
 

Abstract—A novel activity feature for thermal infrared 

human activity recognition, which suffers from poor quality 

infrared imaging and a great variation in human subjects, is 

proposed in this paper. Extraction of this feature consists of 

three major stages. First, a coarse-to-fine localization procedure 

extracts the regions of interest (ROIs) that may contain human 

subjects from a raw infrared sequence. Second, it generates a 

motion deviation image (MDI), which is a novel spatio-temporal 

template, from the available ROIs to represent the infrared 

activity sequence efficiently. Third, from such MDI, it generates 

a directional phase congruency-based feature that codes the 

significant activity information via the steps including 

calculating phase maps, estimating intrinsic dimensions and 

reducing vector dimensionality. The proposed feature is 

validated on the IADB infrared human activity database, and 

the experimental results show its advantages in recognition 

accuracy when used for multi-class activity recognition due to 

its robustness to poor quality thermal infrared imagery, good 

representation of activity information and effective removal of 

noise. 

 
Index Terms—thermal infrared human activity recognition, 

motion deviation image, directional phase congruency, intrinsic 

dimension estimation, reduction in dimensionality 

 

I. INTRODUCTION 

Human activity recognition (HAR) has attracted much 

attention due to the number of applications for public security, 

traffic monitoring, and military actions. Regularly, HAR 

systems are configured with imaging sensors that work in the 

visual light spectrum, as these sensors are capable of 

providing good quality images of enriched information. 

However, HAR systems might degrade or even fail when 

these sensors suffer from such troubles as shadows and poor 

lighting. Instead, thermal infrared imaging sensors, which 

detect objects by their thermal radiations, deal well with bad 

light conditions and can thereby make HAR systems work 

constantly. However, developing thermal infrared HAR 

systems faces two major challenges. The first challenge is the 

poor quality of infrared imaging, including low-contrast, 

boundary-blurring, loss of colour and low resolution, and the 
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second is the considerable variations in human subjects on  

 

aspects of pose, size and motion patterns. These challenges 

impose considerable difficulties in reaching acceptable HAR 

accuracy. 

General HAR involves extracting activity features and 

classifying activities [1]. In the feature extraction step, a 

reasonable and meaningful descriptor is formulated from raw 

data that is regularly in the form of an image or image 

sequence. This descriptor identifies the intrinsic differences 

between different activities or different observations of an 

identical activity. In the activity classification step, activity 

observations are labelled by supervised or non-supervised 

classifiers. The classifiers are expected to have good 

generalization to adapt to new observations. Although both 

steps have a dramatic influence on HAR performance, the 

availability of effective activity features is generally viewed 

as fundamental and critical. 

A novel feature for HAR via thermal infrared imagery is 

proposed in this paper. Through a procedure that consists of 

localization of activity subjects, generalization of a 

spatio-temporal template named the motion deviation image 

(MDI) and feature extraction from MDI, it identifies as much 

activity information as possible from an infrared activity 

sequence characterized by poor imaging quality and complex 

patterns of human activities, and therefore, it demonstrates 

advantages in recognition performance. 

In the rest of this paper, the related literature is briefly 

covered in section II. In section III, the formulation of the 

proposed feature is given in detail. Experimental results and 

algorithmic analysis are provided in section IV, and some 

concluding remarks are presented in section V. 

II. RELATED WORK 

Many activity features have already been proposed for 

HAR, and they can be roughly divided into body modelling, 

local representation, global representation and multi-feature 

fusion categories. Body modelling features [2] [3] [4] 

formulate two-dimensional or three-dimensional models, 

such as the rectangle and skeleton models, to describe human 

bodies. Due to the large degree of freedom in a human body, 

they suffer from bad generality and the weakness to mutual 

occlusions. Local representation features generally handle 

occlusions and crowd scenarios well, as they provide a 

holistic representation of an activity by incorporating a large 

number of local information units. The units, each of which 

provides partial and weak activity information, can be of such 
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forms as key-point [5][6][7][8], trajectory [9][10][11], orient 

gradient [12][13][14], and bag-of-words [15][16][17]. 

Excessive time consumption is often required for calculating 

this kind of features. By contrast, global representation 

features do not concern local units but the whole appearance 

or motion of an actor, and generating these features can be 

much more time-saving. Representative features of this kind 

include human silhouette [18] [19] and energy template. In 

particular, the energy template, including the variation 

energy image (VEI) [1], the motion history image (MHI) [20], 

the silhouette energy image (SEI) [21] and the gait energy 

image (GEI) [22], provides efficient representation of 

spatio-temporal information of an activity with very 

reasonable calculation cost. The fusion-based features [23] 

[24] [25] consist of multiple features originating from 

different sensors, scales, viewpoints, and decisions. Because 

they overcome the limitation of any single feature, they 

generally promote recognition precision if the multiple 

sources are truly complementary. The major challenges lie in 

the choice of fusion techniques and the increasing calculation 

cost. Generally, compared with the rival features, global 

representation features perform better in balancing 

recognition accuracy and computational cost. From this 

viewpoint, a new energy template, i.e., the MDI, is proposed 

in this paper, and then the phase-based feature is formulated 

from this template for thermal infrared HAR. 

III. THE PROPOSED FEATURE DESCRIPTOR 

Fig 1 presents the generation flow of the proposed feature 

descriptor. It can be divided into three major stages. In this 

first stage, the regions of interest (ROIs) that may contain the 

activity subjects are searched from a thermal infrared activity 

sequence. In the second stage, a MDI, which provides a 

compressed representation of the activity sequences, is 

constructed for incoming extraction of activity information. 

In the last stage, a phase-based feature that represents 

intrinsic activity information is extracted from the lines/edges 

of the MDI and it is readily used for incoming activity 

recognition. 

A. Stage #1: Localization of Activity Subjects 

Localization of activity subjects means determining the 

sub-regions in which the human subjects of interest appear in 

activity sequences. It is a fundamental but difficult task prior 

to activity recognition, due to the poor quality of infrared 

imaging and the inhomogeneity of human subjects in 

intensity. To avoid fragmentation, a coarse-to-fine 

localization method, which consists of operations including 

calculating the difference motion history image (DMHI) [21], 

one-dimensional searching localization, and size 

normalization, is proposed. 

The method starts to construct a DMHI. Focusing on the 

history information in the image regions in motion, the 

DMHI is advantageous to handle complicated activities and 

incomplete subject silhouettes well. Originally, the DMHI 

was defined as the sum of the absolute difference between 

adjacent frames in the temporal duration t . By fixing the 

parameter t  as the period of an activity and replacing it by N , 

which is the frame number of the clip that covers the period, 

the DMHI can be calculated as follows 
1

1

1

( , ) | ( , ) ( , ) |
N
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n
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


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where ( , )nf x y  denotes the n th frame of the activity clip 

that covers the very period. Fig 2 shows two exemplar 

DMHIs for the activity “running” and “kicking”, and it sees 

clearly that the subjects appear in the saliency regions. 

Over the DMHI, one-dimensional searching runs to 

coarsely locate the activity subjects. In its horizontal-first 

search, a pixel-vertical-projection curve is firstly calculated 

by summarizing the grey-level intensities of DMHI pixels 

along the vertical direction. Then, in the DMHI the vertical 

strips that correspond to the peaks of this one-dimensional 

curve are searched. In its vertical-second search, a 

pixel-horizontal-projection curve is calculated, and then in 

the DMHI, the horizontal strips that correspond to the peaks 

of the new one-dimensional curve are also searched. Now, 

the activity subjects can be localized in the regions 

intersected by the available horizontal strips and vertical 

strips. Note that the parameter that determines the peaks of 

each one-dimensional curve can be chosen as the average of 

the elements of the very curve. Next, to locate the activity 

subjects that appear in the frame images, the horizontal 

one-dimensional search runs repeatedly over each frame 

image in the identical subdomain with that of the searched 

intersection regions of the DMHI. In this way, the subjects of 

interest get localized quickly and accurately. To eliminate the 

effect of variation in imaging distances, the subject sizes are 

normalized at last. An illustration of this coarse-to-fine 

localization method has been shown in Fig 3. 

 

 
Fig 1.  Flow of generating the proposed activity feature. 
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(a) “running” 

 
(b) “kicking” 

Fig 2．Exemplar activity frames and the DMHIs for (a) “running” and (b) “kicking”. 

 

 
Fig 3. Exemplar images illustrating the one-dimensional searching localization method. (a) One sample frame of the activity “bending”. 

(b) The DMHI for “bending” and its grey-level projection curves. (c) Localized activity subject appearing in the frame image (a).  

(d) Size-normalized activity subject. 

 

 
(a) 

 
(b) 

Fig 4.  Exemplar ROIs for (a) “bending” (b) “waving” and their MDIs. 

 

B. Stage #2: Generalization of a New Spatio-Temporal 

Template: MDI 

Let ( , )nB x y  denote the subject region of interest (ROI) 

extracted from the n th frame. For an activity clip having N 

frames that lasts a period, the average of these ROIs is 

0

0

1
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and their deviation is  
0
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Now, the template MDI can be defined as the normalized 

( , )x y , namely, 

                

max

( , )
( , )

x y
MDI x y




                                            (4) 

where max
 
is the maximum element of the matrix . In Fig 

4, it shows two MDIs related to “bending” and “waving”. 

Clearly, they depict activities in a highly compressed way. 

C. Stage #3: Feature Extraction from MDI. 

As shown in Fig. 4, a MDI epitomizes the spatio-temporal 

information of an activity. Since its edges primarily represent 

the shape profile and the motion characteristics of an activity, 

it is reasonable to extract activity features from such edges 

for activity recognition. In this subsection, phase congruency 

[26], which is powerful for line and edge description, is 

utilized for this purpose and it leads to a phase-based activity 

feature descriptor. 

Under the conception of multi-resolution, phase 

congruency is defined as follows: 

2 2
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where ( , )I x y  
represents the image over which the phase 

calculation is performed, even

soM  and odd

soM  are the respective 

even-symmetric and odd-symmetric filters at the scale s , 

1, 2,...,s p  and the orientation o , and 1, 2,...,o q . The 

symbol “*” is a convolution operator, oW  represents the 

weights for the frequency spread, 
oT  is the estimated noise 

energy at orientation o ,   is a small constant that prevents 

division by zero. Additionally,     
is an operator that 

enables the enclosed quantity equal to itself if the value is 

positive and zero if not, so  is the phase deviation 

measure, and 
o  is the mean phase angle at the 

orientation o . 

Based on above definition of the phase congruency, the 

concept of directional phase congruency can be defined by 
( , ) ( , ) ( , )

( , )
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

, 1, 2,...,o q .  (6)  

In (6), the even-symmetric and odd-symmetric filters, i.e., 
even

soM  and odd

soM , are chosen as the two-dimensional 

log-Gabor filter banks { : 1,2,..., ; 1,2,..., }soG s p o q   , 

considering their adaptation to the human visual system.     

The directional phase congruency provides phase 

representation of image edges along multiple orientations. It 

is reasonably adopted to describe MDI edges in order to 

reach a fine representation of the variations in human shapes 

and activity motions. 

By calculating
oPC , 1, 2,...,o q  

and dividing each of the 

oPC  maps into M N  non-overlapping cells, a series of cell 

averages can be calculated. Then, irregularly, these averages 

can be sequentially collected by 

                 
1 2,{ , ... }o M NH m m m  , 1, 2,...,o q .                 (7)  

Moreover, by pixel-by-pixel comparison of the q directional 

phase congruency maps, a maximum map _MAX PC  can be 

calculated as follows 

1 2_ ( , ) max( ( , ), ( , ),..., ( , ))qMAX PC x y PC x y PC x y PC x y             (8)                            

and it leads to the cell average vector  

                     
1 2,_ { , ... }M NMAX H n n n  .                               (9)                                                                     

Finally, collecting 1,2,...,oH o q，
 
and _MAX H , it 

produces 

1 2{ , ,..., , _ }L qH H H H MAX H                           (10)                                                           

Note, 
LH

 
may be of high dimensionality due to the 

parameters related to the log-Gabor filter banks and cell 

division grids. Moreover, it may be polluted by spurious 

information and noise originating from poor imaging quality 

and MDI generation errors as well. To overcome these 

problems, dimensionality reduction can be applied. However, 

before it runs, the maximum likelihood estimator (MLE) [27] 

is used to estimate the intrinsic dimensionality of 
LH  

considering that it provides sufficient accuracy with 

reasonable computational cost. With the estimated 

dimensionality, the technique linear discriminant analysis 

(LDA) [28] runs to map 
LH  to a new feature descriptor H  

that is of the estimated dimensionality. This descriptor H , 

which describes 
LH  without loss of significant information, 

is ready for activity recognition and would lead to better 

class-separability via avoidance of overfitting and lower 

computational cost. Taking the MDI for “waving” as an 

example, Fig 5 illustrates the generation of the descriptor H . 

 

Fig 5.  Exemplar images to illustrate feature extraction from an MDI. (a) The 

MDI for “waving”. (b) Four directional phase maps. (c) Maximum phase 

map. (d) Cell division and zigzagged collection of averages. 

IV. EXPERIMENT RESULTS AND ALGORITHMIC ANALYSIS 

The proposed feature (PRO) was implemented by 

MATLAB 2013b on a personal computer with Intel Core 

i7-4720HQ 2.60 GHz CPU, 4G RAM and Windows 10 

operating system. To test its performance, 12 different 

activities, each of which was performed by 10 different 

human subjects, were selected from the IADB infrared 

human activity dataset [21]. The activities were bending, 

kicking, punching, jumping-jack, jumping forward on two 

legs, jumping in place on two legs, running, galloping 

sideways, skipping, walking, one-hand waving and 

two-hands waving. Some sample frames of these activities 

are provided in Fig 6. Parameterized by 1p  , 4q  , and 
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4M N  , and configured with the nearest neighbour 

classifier (NN), which is viewed as the most light-weighted 

classifier, PRO was validated via a ten-time 3-fold 

cross-validation process. 

To objectively evaluate the multi-class discrimination 

performance, confusion matrix was first calculated for PRO. 

In this matrix, the data located at the main diagonal cells of 

the matrix represent the percentage of correct recognition and 

that the intersection of the i ’th row and the j ’th column 

represents the percentage of class i  activities being 

recognized as class j . In other words, the diagonal data 

represent the recognition accuracy of different activities, 

while others are the percentages of misclassification. As seen 

from the calculated matrix given in Table 1, the only 

confusion occurs between “p-jump” and “kick” due to their 

similarity, while most activities receive perfect recognition. 
 

Table 1. Confusion matrix with PRO. 

 
 

Next, PRO was tested in comparison with such powerful 

rival feature descriptors as GEI [22], 3D gradient [29], 

SEI-HOG [21] and VEI-LogGabor [1], and the index named 

as cross-validation accuracy (CVA) [29] was adopted as the 

evaluation index. From the results given in Table 2, it sees 

that PRO achieves an accuracy of 98.3% and outperforms the 

rivals by at least 4.0%. Moreover, the index is calculated for 

the PRO configured with such representative classifiers as a 

back-propagation neural network (BPNet) [30], support 

vector machine (SVM) [31], random forest and AdaBoost. In 

this test, preferable parameters were chosen for the classifiers 

to reach as high accuracy as possible. The results given in 

Table 3 show that PRO achieves the accuracy that are higher 

than 96% when arbitrarily working with one of these 

classifiers differencing in working principle and 

classification ability. It demonstrates that PRO achieves good 

representations of intrinsic activity cues and is resultantly 

insensitive to choices of classifiers. 

To examine the effect of parameter settings on PRO, this 

feature descriptor is generated with different choices of scale 

number p , orientation number q  and grid size, and then 

applied for recognition. The corresponding evaluation results 

have been given in Table 4. From this table, the following 

phenomena can be seen. First, the sizes of cell grids 

obviously affect the recognition accuracy, and the choices of 

relatively small sizes would be preferable. Second, a 

relatively larger q results in better accuracy if cell grid sizes 

are fixed. It means that more precise calculation of the 

directional phase makes better representation of the MDI 

edges on which the activity cue concentrates. Third, along 

with increasing p, the recognition accuracy ascends but starts 

to descend if p meets a certain turn-point value. It shows that 

superfine scale settings do not absolutely provide better edge 

representation, due to the noise originating from infrared 

imagining and MDI generation. In Table 5, the dimensions of 

the parameterized PRO descriptors are given. Obviously, the 

relatively small dimension values are definitely beneficial to 

the efficiency of incoming activity classification. To verify 

the values, the feature vectors with manually changed 

dimensions are tested and then it reaches the CVA curves 

shown in Fig 7. An arbitrary curve in this figure shows that 

the recognition accuracy ascends rapidly to an approximate 

maximum and then roughly keeps such maximum when the 

dimension of the very feature vector varies from 1 to its 

allowable maximum dimension. As the turn-point dimension 

that corresponds to the foremost maximum accuracy accord 

with the ones given in Table 5, the estimation of intrinsic 

dimensionality by MLE is accurate. 

Generating the dataset of PRO under the situation with 

arbitrary one of the three parameter settings, which are 

respectively named as SETTING_1, SETTING_2 and 

SETTING_3, and then training NN using randomly selected 

samples that take up 10% to 90% of the total samples in the 

dataset, the average CVAs can be calculated by repeatedly 

applying this classifier to recognize the left samples in the 

dataset. From Table 6, in which the results are given, it sees 

the following phenomena. First, even if only 10% of the 

samples are used for training the classifier, the recognition 

accuracy can still be satisfactory. Second, although the ratio 

of training samples varies drastically from 10% to 90%, the 

recognition accuracy only slightly changes regardless of the 

parameter settings that represent coarse-grained to 

fine-grained PRO. The phenomena demonstrate that PRO has 

strong discriminative capability and therefore enables a 

classifier to be well trained by just using a few samples. 

Finally, the average time costs of recognizing one sample 

are recorded for several PRO-based recognition schemes, 

and the results, which are listed in Table 7, show great 

discrepancy of these schemes in efficiency. With reference to 

this table and previous Table 3, it sees that PRO does benefit 

HAR performance in efficiency, as it enables lightweight 

classifiers, which generally run faster, good enough in 

providing satisfactory accuracy. Therefore, such lightweight 

classifiers as the NN are preferable for PRO based HAR 

systems. 

The experimental results above validate the advantages of 

PRO for the following reasons. 

First, in comparison with such rival templates as SEI and 

VEI, the MDI has better performance in faithfully conserving 

spatial-temporal information of an activity because of two 

strategies. The first strategy is that the ROIs used to 

formulate this template are generated by a projection-based 

method instead of ordinary segmentation methods. In this 

way, it avoids loss of information caused by undesirable 

image segmentation. The second strategy is that the MDI is 

directly generated from a series of same-sized grey-level 

ROIs instead of binary ROIs. Resultantly, it preserves the 

information concerning subject appearances and motion 

variations as well. 

Second, because the responses of the 2D log-Gabor filter 

bank over multiple image scales and orientations are maximal 

in phase at significance points, phase congruency provides 

good representations of MDI lines/edges. In comparison with 

gradient-based edge detectors, the phase-based descriptor 
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demonstrates stronger robustness to image variations 

originating from illumination and blurring due to its 

multi-resolution calculation approach and the detection of 

lines (or edges) by phase rather than magnitude. 

Third, with the accurately estimated intrinsic dimension, 

the LDA helps to remove as much noise originating from 

thermal imagining and MDI formulation as possible. 

Additionally, it avoids possible singularity problems in 

activity classification when the number of training samples 

per class is significantly smaller than that of sample elements. 

 

 
Fig 6. Sample frames of the activities in the IADB database 

 

 
Fig 7.  CVA curves of the feature vectors featured by variable dimension. 

 
Table 2.  CVA comparisons of PRO with four rival features. 

Method GEI+NN[22] 3D gradient+NN[29] SEI-HOG+NN[21] VEI-LogGabor+RVM [1] PRO+NN 

CVA 0.810 0.832 0.849 0.944 0.983 

 

Table 3. CVA comparisons of the recognition schemes composed of PROand five representative classifiers 

Method PRO+NN PRO+SVM PRO+BPNet PRO+Random Forest PRO+AdaBoost 

CVA 0.983 0.964 0.971 0.991 0.993 

 

Table 4.  CVAs of differently parameterized PRO. 

M N   2 2  3 3  4 4  

   
2 3 4 5 2 3 4 5 2 3 4 5 

1 0.148 0.522 0.508 0.587 0.693 0.829 0.921 0.978 0.796 0.948 0.983 0.985 

2 0.473 0.531 0.600 0.665 0.781 0.788 0.962 0.959 0.874 0.968 0.985 0.993 

3 0.358 0.650 0.705 0.731 0.816 0.920 0.949 0.981 0.936 0.977 0.985 0.991 

4 0.339 0.567 0.649 0.383 0.659 0.917 0.744 0.955 0.949 0.981 0.988 0.996 

5 0.523 0.671 0.683 0.714 0.782 0.639 0.946 0.982 0.868 0.956 0.976 0.986 

 

Table 5.  The dimensionalities with PRO under specified parameter settings 

M N   2 2  3 3  4 4  

p                           q 2 3 4 5 2 3 4 5 2 3 4 5 

1 5 6 6 7 7 7 8 9 8 8 9 9 

2 5 6 7 7 7 8 9 9 8 9 10 10 

3 5 6 7 8 8 8 9 10 9 10 11 11 

4 5 6 7 8 8 9 10 10 10 11 13 12 

5 5 6 8 8 8 8 10 11 10 11 12 13 

p q 
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Table 6.  The average CVAs of recognition schemes composed of the PRO under three parameter settings 

and the NN classifier trained by variable proportions of samples in the test dataset 

Parameter settings 

Ratio of training samples  

SETTING_1 

(p=1,q=2,M=N=4) 

SETTING_2 

(p=1,q=4,M=N=4) 

SETTING_3 

(p=2,q=2,M=N=6) 

10% 0.758 0.958 0.991 

20% 0.766 0.975 0.992 

30% 0.775 0.977 0.994 

40% 0.789 0.981 0.995 

50% 0.790 0.985 0.996 

60% 0.793 0.986 0.998 

70% 0.781 0.988 0.997 

80% 0.752 0.989 0.998 

90% 0.739 0.990 0.998 

 

Table 7. Efficiency Comparisons of the PRO-based recognition schemes. 

Method PRO+NN PRO+SVM PRO+BPNet PRO+Random Forest PRO+AdaBoost 

Time Cost(/second) 3.75e-5 5.42e-5 6.2e-5 5.10e-4 1.85e-3 

 

V. CONCLUSIONS 

In this paper, an MDI-based phase feature descriptor is 

presented for infrared HAR. Because of the techniques 

including the spatial-temporal template MDI, the directional 

phase congruency-based description of activity information, 

and MLE and LDA based removal of noise, the feature 

descriptor provides a good representation of human activity 

cues. When parameterized properly, it leads to dramatically 

better multi-class recognition accuracy than rivals. Moreover, 

as lightweight classifiers work well with the feature, it 

facilitates the formulation of fast HAR schemes. These 

advantages make it preferable for HAR systems. In the future, 

algorithmic optimization and transfer to specified hardware 

systems should be explored. 
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