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Abstract—An alternative lifetime model called the new Mar-
shall Olkin Weibull (NMOW) distribution is proposed and
studied. The importance of the new distribution comes from
its ability to model some life distributions with increasing,
decreasing, bathtub, and unimodal shapes of hazard rate func-
tions, which are quite common in reliability study. We obtain
the origin moments, generating function, conditional moment,
conditional moment generating function, mean residual life
function, mean deviations, order statistics and Rényi entropies.
The maximum likelihood method is used to estimate parameters
of the model. Two real data sets are used to illustrate the
applicability of this new model.

Index Terms—Marshall-Olkin distribution; Weibull distribu-
tion; Maximum likelihood estimation.

I. INTRODUCTION

WEIBULL distribution is very popular model that is
commonly used for analyzing biological, medical

and hydrological data sets. However, it does not provide
an acceptable fit for some applications, especially, when the
hazard rates are bathtub, upside down bathtub, or bimodal
shapes. To overcome these drawbacks, several authors have
generalized and extended the Weibull distribution to model
various types of data. Mudholkare et al. [1] studied an
exponentiated Weibull (EW) distribution by adding an shape
parameter to the Weibull distribution to allowing bathtub-
shaped hazard rate function. Aryal and Tsokos [2] added
one parameter to the Weibull distribution using the quadratic
rank transmutation map. Carrasco et al. [3] defined a four pa-
rameters generalization of the Weibull distribution which has
bathtub-shaped hazard rate function. Cordeiro et al. [4] pro-
posed a five-parameter lifetime model called by McDonald
Weibull distribution, it contains the Weibull, exponentiated
Weibull, beta Weibull and Kumaraswamy Weibull distribu-
tion as the special cases. Gauss et al. [5] proposed a new dis-
tribution which called by beta-Weibull geometric distribution,
whose failure rate function can be decreasing, increasing or
an upside down bathtub shape. Peng and Yan [6] introduced
a new extended Weibull distribution with one scale parameter
and two shape parameters which has increasing and upside-
down bathtub shaped hazard rate functions. Carrasco et al. [7]
studied a generalized modified Weibull distribution (MW).
Pogány and Saboor [8] introduced a new four-parameter
model called gamma-exponentiated-Weibull distribution. The
exponential Weibull lifetime distribution [9], Kumaraswamy
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Weibull distribution [10] and a five-parameter extension of
the Weibull distribution (APW) [11] had been studied by
Cordeiro et al. Nassar et al. [12] introduced a new family
of generalized distribution based on Alpha power trans-
formation and extended Weibull distribution. Marshall and
Olkin [13] introduced a new distribution family by adding a
parameter to a initial distribution. Let the survival function of
the initial distribution is given by Ū(x) = 1− U(x), where
U(·) is the cumulative distribution function (CDF) of the
initial distribution, and u(·) is the corresponding probability
density function (PDF). The survival function of Mashall-
Olkin extend distribution is defined by

V̄ (x) =
θŪ(x)

1− (1− θ)Ū(x)
(1)

The corresponding CDF and PDF are given respectively

V (x) =
U(x)

1− (1− θ)Ū(x)
(2)

v(x) =
θu(x)

[1− (1− θ)(1− U(x))]2
(3)

Marshall-Olkin method has been used to obtain new distri-
butions by researchers. For example, Marshall and Olkin [13]
introduced the Marshall-Olkin Weibull distribution. Benkhe-
lifa [14] studied a new three-parameter model called the
Marshall-Olkin extended generalized Lindley distribution.
Mirmostafaee et al. [15] introduced the Marshall-Olkin ex-
tended generalized Rayleigh distribution. In 2016, Sanoor
and Pogany [16] introduced a Marshall-Olkin variant of the
provost type gamma-Weibull probability distribution .

We introduce a new model by inverting the equation
(2), it is named as New Marshall-Olkin Weibull distribution
(NMOW) in later sections. The NMOW has several desirable
properties and more flexible hazard and density functions.
The rest of this paper is organized as follows. In section
II, we introduce the NMOW model. In section III, we study
the properties including quantile function, moments, moment
generating function, conditional moment and conditional
moment generating function, mean residual life function,
mean deviations, order statistics, and Rényi entropies. In
section IV, we discuss the maximum likelihood estimates
(MLEs) of model parameters. In section V, two real data sets
are analyzed to illustrate the potentiality of the new model.
The paper is concluded in section VI.

II. NMOW DISTRIBUTION

Let g(x) and G(x), respectively, are the PDF and CDF
of a continuous random variable X . Then the CDF F (x) of
the new proposed distribution is obtained by inverting the
equation (2) as follows:

F (x) =
θG(x)

1 + (θ − 1)G(x)
(4)
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Fig. 1. Density functions of NMOW model for some values of β and θ.

f(x) =
θg(x)

[1 + (θ − 1)G(x)]2
(5)

Note that when θ −→ 1, f(x) reduced to g(x). From (4)
and (5), the reliability function and hazard rate function are
given by

S(x) =
1−G(x)

1 + (θ − 1)G(x)
(6)

h(x) =
θg(x)

[1 + (θ − 1)G(x)][1−G(x)]
(7)

In this paper, let φ = (θ, λ, β)T , X follows the Weibull
distribution with CDF G(x) = 1 − exp

{ − λxβ
}
, x > 0.

Based on (4) and (5), the CDF and PDF of the NMOW
distribution are defined as

FNMOW (x;φ) =
θ
(
1− exp

{− λxβ
})

θ + (1− θ) exp
{−λxβ

} (8)

fNMOW (x;φ) =
θλβxβ−1 exp

{− λxβ
}

(
θ + (1− θ) exp

{−λxβ
})2 (9)

where β, θ > 0 are the shape parameters and λ > 0 is the
scale parameter. The survival funciton and the hazard rate
function for x > 0, are respectively given by

SNMOW (x;φ) =
exp

{− λxβ
}

θ + (1− θ) exp
{− λxβ

} (10)

hNMOW (x;φ) =
θλβxβ−1

(
θ + (1− θ) exp

{−λxβ
}) (11)

Figures 1 and 2 are the curves of density and hazard rate
functions of the NMOW model for some parameters β and
θ, and λ = 1. Results from Figures 1 and 2 show that
the PDF can be left-skewed or right-skewed, and the hazard
rate function has increasing, decreasing, bathtub, and upside
down bathtub shapes. Therefore, the PDF and hazard rate
functions of the NMOW model are very flexible.
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Fig. 2. Hazard rate functions (a), (b) and (c) of NMOW model for some
values of β and θ.

III. PROPERTIES OF THE NMOW DISTRIBUTION

A. Quantile

Theorem 2.1. If a random variable X follows the NMOW
distribution with parameters (θ, λ, β), then the pth quantile
is given by

xp = [− 1
λ

log(
θ(p− 1)

p(θ − 1)− θ
)]

1
β (12)

proof. It is obtained easily from the equation
FNMOW (xp) = p.
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B. Moment and moment generating function

In this subsection, we present rth moment and the moment
generating function of the NMOW distribution. By using the
following series representation,

(1− z)−ρ =
∞∑

j=0

Γ(ρ + j)
Γ(ρ)j!

zj , |z| < 1, ρ > 0

the denominator in (9) can be expressed as
(
θ − (θ − 1) exp

{− λxβ
})−2

=
1
θ2

∞∑

j=0

(j + 1)(1− 1
θ
)j exp

{− λjxβ
}
,

and substitutes above expression into (9), where Γ(a) =∫∞
0

xa−1e−xdx. The equation (9) can be rewritten as follows

fNMOW (x;φ) =
λβ

θ
xβ−1

∞∑

j=0

(1− 1
θ
)j(j + 1)

× exp
{− λxβ(1 + j)

}
.

Theorem 2.2. If X follows the NMOW distribution with
parameters (θ, λ, β), then the rth moments are given by

E(Xr) =
1
θ
(
1
λ

)
r
β

∞∑

j=0

(1− 1
θ
)j

[ 1
(1 + j)

] r
β

Γ(
r

β
+ 1)

×Γ(
r

β
+ 1), r = 1, 2, · · · (13)

Proof. From the definition of moments, we get

E(Xr) =
∫ ∞

0

xrfNMOW (x;φ)dx

=
λβ

θ

∞∑

j=0

(1− 1
θ
)j(j + 1)

∫ ∞

0

xβ+r−1

× exp
{− λxβ(1 + j)

}
dx,

let λ(1 + j)xβ = y in above equation, we can get (13).
Theorem 2.3. If X follows the NMOW distribution with
parameters (θ, λ, β), then the moment generating function is
given by

MX(t) =
λ

θ

∞∑

j=0

(1− 1
θ
)j(j + 1)

×
∞∑

k=0

tk

k!

[ 1
λ(1 + j)

]1+ k
β

Γ(
k

β
+ 1) (14)

Proof. The moment generating function is defined as

MX(t) =
∫ ∞

0

etxfNMOW (x;φ)dx,

by using et =
∑∞

k=0
tk

k! we obtain

MX(t) =
λβ

θ

∞∑

j=0

(1− 1
θ
)j(j + 1)

∞∑

k=0

tk

k!

×
∫ ∞

0

xβ+k−1 exp
{− λxβ(1 + j)

}
dx,

let λ(1 + j)xβ = y, we can get (14).
Theorems 2.1 and 2.2 are used to obtain the median, mean,

variance, skewness and kurtosis of the NMOW distribution.

TABLE I
MEDIAN, MEAN, VARIANCE, SKEWNESS, AND KURTOSIS OF THE
NMOW DISTRIBUTION FOR SOME VALUES OF β , θ AND λ = 1

β θ median mean variance skewness kurtosis

0.8 0.5 1.1247 1.6567 3.0194 0.4201 11.8139
0.8 0.7695 1.2865 2.3304 0.7304 17.5059
1.2 0.5348 1.0179 1.8204 1.2244 26.1135
1.8 0.3602 0.7935 1.3921 2.1282 41.1612

1.2 0.5 1.0815 1.2526 0.7955 1.6074 34.9602
0.8 0.8398 1.0355 0.6768 2.4933 41.1525
1.2 0.6589 0.8672 0.5737 3.7667 50.3666
1.8 0.5603 0.7174 0.4753 5.8616 65.2156

2 0.5 1.0481 1.0810 0.2178 6.2607 197.6212
0.8 0.9005 0.9448 0.2229 7.5531 156.7927
1.2 0.7785 0.8934 0.2069 7.5531 156.7927
1.8 0.6647 0.7394 0.1880 11.0312 165.9672

The median is obtained by setting q = 0.5 in Theorem 2.1.
Then mean µ is obtained by setting r = 1 in Theorem 2.2.
The variance σ2, skewness γ3 and kurtosis γ4 are obtained
using the formulas σ2 = E[X − µ]2, γ3 = E[X−µ

σ ]3, γ4 =
E[X−µ

σ ]4. These values are reported in Table 1 for various
of θ and β, where the scale parameter λ = 1. From Table
I, it is noted that for fixed θ and λ, the mean, moment of
the NMOW are decreasing function of β, and the skewness
is increasing function of β. Also, for fixed β and λ, the
median, mean are decreasing function of θ, and the skewness
is increasing function of θ.

C. Conditional moment and Conditional moment generating
function

Theorem 2.4. If X follows the NMOW distribution with
parameters (θ, λ, β), then the rth conditional moments and
conditional moment generating function of a random variable
X , are given by

E(xr|T > t) =
λ

θ

∞∑

j=0

(1− 1
θ
)j(j + 1)

[ 1
λ(1 + j)

]1+ r
β ×

Γ(
r

β
+ 1, λtβ(1 + j)), r = 1, 2, · · · (15)

E(etx|T > t) =
λ

θ

∞∑

j=0

(1− 1
θ
)j(j + 1)

∞∑

k=0

Γ(
k

β
+ 1, λtβ)

× tk

k!
(1 + j)

[ 1
λ(1 + j)

]1+ k
β

(16)

where Γ(a, x) =
∫∞

x
ta−1e−tdt.

Proof. According to the definition of conditional moment
and conditional moment generating functions

E(xr|T > t) =
1

F̄ (t)

∫ ∞

t

xkf(x)dx,

E(etx|T > t) =
1

F̄ (t)

∫ ∞

t

etxf(x)dx,

we can use the same method as above as to get the results
easily.
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D. Mean residual life

The mean residual life (MRL) function describes the aging
process that is very important in reliability and survival
analysis. The MRL function of a lifetime random variable
X is given by

µ(x) =
1

F̄ (x)

∫ ∞

x

tf(t)dt− x (17)

Theorem 2.5. If X follows the NMOW distribution with
parameters (θ, λ, β), the MRL function is given by

µ(x) =
1

F̄ (x)
λ

θ

∞∑

j=0

(1− 1
θ
)j(j + 1)

[ 1
λ(1 + j)

]1+ 1
β

×Γ(
1
β

+ 1, λtβ(1 + j)) (18)

E. Mean deviations

The mean deviation of X about the mean and about the
median, measure of spread in a population, are given by

δ1 = E(|X − µ|) = 2µF (µ)− 2
∫ µ

0

xf(x)dx (19)

and

δ2=E(|X−M |) = µ−M +2MF (M)−2
∫ µ

0

xf(x)dx (20)

respectively, where the mean µ = E(X) and M denotes the
median of X.
Theorem 2.6. If X follows the NMOW distribution with
parameters (θ, λ, β), the Mean deviations are given by

δ1 = 2µF (µ)− 2
λ

θ

∞∑

j=0

(1− 1
θ
)j(j + 1)

[ 1
λ(1 + j)

]1+ 1
β

×γ(
1
β

+ 1, λ(1 + j)µβ) (21)

δ2=µ−M+ 2MF (M)− 2
1
θ
(
1
λ

)
1
β

∞∑

j=0

(1− 1
θ
)j

[ 1
(1 + j)

] 1
β

×γ(
1
β

+ 1, λ(1 + j)µβ) (22)

here γ(a, x) =
∫ x

0
ta−1e−tdt.

F. Order statistics

Theorem 2.7. If a the random variable X follows the NMOW
distribution with parameters (θ, λ, β), let X1, X2, · · · , Xn be
its a random sample with size n, then, the PDF and CDF of
the ith order statistics Xi:n are give by

fi:n(x) =
λβxβ−1exp(−λxβ)n!

(i− 1)!(n− i)!

n−i∑

l=0

(n−i

l

)
(−1)l

× θi+l[1− exp(−λxβ)]i+l−1

[θ + (1− θ)exp(−λxβ)]i+l+1
(23)

Fi:n(x) =
n∑

j=i

n−j∑

l=0

(n

j

)(n−j

l

)
(−1)lθj+l(1− θ)j+l

× exp(−λxβ(j + l))
[θ + (1− θ)exp(−λxβ)]i+l

(24)

G. Réyi entropy

The entropy of a random variable X measures the variation
of the uncertainty. The Rényi entropy, say REX(v), is
defined as

REX(v) =
1

1− v
log

( ∫ ∞

0

f(x)vdx
)

(25)

Theorem 2.8. If X follows the NMOW distribution with
parameters (θ, λ, β), the Rényi entropy is given by

REX(v) =
1

1− v
log

(
av−1(

b

θ
)v

∞∑

j=0

Γ(−2v+j)
Γ(−2v)j!

(1− 1
θ
)j

×( 1
b(v + j)

)v− v
a + 1

a Γ(v − v

a
+

1
a
)
)

(26)

IV. MAXIMUM LIKELIHOOD

Let x = (x1, · · · , xn) be a random sample form the
NMOW distribution with parameters φ = (θ, λ, β), then the
log-likelihood function is given by

l(x|φ) = n
[
log(θ)+log(β)+log(λ)

]
+ (β−1)

n∑

i=1

log(xi)

−λ
n∑

i=1

xβ
i − 2

n∑

i=1

log
[
θ + (1− θ) exp

{− λxβ
i

}]

(27)

The MLEs (θ̂, λ̂, β̂) are obtained by using the following
likelihood equations:

∂l

∂θ
=

n

θ
+2

n∑

i=1

(1− θ)λβxβ−1
i exp

{− λxβ
i

}
[
θ + (1− θ) exp

{− λxβ
i

}] = 0 (28)

∂l

∂λ
=

n

λ
−

n∑

i=1

xβ
i +2

n∑

i=1

(1− θ) exp
{− λxβ

}
xβ

i[
θ + (1− θ) exp

{− λxβ
i

}] = 0

(29)

∂l

∂β
=

n

β
−

n∑

i=1

log(xi)− λβ
n∑

i=1

xβ−1
i

+2
n∑

i=1

(1− θ) exp
{− λxβ

}
λβxβ−1

i[
θ + (1− θ) exp

{− λxβ
i

}] = 0 (30)

However, the above equations are very complex and no
analytical solutions. We use Newton-Raphson method to
compute the MLEs (θ̂, λ̂, β̂). We can also get the estimation
of the unknown parameters using Bayesian approach which
can be seen ([17], [18], [19]).

V. FITTING RELIABILITY DATA

In this section we analysis real data to illustrate that the
NMOW is a better lifetime model by comparing with many
known distributions, such as Weibull (W), inverse Weibull
(IW), exponential Weibull (EW) distributions[4], and their
PDFs are expressed as follows.
The Weibull distribution with PDF

f(x;β, λ) = λβxβ−1 exp
{−λxβ

}
, x ≥ 0, λ > 0, β > 0

(31)
The IW distribution with PDF

f(x;β, λ) = λβx−(β+1) exp
{−λx−β

}
, x ≥ 0, λ > 0, β > 0

(32)
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The EW distribution with PDF

f(x;β, λ, θ) = θλβxβ−1 exp
{− λxβ

}
,

x ≥ 0, λ > 0, β > 0, θ > 0
(33)

Application 1: The carbon fibers data set.
We shall consider the uncensored data set on the breaking

stress of carbon fibers [16].The observations are shown as
follows.

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11 3.56
4.42 2.41 3.19 3.22 1.69 3.28 3.09 1.87 3.15 4.90 1.57
2.67 2.93 3.22 3.39 2.81 4.20 3.33 2.55 3.31 3.31 2.85
1.25 4.38 1.84 0.39 3.68 2.48 0.85 1.61 2.79 4.70 2.03
1.89 2.88 2.82 2.05 3.65 3.75 2.43 2.95 2.97 3.39 2.96
2.35 2.55 2.59 2.03 1.61 2.12 3.15 1.08 2.56 1.80 2.53
4.20

Application 2: The cancer patients data set.
The second data set represents the remission times (in

month) of random sample of 128 bladder cancer patients as
reported in Lee and Wang [20]. The observations are shown
as follows.

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63
0.20 2.23 3.52 4.98 6.97 9.02 13.29 0.40
2.26 3.57 5.06 7.09 9.22 13.80 25.74 0.50
2.46 3.64 5.09 7.26 9.47 14.24 25.82 0.51
2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81
2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64
3.88 5.32 7.39 10.34 14.83 34.26 0.90 2.69
4.18 5.34 7.59 10.66 15.96 36.66 1.05 2.69
4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75
4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33
5.49 7.66 11.25 17.14 79.05 1.35 2.87 5.62
7.87 11.64 17.36 1.40 3.02 4.34 5.71 7.93
11.79 18.10 1.46 4.40 5.85 8.26 11.98 19.13
1.76 3.25 4.50 6.25 8.37 12.02 2.02 3.31
4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76
12.07 21.73 2.07 3.36 6.93 8.65 12.63 22.69

For both data sets, we calculate the MLEs of the pa-
rameters of all the models and the Akaike information
criterion (AIC), Bayesian information criterion (BIC), consis-
tent Akaike information criterion (CAIC), and Kolmogorov-
Smirnov (K-S) distances and corresponding p-values, and
they are listed in Tables II and III, respectively. We observe
that the NMOW has the lowest AIC, BIC, CAIC and K-S
values and largest p-values by comparison with other models.
Therefore, the NMOW could be chosen as the better model.
Figures 3 and 4 show the histogram for data and the density
estimates of all models. From Figures 3 and 4 we can also
found the NMOW is better fitted to the data. Figures 5 and
6 are the MLEs changing of reliability and hazard rate along
with time of data. From Figures 5 and 6 we can see the
hazard rate of carbon fibers is increasing which has inflection
point and the hazard rate of cancer patients data is bathtub
shaped.

VI. CONCLUSIONS

In this paper, we propose a new three-parameter
model, called the New Marshall-Olkin Weibull distribution
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Fig. 5. MLEs of reliability and hazard rate functions based on data 1.

(NMOW) which has more forms of hazard rate functions.
The NMOW distribution is motivated by inverting the
Marshall-Olkin distribution family in terms of the Weibull
distribution in order to provide more flexibility to analyze
lifetime data. We derive explicit expressions for the quantile,
moments, moment generating function, conditional moment
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TABLE II
MLES, AIC, BIC, CAIC, K-S, P-VALUE BASED ON THE FIRST DATA

Distribution
MLEs

AIC BIC CAIC K-S p-value
β̂ λ̂ θ̂

W 3.4392 0.0213 176.1352 180.5145 176.3257 0.0826 0.7584
IW 3.2262 1.6480 246.3898 250.7691 246.5803 0.2303 0.0018
EW 3.8045 0.0120 0.8369 177.8999 184.4689 178.2870 0.0813 0.7746
NMOW 1.6339 0.6036 0.0406 175.4308 181.9998 175.8179 0.6122 0.9656

TABLE III
MLES, AIC, BIC, CAIC, K-S, P-VALUE BASED ON THE SECOND DATA

Distribution
MLEs

AIC BIC CAIC K-S p-value
β̂ λ̂ θ̂

W 1.0478 0.0939 832.1738 837.8778 832.2698 0.0700 0.5572

IW 2.4314 0.7521 892.0015 897.7056 892.0975 0.1408 0.0125

EW 0.6544 0.4538 2.7966 827.3602 835.9163 827.5538 0.0450 0.9577

NMOW 1.5081 0.001 8.3819 826.5759 835.1320 826.7695 0.0380 0.9926
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Fig. 6. MLEs of reliability and hazard rate functions based on data 2.

and conditional moment generating function, mean residual
life mean deviations, order statistics, Rényi entropies. We
obtain the MLEs of the parameters for NMOW. Two appli-
cations illustrate that the proposed model may attract wider
applications in reliability analysis. Finally, we use the new
model to analyze the reliability of the real data.
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