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hance accuracy and reduce the error rate of a previous study.

Therefore, this paper has three contributions; (i) the optimal

gas sensors for capturing patient breaths; (ii) the optimal

signal preprocessing; (iii) the fine-tuned parameters of deep

neural networks (DNN) for classifying multilevel diabetes.

Recently, a lot of researches use the electronic nose with

many sensors, but they do not look out whether the sensors

are contributing significantly. DENS is able to solve the prob-

lem by observing the correlation between sensors and will

exclude the sensors which are not contributing significantly.

As a result, the gas sensors become more optimal for diabetes

detection. The correlation value is calculated using principal

component analysis (PCA). Many kinds of research use PCA

to reduce the dimension of the independent variables [20],

but in this study, PCA will be used to examine the correlation

between sensors in this research.

The output of the electronic nose is a signal. Those signals

will always be affected by noise for about 20% [21]. Noise in

this research was caused by the internal sensors, the changes

of ambient conditions such as humidity and temperature, and

the changes of electrical conditions such as the electrical

voltage and current. Signal preprocessing is carried out to

eliminate the noise in signals. Signal preprocessing is one of

the important steps and support the development of accuracy

and electronic nose sensitivity. Moreover, noise does affect

the result, such as false detection. This is very crucial and

unacceptable.

To improve accuracy, machine learning is needed to model

the signal form into categories or classes. This algorithm

has been used previously. However, most of the models used

were very common, such as support vector machine (SVM),

Naive Bayes, k-nearest neighbor (KNN), and artificial neural

network (ANN) [22]–[24]. This research used deep-learning

for the detection of multiple levels of diabetes. Deep-learning

is a new model of machine learning that combines several

models developed from supervised and unsupervised learning

algorithms [25], resulting in better results. The purpose of

using this approach, in addition to fast data processing, is

that previously not labeled data will be labeled automatically

[26]. Thus, the information can be optimally utilized and

the performance will also be improved. In general, deep-

learning or it is called a Deep Neural Network (DNN) is

the development of an artificial neural network (ANN)[27]

with more than one hidden layer. DNN has hyperparameters

to increase the performance of the model that is formed

[28]. In this study, a DNN model was developed to detect

multiple levels of diabetes from the analysis of an e-nose

response. The reliability of this model was assessed using

two statistical parameters: confusion matrix and root mean

squared error (RMSE).

The remainder of this study is organized into the following

sections: Section 2 provides an explanation of related works

and systems proposed in diabetes detection using an e-nose.

The details of the proposed system are explained in Section 3.

The results of the experiment and discussion are discussed in

Section 4. In Section 5 the proposed system will be evaluated.

A comparison between the proposed system and several other

methods can be found in Section 5 too. Finally, Section 6

contains the conclusion of this work.

(a) Based on a patient breath

(b) Based on a patient urine odor

Fig. 1. Electronic nose for detecting diabetes

II. RELATED LITERATURE

The application of electronic nose in the diagnosis of

diabetes mellitus is the technology with early diagnosis

feature, non-invasive and convenient. Hence, it has been

favored by doctors and patients. Diabetes complication can

cause acidosis, which is directly related to the content of

blood ketone acids body [18], [29]. Acetone is a nalidixic

acid which is an end product of metabolism contained in

the blood and can be excreted through the breath. According

to this relationship, using the electronic nose technology for

direct detection of acetone content in breath can indirectly

evaluate blood glucose values and understand the blood

glucose changes. There is a researcher [30] identified the

exhaled gas of patients with diabetes mellitus acquired from

the hospital by the electronic nose shown in Figure 1(a).

Therefore, it demonstrates the feasibility of applying breath

detection in the diabetes diagnosis.

The weakness of previous research [18] was that e-nose

only divided patients into 2 classes, diabetes and healthy

patient which has the accuracy of 95%.

The diagnosis of type 2 diabetes can also be conducted

through urine odor detection. Moreover, there is a study

[31] using collected urine samples from type 2 diabetic

patients and normal healthy person, and detected urine odor

molecules through the electronic nose technology shown in

Figure 1(b). The result shows that the detection rate of

patients with type 2 diabetes is 95.00%. Other paper [32]

pointed out that the detection rate of inflammatory bowel

disease or diabetes by the electronic nose was approximately

97% in the study on evaluation and application of electronic

nose technology for human disease detection.

Although the research can identify diabetes type 2, the

implementation of e-nose was still impractical, inefficient,

and inconvenient for most patients because they have to

urinate first. Another previous research which has been done

by Dongmin Guo [10], the patient was divided into 4 levels

to detect diabetes on e-nose, level 1 where BGL is between

81-100, Level 2 is 101-150, level 3 is 151-200, and level

4 is 201-421. The result showed that the accuracy of this

research was 76.00%.

Therefore, this paper will modify the existing research by

combining the previous methods, which is the detection of
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TABLE I
EXHALED BREATH MOLECULES CONCENTRATIONS

Concentration Molecule

Percentage Oxygen, Water, Carbon Dioxide

Parts-per-million (ppm) Acetone, Carbon Monoxide, Methane, Hydrogen, Isoprene, benzene methanol

Parts-per-billion (ppb) Formaldehyde, acetaldehyde, 1-pentane, ethane, ethylene, other hydrocarbons, nitric ox-
ide, carbon disulfide, methanol, carbonyl sulfide, methanethiol, ammonia, methylamine,
dimethyl sulfide, benzene, naphthalene, benzothiazole, ethane, acetic, aide

multiclasses diabetes using e-nose on human breath analysis

(DENS). As a result, diabetes test will be more practical,

efficient, and convenient to the patients. This research is

doing further review on detecting diabetes using electronic

nose by using 3 classes according to the references of Blood

Glucose Level in the world. Thus, the contribution of this

research is significant because of the classification of 3

classes are more difficult than 2 classes.

The exhaled human breath is a mixture of N2, O2, CO2,

H2O, inert gases, and thousands of other trace gases. These

gases include inorganic molecules such as NO, NH3, or CO,

and volatile organic compounds (VOCs) such as acetone,

methanol, or isoprene, with concentrations ranging from ppb

or ppm [33] as shown in Table I.

III. PROPOSED SYSTEM

A. The Proposed Electronic Nose

An electronic nose (e-nose) is an instrument that is used to

analyze odor or aroma. In this study, an e-nose was used with

the aim to detect the content in some biomarkers, namely

carbon monoxide (CO), carbon dioxide (CO2), acetone, tem-

perature, humidity, and volatile organic compounds (VOC).

Those are the contents of breath that can differentiate which

one is healthy, prediabetes, and diabetes patients based on

the different concentrations of biomarkers. An Arduino ATM

Mega 2560 microcontroller was used to generate the values

from the sensor. It performed analog to digital conversion

(ADC) and transferred the data from each gas sensor via a

wireless network to the computer.

In the initial experiment, DENS used six gas sensors and

one blood glucose level. The selection of gas sensors in the

initial sensor array can be seen in Table II. The combination

of sensors and their responses is based on our previous

research [18]. Patients with diabetes have ketone in their

breath and sweat which release acetone. This is caused by a

side product of fat metabolism. In diabetes patients, insulin

cannot be produced based on body need, so glucose cannot be

delivered optimally to the cells of the body. In addition to the

ketone content, which is a benchmark of diabetes patients,

other compounds such as ethanol [34], carbon monoxide

[35], alkane [36], and methyl nitrate [37] in the breath have

also been shown to have different concentrations compared

to healthy patients and have a correlation with the prediction

of blood glucose level.

For this study, no comparable datasets of healthy, predia-

betes, and diabetes patients based on e-nose sensor responses

were available on the Internet. Therefore, the ground-truth

data used were a combination of self-extracted data from the

e-nose and from health institutions to determine whether a

TABLE II
INITIAL GAS SENSOR LIST IN THE SENSOR ARRAY

No Sensor Selectivity

1 MQ 7 Carbon monoxide (CO)

2 MQ 135 NH3 (ammonia), NO2, alcohol, benzene, smoke, CO2

3 MQ 138 Acetone

4 DHT-22 Temperature & humidity

5 MiCS-5524 Volatile organic compounds (VOC)

TABLE III
BLOOD GLUCOSE LEVEL (BGL)

No BGL (mg/dl) Class

1 <120 Healthy

2 120-150 Prediabetes

3 >150 Diabetes

person was classified as ‘healthy’, ‘prediabetes’ or ‘diabetes’

based on blood sugar level [1]. The determination of ground-

truth data class based on blood sugar level can be seen in

Table III. ‘Healthy’ is defined by the BGL value of less than

120 mg/dl; while ‘Prediabetes’ is defined by the BGL value

between 120-150 mg/dl; whereas ‘Diabetes’ is defined by the

BGL value higher than 150 mg/dl.

B. The Optimal Signal Preprocessing

Data preprocessing is an important step in signal process-

ing. Basically, the signal is very easy to get mixed with

noise. Those noises are usually coming from the unstable

voltage, or even from the changing temperature and air

humidity [38]. Therefore, the signal must be reconstructed

by using data preprocessing. It helps to improve the quality

of the data, which will have an impact on the final result

[39]. Data preprocessing in DENS is performed in two

stages, namely signal de-noising and data normalization. In

the experiment, DENS obtained the optimal parameters of

the discrete wavelet transform (DWT) for fine-tuning the

signal reconstruction. Coefficient from DWT in the formula

is initialized as dwt. The DWT of the original signal x(t)
can be expressed with the following Equation 1 and 2:

dwt(i, k) = 〈x(t), ψi,k(t)〉 (1)

dwt(i, k) =
1√
2i

∫ −¬

¬
x(t)ψ∗(

t− k2i

2i
)dt (2)

where i,k, and ψ are the scaling, the shifting parameter,

and mother wavelets, respectively. The scaling parameter
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establishes the time and frequency resolution of the scaled

mother wavelet transform (MWT) [40]. Fix i at a particular

scale, so that dwt(i, k) is a function of k only. In light of the

above equation, dwt(i, k) can be viewed as a convolution of

x(t) with a dilated, reflected, and normalized version of the

mother wavelet.

Prior to feature extraction, the signal response data are

cleared from noise using discrete wavelet transform (DWT)

and feature scaling using z-score normalization. De-noising

the signals is an important stage for improving the per-

formance of electronic nose (e-nose) accuracy [41] and

sensitivity [42]. In this study, the coefficient taken was an

approximation coefficient derived from a low-pass filter.

The approximation value used depends on the decompo-

sition level and the MWT [43]. The best-suited MWT is

determined based on the information quality ratio (IQR)

[44]. There are 38 Mother Wavelet Transforms (MWTs), in-

cluding daubechies (db1-db10), symlet (sym2-sym8), coiflet

(coif1-coif5), biorthogonal (bior1.1, bior1.3, bior1.5, bior2.2,

bior2.4, bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, bior3.7,

bior3.9, bior4.4, bior5.5, bior6.8), and dmey. The maximum

value of IQR denotes the best-suited MWT for a particular

signal. The IQR for the original signal (x(t)) and recon-

structed signal (y(t)) can be computed with the following

Equation 3:

IQR =

∑
xiεx(t)

∑
yjεy(t)

p(xi, yj)log2(p(xi)p(yi))∑
xiεx(t)

∑
yjεy(t)

p(xi, yj)log2(p(xi, yj))
− 1

(3)

where xi and yj , are particular values of x(t) and y(t)
respectively. P (xi) and P (yj) are the marginal probability

and P (xi, yj) is the joint probability of xi and yj .

Basically, the range of IQR is between 0 and 1. IQR = 1
indicates that the reconstructed signal can completely keep

the essential information from the original signal and vice

versa. The decomposition level also has to be determined

carefully. If the level of decomposition is high, then the risk

of damage to the signal is also big. If the decomposition

level is low, then the signal will be sensitive to noise. The

decomposition level can be determined using this rule:

Fq

2L+1
≤ Fchar ≤ Fq

2L
(4)

where Fq , Fchar, L denote the sampling frequency, domi-

nant frequency, and decomposition level, respectively. After

de-noising is done, the normalization process follows the

approximation coefficient to standardize the scale of each

attribute using the z-score.

Normalization or feature scaling is a technique to stan-

dardize or equate a range of data so that no attribute is too

dominant over other attributes. In this study, normalization

of the data was done once, using normalized standard scores

(z-score normalization). The formula of z-score can be seen

on the Equation 5. Scaling using normalized standard scores

is done so that the signal data generated after noise removal

have properties such as normal distribution.

z =
x− μ

σ
(5)

where z, x, μ, and σ are the default values, the original data

(sensor response per time), the average of the original data,

(a) Traditional ANN (b) ANN with dropout technique

Fig. 2. The architecture of the Artificial Neural Network

and the standard of the original data deviation, respectively.

C. The Fine-tuned Parameters of Deep Neural Network

A fully connected layer is a layer in which all activation

neurons of the previous layer are connected with the neurons

of the next layer. This is the concept of traditional artificial

neural network (ANN) [45]. Each connection has different

weight and the weight is increased by bias in the next layer

connection. The calculation of the weight and bias are 5x5
weight + 5 bias, 5x5 weight + 5 bias, and 5x1 weight
+ 1 bias. The total of 66 parameters will be updated to get

the best result on the training process. Each layer has neuron

and the activation function from the hidden layer and output

layer will decide whether the neuron must be active or not.

Some of the activation function that widely used are Sigmoid

in Equation 6, Tanh, ReLu, Softmax.

f(y)

f(x)
=

1

1 + e−x
x(1− 1

1 + e−x
) (6)

where x is the weight dot bias. Sigmoid has ranged between

0 until 1 and Tanh -1 until 1 as shown in Equation 7.

f(x) =
ex − e−x

ex + e−x
(7)

Sigmoid and Tanh has their own weakness that is covered

by ReLu. ReLu performed the threshold from 0 until infinity

can be shown in Equation 8. Another activation is softmax
as showed in Equation 9.

f(y)

f(x)
=

[
1 x > 0
0 x ≤ 0

]
(8)

σ(z)j =
ezj∑K
k=1 e

zj
(9)

where σ is the probability of class member j as the input,

z is the linear equation of the activation function, and K is

the class predicted with j as part of that class. The formula

for the linear equation of the activation function is as shown

in Equation 10. The exponential value of weight (w) is a

coefficient summed with constant bias (b), after which it is

normalized.

softmax = normalize(exp(wx+ b)) (10)

The difference between a DNN and a traditional ANN is

complexity, the more complexity on the feature, the more
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Fig. 3. DENS workflow for diabetes detection

TABLE VI
EXAMPLE OF ELECTRONIC NOSE RESULTS

ID avgCO avgCO2 avgKetone avgHumidity avgTemp avgVOC BGL

RH002 584.287 1.312 86.405 32.554 361.313 1.400 139

RH004 521.110 1.232 801.695 33.947 370.709 1.318 133

RH005 580.534 1.195 77.303 32.031 326.701 1.315 130

RH006 693.127 1.529 916.682 33.639 320.177 1.460 123

RH007 641.862 1.445 859.406 33.609 30.394 1.407 130

RH008 1.008.369 1.547 779.528 2.633 362.038 1.365 127

get the training set, which is also used as the testing set. The

ground-truth data were gathered in a clinic in Surabaya.

B. Data Preprocessing

The ground-truth data contained high interference of noise,

which needs Signal processing to avoid inaccurate data

prediction. DWT was used in this research by finding the best

parameters to reduce noise on the e-nose signal. Two best

parameters were mother Wavelet and level decomposition.

Some combinations were used from the parameters as be

seen in Table VII, showed the optimal parameter obtained

from mother wavelet db6 with level decomposition 1.

TABLE VII
FINE-TUNED PARAMETERS OF WAVELET TRANSFORM

Level of Decomposition Mother Wavelet Accuracy

Level 1 bior1.1 0.667

Level 1 bior1.3 0.667

Level 1 bior1.5 0.667

Level 1 bior2.2 0.667

Level 1 bior2.4 0.667

Level 1 dmey 0.701

Level 1 coif1 0.736

Level 1 coif5 0.736

Level 1 db1 0.744

Level 1 db6 0.748

The experimental data obtained from the electronic nose

are converted into graphical form. In Figure 4(a) on the

left side is the result of signal for CO gas, which is still

incompletely de-noised, and on the right side is the result

of the signal after de-noising. CO2 gas can be seen in

Figure 4(d), where the noise from the signal has been

reduced. The ketone signal looks smoother, as can be seen

in Figure 4(f).

Not all of the features mentioned above may contribute

to the detection of multilevel diabetes. A feature can be

incremented down if it does not affect detection since the

blood glucose level in none of the patients has a range that is

too significant. After the signal is de-noised and normalized,

the average value for each sample is calculated.

The feature extraction method used is principal component

analysis (PCA). There are six features that are obtained

from the sensors. CO gas, CO2 gas, ketone gas, humidity,

temperature, and VOC. In general, principal component

analysis (PCA) is a technique for reducing the dimensions

of data without eliminating the characteristics of the data

by creating new variables from linear combinations of the

original variables. This method extracts the features and

removes features that are less influential, which means that

there is a more significant difference between one class and

the other classes.

TABLE VIII
REDUCE THE FEATURE USING PRINCIPAL COMPONENT ANALYSIS

n-feature Accuracy

2 features 0.667

3 features 0.751

4 features 0.736

5 features 0.744

6 features 0.748
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(a) Raw Signal of CO (b) Signals of CO after de-noising using DWT

(c) Raw Signal of CO2 (d) Signals of CO2 after de-noising using DWT

(e) Raw Signal of Ketone (f) Signals of Ketone after de-noising using DWT

Fig. 4. Signals response of DENS

The input in this process is the data signal that has been

normalized after preprocessing. Experiments were performed

with feature reduction. The results produced satisfactory

accuracy with only 3 features. Table VIII shows that some

important features were missing when only 2 features were

used, so three or more features obtained a better result. The

result of using PCA with scaller was better than that only

using PCA, as illustrated in Figure 5(a) and Figure 5(b),

respectively.

C. Optimal Parameters of DNN
After getting 3 features from the extraction process, the

next step is building the network model to set as reference.

For this work, a fully connected layer model was created

using a normal for the initializer kernel.
It creates a simple, fully connected network with 3 features

or node in the input layer, and two hidden layers that contain

12 and 1000 neurons respectively. The hidden layer uses

a rectifier activation function. Since DENS used one hot

encoding for our dataset, the output layer must create 3

TABLE IX
OPTIMIZER PARAMETERS

Optimizer Accuracy

sgd 0.759

adagrad 0.800

adadelta 0.926

adam 0.962

output values, one for each class. The output value with

the largest value was taken as the class predicted by the

model. DENS used softmax activation function in the

output layer. Softmax activation was chosen because it is

commonly used in classification with more than two classes.

To gather the parameters required, DENS ran some tests

to compare the results of available parameters. The best

parameter from the test results was used in the next step.

Optimizer parameter results are shown in Table IX. The

accuracy value generated by Adam optimizer was better than
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(a) Data signal after PCA (b) Data signal after PCA and StandarScaller

Fig. 5. The result of data signals after reduction feature using Principal Component Analysis with scaller

that of the other optimizers.

This study used a deep neural network (DNN) and the

architecture of the DNN is shown in Figure 6. The parameter

used was a normal initializer with 1000 neurons and 50

batches. ReLu was used to activate the movement of data

from the input layer to the hidden layer, while softmax
activation was used to activate the movement from hidden

layer to the output layer with 500 epochs and dropout value

of 0.1.

This DENS found that the best parameters to be utilized

are 1000 neurons and dropout value of 0.1. The dropout

function is used to reduce unnecessary neurons. With a

dropout value of 0.1 for 1000 neurons, the number of neurons

that were used is 900 neurons as the 10% of the neurons

is excluded. ReLu activation is used on this layer, which

reduces the training time. After building the model, an output

layer consisting of 3 nodes is created. These 3 nodes are the

classes that represent the diabetes levels which are class 0 for

‘healthy’, class 1 for ‘prediabetes’, and class 2 for ‘diabetes’.

The most important step of creating a neural network is the

formation of the hidden layer. In this step, a fully connected

layer needs to be created to which the set of nodes were

connected. These nodes act as the input layer for the fully

connected layer. Since this layer exists between the input

layer and the output layer referred as a hidden layer. In

the proposed method, the Adam optimizer is used on this

layer, but the kernel used is a normal initializer. To activate

the movement from the input layer to the hidden layer 1

ReLu activation was used. This activation is also used to

activate the neuron in the hidden layer 1 to the hidden layer

2. To move the values generated by the hidden layer 2 to the

output layer, the values were converted to non-linear values

using softmax activation. Softmax was used to give more

intuitive results which makes the classification process easier.

A loss function was used with cross-entropy parameters to

monitor errors generated during model building. Given 500

epochs, DENS was automatically searching for epochs to

see how many training processes have reached the optimum

value.

V. EVALUATION

The leave-one-out method, or n-fold cross validation,

where n is the amount of data in the dataset, provides a more

precise accuracy measurement but takes longer to execute.

The k-fold cross validation method is considered to be less

precise since it divides data into buckets randomly. Thus,

when running the method for a second time it may have

different accuracy due to random data placement. In the

leave-one-out method, the spread of classes in various places

is uneven, which makes the accuracy lower. Therefore, a

stratified method was used here, which basically divides the

data and sets the key of each class.

Stratified k-fold is a sampling method where the data are

divided equally. In this study, there were 10 healthy patients,

10 prediabetes patients, and 10 diabetic patients. The data

were divided equally into 2 places, with a key for each class

such that each class had 5 healthy patients, 5 prediabetes

patients, and 5 diabetic patients. This method guarantees that

each place has the same type and the same properties.

A. Confusion Matrix

The confusion matrix is widely used to test the perfor-

mance of a classification method. It visualizes the table
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Fig. 6. Architecture of deep neural network for DENS

of comparison between the predicted class and the actual

class. In this study, the confusion matrix stores classification

information for healthy patients, prediabetes patients and

diabetes patients by deep learning. In the DNN confusion

matrix in Figure 7, there are 20 data of healthy patients.

The actual data show that there were 19 patients that were

predicted as healthy patients. Only 1 prediction said that the

patient was prediabetes when it actually should have been

healthy. From the prediabetes data, 14 out of 15 data were

predicted correctly.

Fig. 7. Result of confussion matrix for classification multilevel of diabetes

Meanwhile, all of the diabetes data were predicted cor-

rectly. Hence, we can obtain various indicators of the perfor-

mance of the classifier [52][53], such as accuracy, precision,

and recall, as shown in Table X.

TABLE X
CLASSIFIER PERFORMANCE RESULT

Healthy Prediabetes Diabetes

Precision 0.95 0.93 1.00

Recall 0.95 0.93 1.00

F1-score 0.95 0.93 1.00

Accuracy 0.96

TABLE XI
PERFORMANCE MEASURMENT OF CLASSIFIER

TP FN FN TN TPR FNR TNR FPR

Class 0 18 2 0 34 0.9629 0.04 0.9815 0.02

Class 1 15 0 1 38

Class 2 19 0 1 34

For further analysis, the classification result of DNN in

the experiment was divided into True Positive Rate (TPR),

False Negative Rate (FNR), True Negative Rate (TNR), and

False Positive Rate (FPR), as summarized in Table XI. As

can be seen in Table XI, DNN produced TPR and TNR of

96.29% and 98.15% on average, respectively. It can be also

seen in Table XI, on average DNN achieved low FNR and

FPR of 0.04% and 0.02%, respectively. These results show

that DNN could recognize the class of diabetes patients with

a good performance.

Figure 8 show the ROC in each class is good by showing

the result of each value is close to 1, class 0, class 1, and

class 2 as 0.95, 0.99, and 0.99, respectively. Y-axis and x-axis

are defined as TPR and FPR. TPR is equivalent to sensitivity

where classifier marked as perfect if sensitivity moves toward

coordinate (0,1) [54]. Macro average and micro average

in the graph also indicate that the system performance is
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Fig. 8. Receiver Operating Characteristic (ROC) Curve of detecting multilevel diabetes

increased while using varied data, which are 0.97 in macro

average and 0.97 in micro average.

B. Root Mean Squared Error
Furthermore, several metrics can be used to measure

the performance of a deep-learning method, such as root

mean squared error (RMSE) and R-squared (R2). RMSE

measures the errors between actual and predicted values.

A low RMSE value indicates a few prediction errors. The

symbols a, p, k, n in Equation 13 denote actual vector,

predicted vector, number of predictors, and total samples,

respectively. R-squared reflects the fitting between the actual

and the predicted vectors, which means that a good fit is

represented by a high R2. Usually, the range of R2 is between

0 and 1. A negative R2 indicates that the chosen model does

not follow the trend of the data, so it fits worse than a

horizontal line. In this study, the actual vector reflects the

observed glucose.

RMSE(a, p) =

√∑n
i=1(a− p)2

n
(13)

R2(a, p) = 1−
∑n

i=1(a− p)2∑n
i=1(ai − p̄)2

(14)

The closer the value of R2 is to one, the lower the error

rate. It can be concluded that the DNN model could classify

the data signal for diabetes very well, as can be seen from

the value of R2, which was 0.9496 for the DNN model.

C. Performance Comparison
The result of the calculation of several classifier methods

[55] are shown in Table XII, with the scaled and unscaled

results for each classifier.
Table XII shows that, apart from the proposed method, the

method with the best accuracy was SVM using rbf kernel.

SVM uses the gamma value and the C parameter as the

main contributors. In this study, the gamma value ranged

from 10−3 to 101. The system finds the best gamma value

based on the given range. C parameter received the same

treatment as the gamma value. The range given for the C

value was between 10−1 and 103. This study tried to find

the range closest to the optimal parameter.

TABLE XII
COMPARISON OF SEVERAL CLASSIFIERS

Classifier Method Unscaled
Accuracy

Scaled
Accuracy

Naive Bayes 0.741 0.741

Linier Discriminant Analysis 0.741 0.741

Decision Tree 0.685 0.685

LR 0.704 0.741

KNN 0.685 0.815

SVM 0.759 0.833

Proposed Method - DENS 0.933 0.963

VI. CONCLUSION

The DENS was implemented for non-invasive blood glu-

cose level classification to categorize three levels of diabetes,

i.e. ‘healthy’, ‘prediabetes’, and ‘diabetes’. The DENS con-

tained five gas sensors. The collected signals were recon-

structed using DWT at db6 level 1. PCA reduced 2 out of

5 features available, as a result, DENS is more optimal by

only using 3 sensors. Moreover, a deep-learning classification

method to estimate the blood glucose level and detect multi-

ple levels of diabetes was proposed. The classification done

using a deep neural network has been proven to increase the

performance of the classification compared to those of the

other methods. The accuracy results of other classifiers, k-

NN, SVM, Naive Bayes, and LDA, were 81.47%, 83.33%,

74.07%, 74.07%, respectively, while the proposed method

achieved an accuracy of 96.29% and an error rate of 0.050.

The future works can be (i) obtaining the optimal ambient

temperature of the gas sensor, (ii) evaluating the effect of

correlated gases for detecting diabetes, (iii) determining an

optimal classification method.
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