + · · ·+ 1

ηn
γ̃nD

αγ̃n

= x1[F1(x)δ1 + f1(x) + ∆f1(x) + d1(t) + sat(u1(t))]

+ · · ·+ xn[Fn(x)δn + fn(x) + ∆fn(x) + dn(t)

+sat(un(t))] + δ̃T1 D
αδ̃1 + · · ·+ δ̃TnD

αδ̃n

+
1

ρ1
ϕ̃1D

αϕ̃1 + · · ·+ 1

ρn
ϕ̃nD

αϕ̃n +
1

η1
γ̃1D

αγ̃1

+ · · ·+ 1

ηn
γ̃nD

αγ̃n (17)

according to Eq.(7), we obtain

J = x1[F1(x)δ1 + f1(x) + ∆f1(x) + d1(t) + u1(t)

+∆u1(t)] + · · ·+ xn[Fn(x)δn + fn(x) + ∆fn(x)

+dn(t) + un(t) + ∆un(t)] +
n∑

i=1

δ̃Ti D
αδ̃i

+
n∑

i=1

1

ρi
ϕ̃iD

αϕ̃i +
n∑

i=1

1

ηi
γ̃iD

αγ̃i

= x1F1(x)δ1 + x1f1(x) + x1∆f1(x) + x1d1(t)

+x1u1(t) + x1∆u1(t) + · · ·+ xnFn(x)δn

+xnfn(x) + xn∆fn(x) + xndn(t) + xnun(t)

+xn∆un(t) +
n∑

i=1

δ̃Ti D
αδ̃i +

n∑
i=1

1

ρi
ϕ̃iD

αϕ̃i

+

n∑
i=1

1

ηi
γ̃iD

αγ̃i

≤ x1F1(x)δ1 + |x1||f1(x)|+ |x1|(|∆f1(x) + d1(t)|)
+x1u1(t) + |x1||∆u1(t)|+ · · ·+ xnFn(x)δn

+|xn||fn(x)|+ |xn|(|∆fn(x) + dn(t)|) + xnun(t)

+|xn||∆un(t)|+
n∑

i=1

δ̃Ti D
αδ̃i +

n∑
i=1

1

ρi
ϕ̃iD

αϕ̃i

+

n∑
i=1

1

ηi
γ̃iD

αγ̃i (18)

according to Eq.(12), it yields
n∑

i=1

δ̃Ti D
αδ̃i =

n∑
i=1

(δ̂i − δi)
TDαδ̂i

=
n∑

i=1

δ̂Ti F
T
i (x)xi −

n∑
i=1

δTi F
T
i (x)xi

=
n∑

i=1

xiFi(x)δ̂i −
n∑

i=1

xiFi(x)δi (19)

substituting Eq.(19) into (18), and according to Eqs.(9), (10),
(13), (14), we get

J ≤ |x1||f1(x)|+ |x1|(|∆f1(x) + d1(t)|) + x1u1(t)

+|x1||∆u1(t)|+ · · ·+ |xn||fn(x)|+ |xn|(|∆fn(x)

+dn(t)|) + xnun(t) + |xn||∆un(t)|+
n∑

i=1

xiFi(x)δ̂i

+
n∑

i=1

1

ρi
ϕ̃iD

αϕ̃i +
n∑

i=1

1

ηi
γ̃iD

αγ̃i

≤ |x1||f1(x)|+ γ1|x1|+ x1u1(t) + ϕ1|x1|+ · · ·
+|xn||fn(x)|+ γn|xn|+ xnun(t) + ϕn|xn|

+
n∑

i=1

xiFi(x)δ̂i +
n∑

i=1

(ϕ̂i − ϕi)|xi|+
n∑

i=1

(γ̂i − γi)|xi|

= |x1||f1(x)|+ x1u1(t) + · · ·+ |xn||fn(x)|

+xnun(t) +

n∑
i=1

xiFi(x)δ̂i +

n∑
i=1

ϕ̂i|xi|+
n∑

i=1

γ̂i|xi|

(20)

bring Eq.(11) into (20), it has

J ≤ |x1||f1(x)| − x1

(
|F1(x)||δ̂1|+ |f1(x)|+ ϕ̂1 + γ̂1

+k1
)
sgn(x1) + · · ·+ |xn||fn(x)| − xn

(
|Fn(x)||δ̂n|

+|fn(x)|+ ϕ̂n + γ̂n + kn
)
sgn(xn) +

n∑
i=1

xiFi(x)δ̂i

+
n∑

i=1

ϕ̂i|xi|+
n∑

i=1

γ̂i|xi| (21)

owning to xisgn(xi) = |xi|, then

J ≤ |x1||f1(x)| − x1

(
|F1(x)||δ̂1|+ |f1(x)|+ ϕ̂1 + γ̂1

+k1
)
sgn(x1) + · · ·+ |xn||fn(x)| − xn

(
|Fn(x)||δ̂n|

+|fn(x)|+ ϕ̂n + γ̂n + kn
)
sgn(xn)

+
n∑

i=1

|xi||Fi(x)||δ̂i|+
n∑

i=1

ϕ̂i|xi|+
n∑

i=1

γ̂i|xi|

J ≤ −k1|x1|−k2|x2|−· · ·− kn|xn|≤−k||x|| < 0 (22)

where k = min{ki} > 0, i = 1, 2, ..., n, that is, system (5) is
asymptotic stability. Consequently, the adaptive stabilization
of fractional-order nonlinear system with unknown parame-
ters and saturation nonlinear inputs is achieved. Therefore,
the proof is completed.

IV. SIMULATION RESULTS

In this section, a simulation example is given to verify the
feasibility and effectiveness of the proposed control strategy.
The fractional-order Chen system with unknown parameters
and saturation inputs is described as

Dαx1 = a(x2 − x1) + ∆f1(x) + d1(t) + sat(u1(t))

Dαx2 = bx1 + cx2 − x1x3 +∆f2(x) + d2(t) + sat(u2(t))

Dαx3 = −dx3 + x1x2 +∆f3(x) + d3(t) + sat(u3(t)) (23)

letting α = 0.92, k1 = k2 = k3 = 5, ρ1 = ρ2 = ρ3 = 2,
η1 = η2 = η3 = 4. In this example, F1(x) = x2 − x1,
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F2(x) = (x1, x2), F3(x) = −x3, δ1 = a, δ2 = (b, c)T , δ3 =
d, the initial values are set as x(0) = (5, 8,−4)T , δ̂1(0) = 0,
δ̂2(0) = (0, 0)T , δ̂3(0) = 0, ϕ̂1(0) = ϕ̂2(0) = ϕ̂3(0) = 0,
γ̂1(0) = γ̂2(0) = γ̂3(0) = 0. the unmodeled dynamics and
external disturbances are selected as

∆f1(x) + d1(t) = 0.025cos(2t)x1 + 0.015sin(t)

∆f2(x) + d2(t) = −0.02cos(6t)x2 + 0.01sin(2t)

∆f3(x) + d3(t) = 0.015cos(3t)x3 + 0.02sin(3t)(24)

the saturation nonlinear inputs in this example are

Sat(u1(t)) =

 5, ifu1(t) ≥ 1
5u1(t), if − 1 ≤ u1(t) ≤ 1
−5, ifu1(t) ≤ −1

(25)

Sat(u2(t)) =

 8, ifu2(t) ≥ 2
4u2(t), if − 2 ≤ u2(t) ≤ 2
−8, ifu2(t) ≤ −2

(26)

Sat(u3(t)) =

 6, ifu3(t) ≥ 1.5
4u3(t), if − 1.5 ≤ u3(t) ≤ 1.5
−6, ifu3(t) ≤ −1.5

(27)

The simulation results are depicted in Fig.2-6. Fig.2 shows
the time response of state trajectories in system (23) with the
controller actived.
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Fig. 2: Time response of fractional-order Chen system (23) with
control

It is obviously that on the control of robust controller (11),
all state trajectories converge to zero asymptotically. Fig.3
depicts the time evolution of estimate parameters, It is not
hard to see all unknown parameters gradually converge to
actual values.
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Fig. 3: Time evolution of estimate parameters of system (23)

The estimations of the unmodeled dynamics, external
disturbances and input uncertainties are shown in Figs. 4 and
5, respectively. It is not hard to see all adaptation parameters
are approach to some fixed values.
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Fig. 4: Time evolution of unmodeled dynamics and external
disturbances
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Fig. 5: Time response of input uncertainties

The time histories of the applied control inputs are plotted
in Fig. 6. One can see that the control inputs are feasible in
practical applications.
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Fig. 6: Time histories of the applied control inputs

All above simulation results sufficiently demonstrate that
the proposed control scheme is effective in stabilizing this
kinds of uncertain fractional-order nonlinear systems with
unknown parameters and saturation nonlinear inputs.

V. CONCLUSIONS

This paper researched the problem of stabilizing an uncer-
tain fractional-order nonlinear systems with unknown param-
eters and saturation nonlinear inputs. The system is perturbed
by uncertain unmodeled dynamics and external disturbances,
and the bounds of both unmodeled dynamics and external

disturbances are assumed to be unknown in advance. To
handle these unknown parameters, some appropriate update
laws are proposed. Fractional-order version of Lyapunov
theory is used to demonstrate the stability of the closed-loop
system. Simulation results verified that the proposed control
strategy is effective and feasible.
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