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Abstract—This paper addresses the problem of saturated
global finite-time stabilization by state feedback for a class of
nonlinear systems with upper-triangular structure. By using the
homogeneous domination approach and the nested saturation
technique, a saturated state feedback controller is successfully
constructed to guarantee that states of the closed-loop system
are globally finite-time regulated to zero without violation of
the input constraint. A simulation example is provided to
demonstrate the effectiveness of the proposed method.

Index Terms—upper-triangular systems, input saturation,
homogeneous domination approach, Nested saturation, finite-
time stabilization.

I. INTRODUCTION

During the past years, upper-triangular systems have re-
ceived widely attention because they can be used to model
many practical systems, such as the ball and beam system,
the cart-pendulum system, the TORA system, and so on.
However, the design of globally stabilizing controller for a
upper-triangular system has proven to constitute a challeng-
ing task due to the fact that such system is neither feedback
linearizable nor stabilized by applying the frequently-used
backstepping approach. To give this difficulty a solution, a
number of intelligent approaches have been developed such
as the nested-saturation method [1-6] and the forwarding
technique [7, 8]. Based on these effective methods, the
problem global stabilization of upper-triangular systems has
been well-studied recently [9-16]. However, the effect of the
input constraint is omitted in the above-mentioned results.

As we all know, the actuator saturation is a common
phenomenon in practical systems due to the inherent physical
limitations of devices. Its existence often severely limits
system performance, giving rise to undesirable inaccuracy
or leading to instability [17-20]. For example, consider the
following simple system:

ẋ = u+ x (1)

where x ∈ R is a state variable, and u ∈ R denotes the
plant input. Obviously, system (1) is globally controllable,
but when |u| ≤ umax is required, there does not exist
any saturated control to globally stabilize this system with
initial value x(0) > umax. Thus, it is of great significance
to study the problem of saturated global stabilization of
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upper-triangular systems. Nevertheless, to the best of our
knowledge, this issue on upper-triangular systems has not
been well-addressed in the literature.

Based on the above observations and considering that
the finite-time stable systems have better convergence and
disturbance rejection properties [21-23], this paper focuses
on solving the problem of global finite-time stabilization for
a class upper-triangular systems by saturated state feedback.
The major obstacle to tackle this problem lies in that the com-
mon assumptions and finite-time control techniques mainly
for unsaturated upper-triangular systems are infeasible here.
Until now it still remains unanswered that under what condi-
tions the upper-triangular systems may exist saturated finite-
time controller. To overcome the aforementioned difficulty,
we first place a general homogeneous growth condition and
design an unsaturated finite-time state feedback controller
for the considered system by employing the homogeneous
domination approach. Then, we impose a series of nested
saturations to the developed controller and obtain a saturated
state feedback controller, which renders that the states of the
closed-loop system globally finite-time convergence to zero.

Notations. Throughout this paper, the following notations
are adopted. R+ denotes the set of all nonnegative real
numbers and Rn denotes the real n-dimensional space. For
a given vector X , XT denotes its transpose, and |X| denotes
its Euclidean norm. Ci denotes the set of all functions with
continuous ith partial derivatives. Besides, let

∑i
j(·) = 0 if

j > i and the arguments of the functions will be omitted or
simplified, whenever no confusion can arise from the context.
For instance, we sometimes denote a function f(x(t)) by
simply f(x), f(·) or f .

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we consider a class of upper-triangular
systems systems described by

ẋi = xi+1 + ϕi(t, xi+2, · · · , xn, u), i = 1, · · · , n− 2
ẋn−1 = xn + ϕn−1(t, u)
ẋn = u

(2)
where x = (x1, · · · , xn)

T ∈ Rn, u ∈ R are the system state
and control input, respectively. The continuous functions
ϕi : R × Rn−i → R, i = 1, · · · , n − 1 represent unknown
nonlinear perturbations.

The objective of this paper is to find a state feedback
control design strategy which globally finite-time stabilizes
the system (2) under the following saturation constraint:

−umax ≤ u ≤ umax (3)
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where umax is a priori known positive real number.
To this end, the following assumption regarding system

(2) is imposed.
Assumption 1. For i = 1, · · · , n − 1, there are constants

b > 0 and τ ∈ (−1/n, 0) such that

|ϕi(·)| ≤ b

n+1∑
j=i+2

|xj |(ri+τ)/rj

where xn+1 = u, r1 = 1, ri+1 = ri + τ > 0, i = 1, · · · , n
and

∑n
l=1 p1 · · · pl−1 = 1 for the case of l = 1.

In what follows, we review some useful definitions and
lemmas which will serve as the basis of the coming control
design and performance analysis.

Definition 1[21]. Consider a system

ẋ = f(x) with f(0) = 0, x ∈ Rn (4)

where f : U0 → Rn is continuous with respect to x on an
open neighborhood U0 of the origin x = 0. The equilibrium
x = 0 of the system is (locally) finite-time stable if it is
Lyapunov stable and finite-time convergent in a neighbor-
hood U ∈ U0 of the origin. By ”finite-time convergence,” we
mean: If, for any initial condition x(0) ∈ U , there is a settling
time T > 0 , such that every solution x(t) with x(0) as its
initial condition of (4) is well defined with x(0) ∈ U \ {0}
for t ∈ [0, T ) and satisfies limt→T x(t) = 0 and x(t) = 0
for any t ≥ T . If U = U0 = Rn, the origin is a globally
finite-time stable equilibrium.

Lemma 1[21]. Consider the nonlinear system (4). Suppose
there is a C1 function V (x) defined in a neighborhood Û ∈
Rn of the origin, real numbers c > 0 and 0 < α < 1, such
that

(i) V (x) is positive definite on Û ;
(ii) V̇ (x) + cV α(x) ≤ 0, ∀x ∈ Û .

Then, the origin of system (4) is locally finite-time stable
with T ≤ V 1−α(x(0))

c(1−α) for initial condition x(0) in some open
neighborhood U ∈ Û of the origin. If U = Rn and V (x) is
also radially unbounded (i.e., V (x) → +∞ as x → +∞),
the origin of system (4) is globally finite-time stable.

Definition 2[9]. Weighted Homogeneity: For fixed coor-
dinates (x1, · · · , xn) ∈ Rn and real numbers ri > 0,
i = 1, · · · , n,
• the dilation ∆ε(x) is defined by ∆ε(x) =

(εr1x1, · · · , εrnxn) for any ε > 0, where ri is called the
weights of the coordinates. For simplicity, we define dilation
weight ∆ = (r1, · · · , rn).
• a function V ∈ (Rn, R) is said to be homogeneous

of degree τ if there is a real number τ ∈ R such that
V (∆ε(x)) = ετV (x1, · · · , xn) for any x ∈ Rn \ {0}, ε > 0.
• a vector field f ∈ (Rn, Rn) is said to be homogeneous

of degree τ if there is a real number τ ∈ R such that
fi(∆ε(x)) = ετ+rifi(x), for any x ∈ Rn \ {0}, ε > 0,
i = 1, · · · , n.
• a homogeneous p-norm is defined as ∥x∥△,p =

(
∑n

i=1 |xi|p/ri)1/p for all x ∈ Rn, for a constant p ≥ 1.
For simplicity, in this paper, we choose p = 2 and write
∥x∥△ for ∥x∥△,2.

Lemma 2[9]. Suppose V : Rn → R is a homogeneous
function of degree τ with respect to the dilation weight ∆.
Then the following holds:

(i) ∂V/∂xi is homogeneous of degree τ−ri with ri being
the homogeneous weight of xi.

(ii) There is a constant c such that V (x) ≤ c∥x∥τ△.
Moreover, if V (x) is positive definite, then c∥x∥τ△ ≤ V (x),
where c is a constant.

III. THE DESIGN OF SATURATED STATE FEEDBACK
CONTROLLER

In this section, we give a constructive procedure for the
globally finite-time stabilizer of system (2) by saturated state
feedback. Before designing the controller, we first introduce
the following coordinate transformation:

z1 = x1, zi =
xi

Lκi
, i = 2, · · · , n, υ =

u

Lκn+1
(5)

where κi = n − 1, i = 1, · · · , n− and 0 < L < 1 is a
constant to be determined later.

Then, under the new coordinates zi’s, system (2) is trans-
formed into:

żi = Lzi+1 +
ϕi

Lκi
, i = 1, · · · , n− 1

żn = Lv
(6)

Noting that the transformation (5) is invertible, thus in
the next, we turn to designing a saturated state feedback
controller for system (6). The design idea is as follows: First,
an unsaturated state feedback controller is constructed for
nonlinear system (6) by using the homogeneous domination
approach. Then, by imposing a series of nested saturations to
the developed controller and obtain a saturated global state
feedback controller for system (6).

A. Unsaturated state feedback controller design

Step 1. Choose the Lyapunov function V1 = W1 =∫ z1
0

(s1/r1 − 0)2−τ−r1ds. Clearly, the first virtual controller

z∗2 = −β∗
1ξ

r2
1 (7)

with ξ1 = z1 and β∗
1 ≥ n being a constant, renders

V̇1 ≤ −nLξ21 + Lξ2−τ−r1
1 (z2 − z∗2) +

∂V1

∂z1
ϕ1 (8)

Step i (i = 2, · · · , n). In this step, we can obtain the
following property, whose similar proof can be found in [9]
and hence is omitted here.

Proposition 1. Assume that at step i − 1, there is a C1,
proper and positive definite Lyapunov function Vi−1, and a
set of virtual controllers z∗1 , · · · , z∗i defined by

z∗1 = 0, ξ1 = z
1/r1
1 − z

∗1/r1
1

z∗2 = −β∗
1ξ

r2
1 , ξ2 = z

1/r2
2 − z

∗1/r2
2

...
...

z∗i = −β∗
i−1ξ

ri
i−1 ξi = z

1/ri
i − z

∗1/ri
i

(9)

with β∗
j > 0, j = 1, · · · , i− 1, being constants, such that

V̇i−1 ≤ −(n− i+ 2)L
i−1∑
j=1

ξ2j +
i−1∑
j=1

∂Vi

∂zj

ϕj

Lκj

+Lξ
2−τ−ri−1

i (zi − z∗i )

(10)

Then the ith Lyapunov function defined by

Vi = Vi−1 +

∫ zi

z∗
i

(s1/ri − z
∗1/ri
i )2−τ−rids (11)
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is C1, proper and positive definite, and there exists the C0

virtual controller z∗i+1 = −β∗
i ξ

ri+1/ρ
i such that

V̇i ≤ −(n− i+ 1)L
i∑

j=1

ξ2j +
i∑

j=1

∂Vi

∂zj

ϕj

Lkj

+Lξ2−τ−ri
i (zi+1 − z∗i+1)

(12)

where βi > 0 is a constant.
Hence at step n, choosing

Vn =

n∑
i=1

∫ zi

z∗
i

(
s1/ri − z

∗1/ri
i

)2−τ−ri
ds (13)

and
z∗n+1 = −β∗

nξ
rn+1
n

= −β∗
n

(
z
1/rn
n + β

∗1/rn
n−1

(
z
1/rn−1

n−1 + · · ·

+β
∗1/r3
2

(
z
1/r2
2 + β

∗1/r2
1 z1

)))rn+1

= −β∗
n

(
β̄∗
nz

1/rn
n + β̄∗

n−1z
1/rn−1

n−1

+ · · ·+ β̄∗
1z

1/r1
1

)rn+1

(14)
where

β̄∗
i =

{
β̄
∗1/rn
n−1 · · · β̄∗1/ri+1

i , i = 1, · · · , n− 1
1, i = n

(15)

from Proposition 1, we arrive at

V̇n ≤ −L
n∑

j=1

ξ2j +
n−1∑
j=1

∂Vn

∂zj

ϕj

Lκj

+Lξ2−τ−rn
n (v − z∗n+1)

(16)

Consequently, the following result is obtained.
Lemma 3. For the nonlinear system (6) under Assumption

1, the unsaturated state feedback controller v = z∗n+1 in (14)
renders the origin of the closed-loop system is globally finite-
time stable.

Proof. Since Vn is positive definite and proper with respect
to z = (z1, · · · , zn)T , by introducing the dilation weight ∆ =
(r1, · · · , rn), from Definition 2, it can be shown that Vn is
homogeneous of degree 2− τ with respect to ∆. By Lemma
2, there is a constant c̄1, such that

Vn ≤ c̄1∥z∥2−τ
∆ (17)

where c̄1 > 0 and ∥z∥∆ =
√
(
∑n

i=1 |zi|2/ri). Similarly,
since the

∑n
j=1 ξ

2
j is homogeneous of degree 2, by Lemma

2.2 there is a constant c̄2 such that

V̇n ≤ −Lc̄2∥z∥2∆ +
n−1∑
j=1

∂Vn

∂zj

ϕj

Lκj
(18)

From Assumption 1, (5),(14) and 0 < L < 1, we can find
constants δj > 0 and αj > 0 such that∣∣∣ ϕj

Lκj

∣∣∣ ≤ b
n+1∑

h=j+2

Lκh(rj+τ)/rh−κj |zh|(rj+τ)/rh

≤ δjL
1+αj∥z∥rj+τ

△

(19)

where zn+1 = z∗n+1.
Noting that for j = 1, · · · , n, ∂Vn/∂zj is homogeneous of

degree 2 − τ − rj , with aid of (19), we can find a positive
constant cj such that∣∣∣∂Vn

∂zj

∣∣∣∣∣∣ ϕj

Lκj

∣∣∣ ≤ cjL
1+αj∥z∥2△ (20)

Substituting (20) into (18) yields

V̇n ≤ −L(c̄2 −
n∑

j=1

cjL
αj )∥z∥2△

≤ −L(c̄2 −
n∑

j=1

cjL
αmin)∥z∥2△

(21)

where 0 < αmin = min1≤j≤n{αj}. Apparently, by choos-
ing a small enough L, the right-hand side of (21) is negative
definite. Furthermore, it can be deduced from (17) and (21)
that there is a constant c̄3 > 0 such that

V̇n ≤ −c̄3V
2/(2−τ)
n (22)

Thus by Lemma 1, it is concluded that the closed-loop
system consisting of (6) and v = z∗n+1 in (14) is globally
finite-time stable.

B. Saturated state feedback controller design

In this subsection, a saturated state feedback controller is
designed to solve the global finite-time stabilization problem
for system (6). By the combined saturation technique, we
impose a series of nested saturations to the finite-time
controller v = z∗n+1 in (14) and obtain a saturated finite-
time controller as following form

vssf = vn(Zn) = −βnσ
rn+1

(
Z1/rn
n − v

1/rn
n−1 (Zn−1)

)
(23)

where v0 = 0, vi(Zi) = −βiσ
ri+1(Z

1/ri
i − v

1/ri
i−1 (Zi−1)),

Zi = (z1, · · · , zi), i = 1, · · · , n,

σ(x) =

{
εsign(x), |x| > ε
x, |x| ≤ ε

for a small constant ε > 0 to be determined later, and the
gains βi’s are selected as

β1 > max
{
β∗
1 , 2

r2+1
}

βi > max
{
β∗
i , 2

ri+1

(
4(1 + βi−1)αi−1(·) + 2

)}
i = 2, · · · , n

(24)

with

α1(β1) = β
1/r2
1 (1 + β1)

αj(β1, · · · , βj) =
β
1/rj+1
j

rj
(1 + βj−1)

1/rj−1(1 + βj)

+β
1/rj+1

j αj−1(·), j = 2, · · · , n− 1
(25)

Remark 1. From (23) and the definition of saturation
function σ(·), it can clearly be seen that the controller
vssf = vn(Zn) is bounded by a constant βnε

rn+1 , which
means that the bound of controller (23) can be arbitrarily
small by choosing appropriate design constant ε.

We begin our the main result of this subsection by in-
troducing an important lemma, whose similar proof can be
found in [2].

Lemma 4. Consider the system (6) with saturated con-
troller (23). For i = 1, · · · , n − 1, under the condition
|zj | ≤ εrj (1+βj−1), j = i+1, · · ·n+1, there exist a series
of functions αi(β1, · · · , βi) defined as (25) and a constant
0 < ε1 < 1 such that for any 0 < ε ≤ ε1, t ≥ t, the
following inequalities hold:∣∣∣ ϕi

Lκi

∣∣∣ ≤ Lεri+1 (26)
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∣∣∣v1/ri+1

i (Zi(t))− v
1/ri+1

i (Zi(t))
∣∣∣ ≤ Lαi(·)ε1+τ (t− t)

(27)
With the help of Lemmas 3 and 4, we are ready to state

the main result of this paper.
Theorem 1. For the upper-triangular system (2) under

Assumption 1, the saturated state feedback controller u =
Lκn+1vssf in (5) and (23), renders that the origin of the
closed-loop system is globally finite-time stable.

Proof. The proof is proceeded in two steps. In the first
step, it is proved that the control law with coefficients βi’s
preset in (24) ensures that all states will converge to a
region determined by the saturation function σ(·). Then, the
saturated controller (23) reduces to the unsaturated controller
(14). As a result, the global finite-time stability for the
closed-loop system (6) with (23) can be guaranteed by
appropriately choosing the gain L. Since the proof is quite
similar to that of Theorem 4.1 in [2], we only briefly present
the first step of the proof.

Step 1. At this stage we will find a time instance t1 in
such a way that for t ≥ t1

Zn(t) ∈ Qn =
{
Zn : |z1/rnn (t)− v

1/rn
n−1 (Zn−1(t))| < ε

}
(28)

By contradiction, it can be shown that there is a time instant
t1 such that

|z1/rnn (t1)− v
1/rn
n−1 (Zn−1(t1))| ≤

ε

2
(29)

Otherwise, we assume that |z1/rnn (t) − v
1/rn
n−1 (Zn−1(t))| >

ε/2 for all t ≥ 0. Now, the case when

z1/rnn (t)− v
1/rn
n−1 (Zn−1(t)) >

ε

2
, ∀t ≥ 0 (30)

is considered. In this case, for all t ≥ 0, by (6) and (23), we
have

żn(t) = −Lβnσ
rn+1

(
z1/rnn (t)− v

1/rn
n−1 (Zn−1(t))

)
≤ −Lβn(ε/2)

rn+1

:= −µnε
rn+1

(31)

with µn = Lβn(1/2)
rn+1 > 0, which implies that zn(t) <

zn(0)−µnε
rn+1t, ∀t ≥ 0. Consequently, as time goes to in-

finity, zn(t) → −∞, which leads to a contradiction disavow-
ing (30) by noticing the fact |v1/rnn−1 (Zn−1(t))| ≤ β

1/rn
n−1 ε.

Similarly, we can show the case z1/rnn (t)−v
1/rn
n−1 (Zn−1(t)) <

−ε/2, ∀t ≥ 0, is also impossible. In conclusion, there must
exist a time instance t1 such that (29) holds.

Next, we will prove that the following holds after the time
instant t1

|z1/rnn (t)− v
1/rn
n−1 (Zn−1(t))| < ε, ∀t ≥ t1 (32)

If (32) is not true, there exists at least one time instant t∗1
such that |z1/rnn (t∗1) − v

1/rn
n−1 (Zn−1(t

∗
1))| = ε. Specifically,

there are t
′

1 < ∞ and t∗1 < ∞ such that either

z
1/rn
n (t

′

1)− v
1/rn
n−1 (Zn−1(t

′

1)) = ε/2 (33)

z
1/rn
n (t∗1)− v

1/rn
n−1 (Zn−1(t

∗
1)) = ε (34)

ε

2
≤ z1/rnn (t)− v

1/rn
n−1 (Zn−1(t)) ≤ ε, t ∈ [t

′

1, t
∗
1] (35)

in the positive region, or z
1/rn
n (t

′

1) − v
1/rn
n−1 (Zn−1(t

′

1)) =

−ε/2, z1/rnn (t∗1)− v
1/rn
n−1 (Zn−1(t

∗
1)) = −ε, −ε ≤ z

1/rn
n (t)−

v
1/rn
n−1 (Zn−1(t)) ≤ −ε/2, ∀t ∈ [t

′

1, t
∗
1] in the negative case.

In what follows, it will be claimed that the positive case
(33)–(35) is impossible. By (35) and (31), we have

żn(t) ≤ −µnε
pnrn+1 , t ∈ [t

′

1, t
∗
1] (36)

which leads to

µnε
pnrn+1(t∗1 − t

′

1) ≤ zn(t
′

1)− zn(t
∗
1) (37)

By (33), (34) and the fact that |v1/rnn−1 (Zn−1)| ≤ β
1/rn
n−1 ε, we

obtain

zn(t
′

1) =
(ε
2
+ v

1/rn
n−1 (Zn−1(t

′

1))
)rn

≤ (1 + β
1/rn
n−1 )

rnεrn

≤ (1 + βn−1)ε
rn

(38)

and
zn(t

∗
1) =

(
ε+ v

1/rn
n−1 (Zn−1(t

∗
1))

)rn

≥ −(1 + β
1/rn
n−1 )

rnεrn

≥ −(1 + βn−1)ε
rn

(39)

Combining (38) with (39), from (37), the following time
estimate is obtained:

t∗1 − t
′

1 ≤ 2

µn
(1 + βn−1)ε

rn−pnrn+1 =
2

µn
(1 + βn−1)ε

−τ

(40)
In light of (37),a direct substitution gives

ε/2 ≤ |v1/rnn−1 (Zn−1(t
∗
1))− v

1/rn
n−1 (Zn−1(t

′

1))| (41)

By considering (35) and the fact that |v1/rnn−1 (Zn−1)| ≤
β
1/rn
n−1 ε, one has

|zn(t)| ≤ (1 + β
1/rn
n−1 )

rnεrn ≤ (1 + βn−1)ε
rn , t ∈ [t

′

1, t
∗
1]

(42)
Further,by the definition of µn and the choice of (17), we

have
µn = Lβn(1/2)

rn+1

≥ L(1/2)rn+12rn+1

(
4(1 + βn−1)αn−1(·) + 2

)
> 4L(1 + βn−1)αn−1(·)

(43)
This together with (41) renders that

ε/2 ≤ |v1/rnn−1 (Zn−1(t
∗
1))− v

1/rn
n−1 (Zn−1(t

′

1))| < ε/2
(44)

which obviously is a contradiction. Therefore the case of
(33)–(35) will never happen. Similarly, it can be shown, using
an almost same argument as the positive case, that z1/rnn (t)−
v
1/rn
n−1 (Zn−1(t)) will never cross −ε. Hence for t ≤ t1 we

have
|z1/rnn (t)− v

1/rn
n−1 (Zn−1(t))| < ε (45)

Following the same line shown in the first step, at the final
step, we can obtain that there exists a time instance tn, such
that when t ≥ tn, Zn(t) will enter and stay in the set

Q =
{
Zn : |z1/r11 | < ε, |z1/r22 − v

1/r2
1 (z1)| < ε, · · · ,

|z1/rnn − v
1/ri
n−1(Zn−1)| < ε

}
(46)

Therefore, when t ≥ tn, the saturated controller (23) be-
comes the unsaturated controller (14). Therefore by Lemma
3, there is a constant 0 < L < 1 such that the controller (14)
globally finite-time stabilizes system (6). As a result, under
the saturated controller (23), the global finite-time stability
for system (2) is proved.
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IV. SIMULATION EXAMPLE

Consider the following upper-triangular system

ẋ1 = x2 + u3

ẋ2 = u
(47)

with the requirement of |u| ≤ umax = 1. Choosing τ =
−2/5 ∈ (−1, 0), we have r1 = 1, r2 = 3/5 and r3 = 1/5.
It is obvious that Assumption 1 holds with b = 1. Therefore,
by Theorem 1, we can explicitly construct a saturated state
feedback controller for this example. Specifically, we can
choose

u = −L3β2σ
1/5

(
z
5/3
2 + β

5/3
1 σ(z)

)
(48)

with appropriate positive constants β1, β2, ε and a small
enough gain L such that the state feedback controller (48)
renders the system (47) globally finite-time stable.

In the simulation, by choosing the design parameters as
β1 = 1.2, β2 = 1.4, ε = 0.6 and L = 0.8 and the initial
condition as (x1(0), x2(0))= (1,−2), Figure 1 is gained to
exhibit the responses of the closed-loop system, from which
the validity of the proposed method is demonstrated.
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Fig. 1. The responses of the closed-loop system (47)–(48).

V. CONCLUSION

This paper has solved the problem of saturated stabiliza-
tion by state feedback for a class of upper-triangular systems.
With the help of the homogeneous domination approach
and the nested saturation technique, a constructive design
procedure for state feedback control is given, which can
guarantee that the closed-loop system states are globally
finite-time regulated to zero and the amplitude of the control
signal is bounded.
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