
 

  

Abstract—In this paper, a novel landscape recognition 

algorithm based on the optimal projection is proposed to meet 

the landscape measurement requirements of a detector. The 

proposed algorithm is applied to the airborne radar platform, 

proving a necessary recognition ability. The characteristic 

values of the target scattering matrix eigenvalues are defined, 

which has no direct relation to the power and angle of a 

detection signal and is only related to the topographic features 

of a landscape in the detection range. Besides, a series of 

standard scatter rotation invariant matrices with uncertain 

parameters are constructed based on the Krogager’s idea of 

decomposing the target scattering matrices. The 

geomorphological polarization scattering matrix of a detection 

range is projected onto the standard scatter projects, and 

relevant weight values are calculated to judge the landscape 

attributes so as to achieve the goal of landscape recognition. 

Effective landscape recognition can further enhance the 

autonomous ability of ammunition and overcome the effects of a 

new diversified operational environment. 

 
Index Terms—polarized signal, optimal projection, airborne 

radar platform, landscape recognition, rotation invariant 

matrix 

 

I. INTRODUCTION 

Y employing the vector characteristics of the 

electromagnetic wave, a polarized detector obtains the 

polarized scattering response characteristics of a target [1], 

[2], which are extremely sensitive to the target’s dielectric 

constant, geometric shape, and spatial orientation. Therefore, 

by using a polarized detector, the acquisition capability of the 

target’s physical properties can be enhanced [3]. The 

polarization target recognition method has been applied and 

validated in different domains, and favorable recognition 

performances have been achieved. Wang F Y et al. proposed 

a novel type of polarized invariant features for radar target 

recognition, achieving the mean recognition accuracy of over 

90% and 80% [4]. However, this method needs to train the 

polarized invariant features and has a long response time. 

Shao X H et al. proposed a complex-weighing-based target 

polarization recognition method for unknown and 
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time-varying clutter environment. Moreover, they extracted 

the polarization characteristics of the target echoes and 

achieved higher recognition accuracy than the traditional 

recognition algorithm such as forward-looking imaging, 

HRRP (High Resolution Range Profile) and so on [5]. 

Beauchamp et al. used the dual-polarization radar scattering 

characteristics for recognition, analyzed the target’s motion 

and structural characteristics in detail, and successfully 

recognized wind turbines on the ground. However, by using 

this method, the detect end cannot acquire the complete target 

information of unknown and non-cooperative targets, 

suggesting that this method is unfavorable for target 

recognition on a battlefield [6]. 

Due to the limited platform space, complex motion states, 

and short flight time, some of the mature polarization target 

recognition techniques and algorithms are not applicable to a 

low-attitude flight platform. At present, the research on the 

detection by a low-altitude flight platform mainly focuses on 

detector design and detecting strategy. Xu R et al. studied the 

design of a missile-borne real-time radar signal processing 

system profoundly and proposed a standardized module and 

expandable system design scheme, which can address the 

problem of real-time receiving and processing of a 

missile-borne radar signal [7]. Chen Y et al. proposed a SAR 

imaging algorithm based on the fractional Fourier 

transform [8]. Because an echo signal undergoes the 

independent local optimal processing during the imaging 

process, this method is applicable to a non-linear flight path 

of a missile platform [8]. Song L Z et al. designed a linear 

frequency modulation (LFM) or a phase-coded pulse 

compression signal in the transmitting pulse [9], and this 

guidance radar system possesses favorable frequency-shift 

jamming and delay-interference resistance abilities.  

Motivated by the above research results, this paper aims to 

establish a landscape recognition algorithm for a polarized 

detector on a low-attitude flight platform, which can endow 

the platform with the capability of self-recognition of the 

ground objects, and thus acquire the landscape recognition 

capability. 

II. LANDSCAPE RECOGNITION ALGORITHM BASED ON 

POLARIZED OPTIMAL PROJECTION 

According to Krogager’s research results, the polarization 

scattering matrix of any object can be decomposed into three 

components, namely, spheroid, dihedral angle, and 

spirochete [10]. Thus, different targets can be recognized 

based on a difference in their compositions. As shown in Fig. 

1, a low-attitude flight platform can detect complex terrains 

including mountains and hills. 
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Fig. 1.  Landscape in the detection range of a polarized detector. 

As shown in Fig. 1, regarding the geomorphic features, 

different landforms differ slightly after the decomposition 

into a spheroid, dihedral angle, and spirochete. In this study, 

standard component bodies are improved to increase the 

difference and contribute to the recognition of the 

geomorphic features. 

A. Rotational Invariant Parameters of Scattering Matrix 

The polarization characteristic quantities irrelevant to the 

position and observation angle should be constructed during 

the target recognition by a polarized detector. For a 

mono-station radar, when the reciprocal theory is satisfied, 

the target scattering matrix represents an axial-symmetry 

matrix, and can be expressed as: 

 hh hv

vh vv

S S

S S

 
=  

 
S , (1) 

where hv vhS S= , the subscript ‘ij’ relates to the signal emitted 

in the jth polarization mode and received by the ith 

polarization model, h denotes the horizontal polarization, and 

v denotes the vertical polarization. As the incident angle 

changes, the target scattering matrix can be expressed as: 

 ( ) ( ) ( )=   −  S J S J , (2) 

where ( )J  denotes the rotational function and can be 

expressed as: 

 
cos sin

( )
sin cos

− 
=  

 

 


 
J . (3) 

Since it can be easily proved that 1( ) ( )−− = J J , the 

following expression can be derived: 
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2

[ ( ) ] [ ( ) ]
0

−  
    =  

 

 
 


J P S J P . (4) 

According to (4), when the scattering matrix rotates by a 

certain angle  , the acquired new scattering matrix and 

original matrix have an identical upper triangular matrix. 

Based on the related matrix theories, the value of   can be 

only 0 or 1. Namely, when 1 2=  , then 1= ; otherwise, 

when 1 2  , then 0= . 

B. Optimal Projection of Scattering Matrix 

To measure the similarity degree between the geomorphic 

features in the detection range and the base, an optimal 

projection distance (OPD) of the scattering matrix is 

introduced. The measure vector can be defined as: 

 T

1 2[ ]x=  k , (5) 

where 1 2  , and the subscript T represents the 

transposition process. Then, x can be expressed as: 

 
2 2 2

2hh hv vvx S S S=  + + . (6) 

According to the theory presented in Section 2.1, it can be 

easily derived that the measure vector k  is a rotational 

invariant vector and can be used for similarity analysis 

between the scattering matrices. Assume that the scattering 

matrices of echo and basement are denoted as 1S and 2S , 

respectively, and that their measure vectors are 
1k  and 2k , 

respectively. Then, the OPD of 1S  to 
2S  can be expressed as: 

 

2
T

1 2

1 2 2 2

1 22 2

( )
( ) maxOPDc

 
 =
 
 

k k
S S

k k
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According to Eq. (7), 1 2( ) [0,1]OPDc S S , and when and only 

when 1

1 1

−=  S P S P , then 1 2( ) 1OPDc =S S . By solving the 

optimal polarization projection problem, the components of a 

geomorphic environment within the detection range can be 

acquired.  

C. Analysis of Various Basements in New Projection Base 

A new projection base composed of a rectangular pyramid, 

a circular truncated cone, and a sphere is established. Assume 

that   and   denote the elevation angle and azimuth angle 

of a detection beam, respectively. 

Basement 1 is defined as a rectangular pyramid (RP) 

wherein various bottom edges have the same heights, i.e., the 

angle between the side surface and each bottom is 45°. 

Within the detection range (0°<  <60° and -60° < <60°), 

the rotational invariant parameter matrices of different bases 

are solved, and the far-field settings of the RP are displayed 

in Fig. 2.  

 
(a) Horizontal polarization input 

settings of the RP 

(b) Vertical polarization input 

settings of the RP 

Fig. 2.  Horizontal and vertical polarization input settings of the basement 1 

within the detection range. 

According to the above inputs, the scattering matrix of the 

basement 1 at every angle is expressed as: 

 _0 1 2( ) ( )RP RP=   S S , (8) 

where RPS  denotes the scattering matrix of the basement 1 at 

any beam incident angle, _0RPS denotes the scattering matrix 

of the basement 1 at zero positions ( 0= and 0= ), and 

i  denotes the rotational function at different angles within 

the detection angle so that RPS  can traverse the range at any 

angle. The values of various elements of the scattering matrix 

are presented in Fig. 3.  

 
(a) Horizontal transmission and horizontal receiving 
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(b) Horizontal transmission and vertical receiving 

 
(c) Vertical transmission and vertical receiving 

 Fig. 3.  The scattering matrix elements under different azimuth polarization 

conditions. 

By solving the basement polarization scattering matrix at 

different angles, the measure vector under different 

conditions can be obtained and then used to determine the 

distances between the geomorphic features of the target 

region and those of the basement 1 so as to judge the 

similarity.  

The basement 2 is defined as a truncated cone (TC), in 

which the angle between the bottom and the side surfaces is 

45°, i.e., the ratio of the bottom radius to the height is 1/ 3 , 

and the radius of the upper disk is half of that of the lower 

disk. Within the detection range (0°<  <60°), the rotational 

invariant parameter matrices of different bases were solved, 

as the far field setting displayed in Fig. 4. 

 
(a) Horizontal polarization input 

settings of the TC 

(b) Vertical polarization input 

settings of the TC 
Fig. 4.  Horizontal and vertical polarization input settings of the basement 2 

within the detection range. 

According to the above inputs, the scattering matrix of the 

basement 2 at each angle is expressed as: 

 _0 1( )TC TC=  S S ,  (9) 

where TCS  denotes the scattering matrix of the basement 2 at 

any beam incident angle, _0TCS denotes the scattering matrix 

of the basement 2 at zero positions ( 0= ), and i  denotes 

the rotational function at different angles within the detection 

angle so that TCS  can traverse the range at any angle. The 

values of various elements of the scattering matrix are 

presented in Fig. 5.  
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(a) Normalized RCS value for the horizontal-horizontal polarization pattern 

within the detection range 
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(b) Normalized RCS value for the horizontal-vertical polarization pattern 

within the detection range 
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(c) Normalized RCS value for the vertical-vertical polarization pattern 

within the detection range 

Fig. 5.  Normalized RCS value under different polarization conditions. 

Similarly, the measure vectors of the basement 2 under 

different conditions can be obtained by solving the RCS of 

the basement at different beam elevation angles; accordingly, 

the distances between the geomorphic features of the target 

region and that of the basement 2 can be calculated by the 

judgement of similarity. 

Basement 3 is defined as a spheroid. 

According to the analysis of a spheroid scattering matrix 

described in [11], a spheroid scattering matrix can be 

described as: 

1 0

0 1
S

 
=  

 
S .                                  (10) 

Then, the measure vector of a spheroid can be expressed as:  

  
T

1 1 0S =k . (11) 

Therefore, both scattering and measure matrices of a spheroid 

at different detecting angles can be determined. 

D. Judgment of Terrain Undulation Degree 

According to the landscape recognition and classification 

methods proposed in [12], the terrain undulation degree can 

be described by a difference between the maximum and 

minimum elevations in the region, which is also denoted as 
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the undulation factor of a detection region. Based on different 

basement characteristics, the undulation degrees of terrains 

are set. The undulation degree of basement 3 is a constant, 

and it is equal to 1, which can be expressed as: 

 _ 1ud ST = . (12) 

Assuming _ud RPT  and _ud TCT  denote the undulation degrees 

of the basement 1 and basement 2, respectively, the following 

expression can be written:  

 
_

max

( )
( 1)

optn

ud i

x x
T

dis


= − 

dis
, (13) 

where ( )dis  denotes the distance function, which is given 

by: 

 2

1

( ) ( )
n

n nx y x y= −dis , (14) 

where optx  denotes the angle coordinate corresponding to the 

optimal projection, optx denotes the angle coordinate at the 

detection boundary, and maxdis  denotes the maximum 

distance at the detection boundary [13].  

The amplitudes under different polarization modes 

characterize the profile (shape) characteristics of terrains in 

the region, and the geomorphic characteristics within certain 

detection range can be determined only by using 

combinations of different amplitudes (which is similar to 

coordinates). In this study, the optimal projection coordinates 

during the data processing are expressed as: 

  HH HV VVdec a a a=env
.
 (15) 

Since different basements differ in undulation, when 

i RP= , then 0n = , and when i TC= , then 1n = . The terrain 

undulation degree within the detection range can be defined 

as [14]:  

 T

_ _ _[ , , ]landscape dec ud RP ud TC ud ST T T T= env . (16) 

Consequently, a greater value of landscapeT  implies a greater 

region undulation degree. The undulation degree is mainly 

caused by the existence of multiple peaks in a terrain (similar 

to basement 1). 

III. EXPERIMENTAL VALIDATION 

The surface data (22°54, N~232°08, N and 1052°29’ 

E~1052°49 E) of the China-Vietnam border was extracted to 

validate the feasibility and superiority of the proposed 

landscape recognition algorithm. This region, with the 

highest altitude of 1682 m, mainly includes hills and has no 

large-scale flat areas. Before performing the experiments 

using the proposed algorithm, the ground clutter of three 

different landscape types was detected by the FMCW hand 

radar. The obtained test results of bare, grassland and grove

landscapes are given in Table 1. 

TABLE 1(A)  

FITTING TEST RESULTS OF BARE LAND CLUTTER 

Pitching 

angle 

（°） 

Weibull distribution Rice distribution Log-normal distribution 
Optimal 

distribution 

p̂  q̂  Kwbl â  Kric ˆ
mX  ̂  Klgn 

 

20 1.8720 2.6201 0.0659 0.1050 0.4505 0.6550 0.8697 0.2692 Weibull 
30 1.8568 2.6992 0.0714 0.1370 0.4615 0.6822 0.8602 0.2802 Weibull 

40 1.8514 2.8008 0.0714 0.1489 0.5110 0.7182 0.8569 0.2637 Weibull 
50 1.8642 2.8855 0.0604 0.1303 0.4945 0.7502 0.8648 0.2802 Weibull 

60 1.8622 2.9822 0.0659 0.1546 0.5110 0.7828 0.8636 0.2527 Weibull 

TABLE 1(B) 

 FITTING TEST RESULTS OF GRASSLAND CLUTTER 

Pitching 
angle 

（°） 

Weibull distribution Rice distribution Log-normal distribution 
Optimal 

distribution 

p̂  q̂  Kwbl â  Kric ˆ
mX  ̂  Klgn 

 

20 1.6171 3.5234 0.0824 0.1783 0.6264 0.9026 0.6808 0.3571 Weibull 
30 1.6269 3.3254 0.0714 0.1625 0.6099 0.8469 0.6896 0.3516 Weibull 

40 1.5937 3.1529 0.0815 0.1400 0.6196 0.7863 0.6591 0.3967 Weibull 

50 1.5983 3.0581 0.0769 0.1377 0.5679 0.7568 0.6635 0.3846 Weibull 
60 1.6105 2.8623 0.0860 0.1006 0.5753 0.6934 0.6749 0.3978 Weibull 

TABLE 1(C)  

FITTING TEST RESULTS OF GROVE CLUTTER 

Pitching 
angle 

（°） 

Weibull distribution Rice distribution Log-normal distribution 
Optimal 

distribution 

p̂  q̂  Kwbl â  Kric ˆ
mX  ̂  Klgn 

 

20 1.5950 1.8608 0.0500 0.5273 0.0510 0.2592 0.9502 0.4337 Rice 

30 1.5928 1.8996 0.1449 0.6293 0.0867 0.2794 0.9480 0.4439 Rice 
40 1.6072 2.0923 0.0959 0.7859 0.0714 0.3793 0.9622 0.3929 Rice 

50 1.6896 2.1080 0.1010 0.9628 0.0765 0.4042 1.0372 0.3418 Rice 

60 1.6916 2.2217 0.0908 1.1156 0.0612 0.4572 1.0389 0.3163 Rice 

The optimal distribution of different clutter data which is 

provided in Table 1 was used to realize the actual clutter 

environment in different experiments, so that, the confidence 

level of each verification experiment of the proposed 

algorithm could be improved. The terrain coordinates within 

the beam detection range at different detection pitch angles 

are presented in Fig. 6. 
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Fig. 6.  Terrain coordinates at different detection pitch angles. 

Using the obtained coordinates, the measure vector of the 

target region was determined by using (5) and (6), and the 

optimal projections of the target region at different angles for 

different basements were calculated by (7); the obtained 

results are listed in Table 2. The optimal projection 

coordinates can reflect the region components, which can 

also be regarded as the weights of different basements.  

TABLE 2  

THE RESULTS OF THE MEASUREMENT VECTOR, OPTIMAL PROJECTION, AND UNDULATION DEGREE WITHIN THE TARGET RANGE AT DIFFERENT ANGLES 

Pitch 

angle 
Terrain coordinates  Measure vector 

Optimal projection onto 

different basements  

Undulation 

degree 

6° (-25.368, -16.704, -24.503) [-41.645, -8.226, 0]T (0.916, 0.469, 0.481) 9.938 

12° (-16.025, -21.321, -16.691) [-37.682, 4.965, 0]T (0.826, 0.357, 0.492) 9.044 

18° (-16.658, -19.579, -16.700) [-36.258, 2.901, 0]T (0.854, 0.379, 0.497) 9.310 

24° (-13.308, -20.431, -13.256) [-33.713, 7.149, 0]T (0.882, 0.321, 0.479) 8.548 

30° (-15.604, -20.887, -15.649) [-36.514, 5.261, 0]T (0.822, 0.352, 0.490) 8.966 

36° (-11.728, -18.232, -11.885) [-30.039, 6.426, 0]T (0.781, 0.320, 0478) 8.532 

42° (-20.875, -22.996, -20.856) [-43.862, 2.130, 0]T (0.868, 0.392, 0.499) 9.444 

48° (-34.879, -28.379, -37.517) [-64.608, -7.789, 0]T (0.912, 0.450, 0.493) 9.896 

54° (-44.284, -17.930, -48.794) [-64.640, -28.467, 0]T (0.868, 0.494, 0.419) 8.751 

 

As listed in Table 2, a large number of components in this 

region were similar to basement 1, which also exhibited great 

undulation. The undulation of this region was quantitatively 

characterized by the landscape recognition algorithm. Three 

different terrain types, namely flat and peak, were selected to 

be recognized quantitatively, so as to reflect the superiority of 

the proposed algorithm in terrain recognition. Finally, the 

optimal projections of flat and peak terrains were calculated, 

and they are listed in Table 3. 

TABLE 3 
 OPTIMAL PROJECTION AND UNDULATION DEGREE OF THE FLAT TERRAIN 

AND PEAK TERRAIN AT DIFFERENT PITCH ANGLES 

(A) FLAT TERRAIN 

Pitch angle Optimal projection Undulation degree  

6° (0.084, 0.492, 0.390) 1.326 

12° (0.085, 0.494, 0.405) 1.233 

18° (0.087, 0.494, 0.417) 1.257 

24° (0.090, 0.486, 0.458) 1.398 

30° (0.089, 0.491, 0.445) 1.373 

36° (0.087, 0.494, 0.421) 1.265 

42° (0.088, 0.493, 0.432) 1.411 

48° (0.086, 0.494, 0.415) 1.253 

54° (0.084, 0.493, 0.396) 1.212 

(B) PEAK TERRAIN 

Pitch angle Optimal projection Undulation degree  

6° (0.654, 0.755, 0.245) 7.234 

12° (0.765, 0.732, 0.348) 8.012 

18° (0.799, 0.810, 0.357) 8.320 

24° (0.802, 0.832, 0.249) 8.978 

30° (0.869, 0.812, 0.045) 7.922 

36° (0.900, 0.860, 0.320) 8.265 

42° (0.912, 0.902, 0.144) 9.491 

48° (0.854, 0.820, 0.210) 9.235 

54° (0.897, 0.904, 0.179) 8.902 

According to the results in Table 3, different terrains 

differed greatly in the undulation degree, i.e., the terrain types 

during the flight can be distinguished through undulation 
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degree. The proposed algorithm has been used in actual dual 

polarization radar system, and a series of landscape 

recognition experiments to prove the superiority of proposed 

recognition algorithm. Fig. 7 shows the equipment of radar 

system: 

 
 

 
Fig. 7 Dual polarization radar system and measurement equipment 

The Pseudo Random Code Continuous Wave (PRC-CW) 

radar used in the experiment is a type of individual soldier 

detection radar. The radar is small in size, portable, low in 

power consumption, high in resolution, strong in 

anti-interference ability, and has a continuous working time 

of more than 8 hours under battery power supply. It is 

suitable for landscape recognition experiments with a certain 

height of terrain and tripod in the field. We divide the 

detection area into 101*101 planes, and the recognition 

results of each points in the detection area are shown in fig. 8 

which is the comparison between proposed algorithm and 

conventional recognition algorithm in different SNRs. 
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Fig. 8 Recognition RMSE comparison between proposed algorithm and 

conventional recognition algorithm in different SNRs 

In different SNRs conditions, the RMSE results of proposed 

algorithm are always lower than conventional recognition 

algorithm. At the first 3 SNR conditions, because of the low 

signal-to-noise ratio, the recognition error is larger than other 

SNR conditions. Fig. 9 shows the interface of different 

number of bit sequence.  
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Fig. 9 Comparison results between proposed algorithm and conventional 

recognition algorithm in different number of bit sequence 

The above simulation results prove the superiority of 

proposed recognition algorithm, and the whole response of 

proposed algorithm can meet the requirements the real-time 

property compare the conventional landscape recognition 

algorithm. With the increase of signal-to-noise ratio and 

sampling points, the proposed algorithm has lower 

recognition error than the traditional recognition algorithm, 

which is about 0.2dB. At the same time, when the 

signal-to-noise ratio is low, landform recognition can also 

achieve the preset recognition accuracy. Compared with two 

traditional recognition algorithms, the final recognition error 

results are shown in the fig 10. 
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(a) low geomorphological complexity 
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(b) moderate geomorphological complexity 
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(c) high geomorphological complexity 

Fig.10 Recognition accuracy results of three algorithms under different 

geomorphic complexity 

Three different landform recognition methods recognize 

three landforms with different complexity in the range of 

-10dB to 20dB SNR, and the recognition error is shown in 

Figure 10. As the complexity of landform increases gradually, 

the recognition error curve of the algorithm fluctuates. When 

the complexity of landform increases, the recognition error 

curves presented by different algorithms become more 

unstable, especially the traditional recognition algorithm 2. 

With the change of SNR, the angular measurement error 

oscillates sharply and appears extremely unstable. However, 

the measurement error of the recognition algorithm proposed 

in this paper is still at the low point of the error of the three 

angular measurement algorithms, which shows the 

superiority of the proposed algorithm.  

IV. CONCLUSION 

This paper proposes a landscape recognition algorithm for 

a polarized detector based on the optimal projection, which 

can be used for terrain recognition by a low-altitude flight 

radar platform. The characteristic parameters and projection 

basements composed of the characteristic values of the target 

scattering matrix are defined. By referring to the related 

Krogager’s idea of decomposition of the target scattering 

matrix, the rotational invariant matrix of standard scattering 

bodies with parameters is established, and the polarization 

scattering matrix of terrains in the detection region is 

projected onto the standard basements so as to obtain optimal 

projection coordinates of the target scattering matrix onto 

every standard basement, and further determine the 

geomorphic properties. Finally, the feasibility and superiority 

of the proposed algorithm are experimentally validated. The 

obtained results show that terrains can be effectively 

distinguished. 
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