
An Improved SMT-Based Scheduling for
Overloaded Real-Time Systems

Shimin Wang, Xiaojuan Liao, Min Wang, Luyue Chang, Huan Yang, and Tao Wang

Abstract—In real-time systems, completing tasks by their
deadlines is as significant as getting the correct results for
tasks. Once the workload exceeds the system capacity, it is
difficult to complete all tasks correctly before the deadlines.
As a result, some tasks will miss the deadlines, leading
to system performance degradation or security issues. To
alleviate system performance degradation caused by overload,
Cheng et al. proposed an SMT-based scheduling algorithm,
finding that a SMT solver is an efficient tool to solve the
scheduling problem in overloaded real-time systems. However,
we notice that their method has a large amount of redundant
encoding. Moreover, the SMT solver must be called in a
loop to calculate the optimal solution, which increases the
computational cost and reduces the efficiency. This paper
improves the method proposed by Cheng et al. by eliminating
redundant encoding and successive calls of the SMT solver,
thus making the SMT-based algorithm more compact and
productive. The experimental results show that the updated
SMT-based method can significantly improve the system
performance.

Index Terms—optimal scheduling, SMT, overloaded sys-
tem, real-time system.

I. Introduction

A. Background

CONCURRENCY is one of the most important fea-
tures of computer systems. Two program fragments

cannot be executed simultaneously on a uniprocessor
computer, and the execution orders are different. An
efficient task scheduling algorithm is needed to guar-
antee the concurrent computing of a computer sys-
tem. In the past several decades, real-time systems
are widespread in daily life and industrial production,
and play an increasingly important role in nowaday
applications. For instance, intrusion detection systems
[1], anti-counterfeiting systems [2], and flight control
systems are all commonly used in real-time systems.

In hard real-time systems, all tasks of a task set should
be completed correctly by the deadlines so as to prevent
overload [3]. Under normal workload, classical scheduling
algorithms ensure that all tasks can be completed before
their deadlines. However, in practical applications, once
the workload exceeds the system capacity, scheduling
algorithm can hardly complete all tasks by their dead-
lines. This is called system overload. For the sake of

Manuscript received May 26, 2019. This work was supported in
part by National Natural Science Foundation of China under Grant
61806171, Ministry of Education in China Project of Humanities
and Social Sciences under Grant 17YJCZH260.

Corresponding authors S. Wang (e-mail: cdut_wsm@163.com),
X. Liao (e-mail: liao_xiaojuan@126.com) and M. Wang (e-mail:
min_wang126@126.com) are with the School of Cyberspace Secu-
rity, Chengdu University of Technology, Chengdu City, Sichuan
Province, China.

alleviating the system performance degradation, an effi-
cient algorithm suitable for overloaded real-time systems
is desirable.

So far, many scheduling algorithms have been pro-
posed to optimally solve the scheduling problem of
overloaded real-time systems. Various objectives of real-
time systems can be considered [4], [5]. On the one hand,
when a missed deadline corresponds to a disgruntled
customer, the goal is to satisfy as many customers as
possible [6]. This leads to the goal of maximizing the
number of completed tasks. On the other hand, if a
missed deadline corresponds to a missed first prize in the
lottery, the goal is to get as many first prizes as possible
to maximize the total money awards rather than the
number of prizes. In this case, the goal is to maximize
the total weights of the completed tasks. In this paper,
both scheduling goals are implemented.

B. Related works
Considering the high computational complexity of the

overload problem, previous scheduling algorithms mainly
focus on near optimal solutions. For example, Tres et al.
[7] proposed a dynamic miss based (DMB) algorithm,
which can change task values to adjust their importance
according to the timing faults rate. Marchand et al. [8]
designed schemes for a real-time system with skippable
tasks, whose deadlines are likely to be missed. In their
work, each task is assigned to a skip parameter, which
shows the tolerance of the task to miss the deadline
with the change of practical environment. Cheng et al.
proposed dynamic programming with congestion control
mechanism (DPSC) [9], and they put forward Greedy
scheduling with feedback control (GSFC) subsequently
[10]. Based on the optimal scheduling results of the
currently known tasks, DPSC and GSFC can partially
deal with uncertain new tasks. Althouth the dynamic
scheduling algorithms can seek approximate solutions,
they always fail to make the result steadily approach to
the optimal solution.

Another research line is devoted to designing static
sheduling algorithms. Compared with the dynamic
scheduling algorithms, they can determine the execution
order of the tasks in advance through static analysis at
compiling time, so that potential risks may be predicted
at the early stage of design. Typical static sheduling
algorithms include constraint programming, which can
tackle the task scheduling problem as a natural general-
ization [11], and SAT (Boolean Satisfiability) formulation
[12], [13] that is based on Boolean variables and logical
operations. Nowadays, many satisfiability problems have
been solved by SAT solvers [14], including the polynomial

Engineering Letters, 28:1, EL_28_1_15

Volume 28, Issue 1: March 2020

__

size asymmetric linear model proposed by Sergey Gubin
[15]. Although SAT solvers can solve large-scale satisfi-
ability problems by their own advanced techniques and
produce effective solutions within a reasonable time, they
are not expressive enough for pratical applications. Also,
they can only support simple logical operations such as
and, or, not. In order to tackle arithmetic constraints
and make full use of SAT solvers, Satifiability Modulo
Theories (SMT) [16], [17] have been developed. As the
extension of SAT-solvers, SMT-solvers can efficiently
deal with Boolean combinations of arithmetic predicates.
Motivated by great development of SMT solvers, Cheng
et al. proposed a static scheduling algorithm in [18]
and extended it to multi-processors in [19] in order
to maximize the number of tasks before the deadlines.
Subsequently they extended the scheduling target to
more circumstances in [20]. Experimental results in
[20] demonstrate that different scheduling goals can
be achieved easily with few modifications. As we all
know, it is very difficult to tackle NP-hard problems.
There exist many typical NP-hard problems, such as
approximate period problem [21], typical working day
planning problem of indoor service robot [22], and c-
fragment longest arc-preserving common subsequence
problem [23]. To our delight, SMT solvers are generally
employed to tackle NP-hard problems on a certain
scale (e.g., Multi-Mode Resource-Constrained Project
Scheduling Problem (MRCPSP) [24]). Bofill et al. [25]
used Yices, a SMT solver, to solve MRCPSP, finding that
SMT is a competitive approach for this kind of scheduling
problem. SMT solvers have been used in many fileds,
including the generation of automated testing. Hiroki
et al. take the unique advantages of SMT solvers to
solve the automated test generation problem for object-
oriented programs with multiple targets, and made the
generation of automated testing more successful [26].

C. Our contribution

The SMT-based formulation in [20] is superior to
previous classical scheduling algorithms in overloaded
real-time systems. However, it should be noted that
the SMT solvers must be invoked repeatedly to find
the optimum solution. In addition, we notice that there
are a large number of redundant assertions in their
encoding. Repeated SMT calls and redundant encoding
increase the computational cost, decreasing the solving
efficiency to some extent. To make the SMT encoding
more compact and efficient, this paper improves the
dispatching algorithm based on Cheng et al. [20] by
eliminating the code redundancy and the successive calls
of a SMT solver. Experimental results demonstrate that
compared with the previous works [20], our updated
method manages to enhance the solving efficiency by
more than two orders of magnitude. The SMT-solver
we adopted is Z3 [27], which is designed by Microsoft
Research to check the satisfiability of a logical formula
in one or more theories with powerful functionality. The
first-order logic formulas presented in this paper are all
based on the syntax of Z3.

D. Organization of this paper
The rest of this paper is structured as follows. Section

II introduces preliminary on SMT and Z3, and Section III
describes the scheduling model. The improved method
is elaborated in Section IV. Section V describe the
experiments. Finally, Section VI summarizes the paper.

II. Preliminary
A. Satisfiability Modulo Theories

Satisfiability Modules Theories problem is a decision-
making problem which combines the classical first-order
logic theory in computer science and mathematical logic
[28]. It is worth nothing that SMT provides not only high
efficiency, but also an expressive language for scheduling
problem. SMT can be regarded as a constraint satisfi-
ability problem. It is a formal method of constrained
programming. The first-order logical formula consists of
variables, quantifiers, functions, predicate symbols and
logical operators. If there exists an explanation that
makes the formula F true, F is satisfiable, otherwise,
F is unsatisfiable. For example, in formula F : ∃x, y ∈ R,
(x + y = 1) ∧ (x > y + 0.1), where R is a real number
set. There is an interpretation, such as x = 0.6 and
y = 0.4, that makes F true. Therefore, F is satisfiable.
Considering the same example, the condition “∃x, y ∈ R”
is replaced with “∃x, y ∈ Z” in formula F , where Z is
an integer set. Since we cannot find an assignment in
an integer set to satisfy the formula F , we say F is
unsatisfiable.

B. Z3
To date, there have been many kinds of SMT solvers

for decision making problems, some of which have the
extended versions for optimization problems, such as
Z3 and MathSat5 [29]. The optimizing version of Z3
is νZ [30], and MathSat5’s optimizing tool contains a
special version called optiMathSAT [31]. Both Z3 and
MathSat5 have high performance in different application
scenarios. Since Z3 is more efficient in tackling scheduling
problems, like the job-shop scheduling problems (JSP)
[32], this paper uses Z3 as the SMT solver, which was also
adopted by Cheng et al. [20]. Z3 is Microsoft research’s
most advanced theorem prover and it can be used to
test the theoretical satisfiability of a formula. Internally,
Z3 maintains a stack of formulas and declarations pro-
vided by users. The assertions begin with the command
“assert”, followed by a formula with prefix expressions.
The command “assert” adds a formula into the Z3-solver
internal stack, and prefix expression writes the operator
in front and the operands in back. For example, prefix
expression “+ a b” means “a + b”. Prefix expression is so
useful that it can complete all operations in assertions
only by two simple operations: out-of-stack and in-stack,
thereby improving the efficiency of Z3.

In real-time systems, a Z3 solver can generate schedul-
ing tables that tell users the order in which tasks are
scheduled to execute. In order to obtain the optimal
scheduling result, we are supposed to formalize the
constrains with first-order logic language. The input of
Z3, as a “SMT model”, is generated by the first-order

Engineering Letters, 28:1, EL_28_1_15

Volume 28, Issue 1: March 2020

__

logic language. When the SMT model is imported into
Z3, the final solution will be returned after a period
of time. The solution explains the variables defined in
the model, under which all asserted logical formulas are
evaluated true. After we input a SMT model into Z3,
Z3 will return a non-empty model if there is a variable
assignment that satisfies the constraints, otherwise an
empty model will be returned. The key of this paper is
to formalize the scheduling problem as a SMT model
that can be handled by an off-the-shelf Z3 solver.

III. Scheduling model

For real-time systems, the task is valuable only when
it correctly ends before its deadline, otherwise it is
worthless. This is named firm-deadline model [33]. We
adopt the firm-deadline model for uniprocessor and
assume that tasks sporadically arrive at the system. The
problem definition is consistent with Cheng et al.’s work
[20]. For convenience, all symbols are defined in the Table
I.

A real-time system has a task set T that contains n
independent real-time tasks to be executed, i.e., T =
{τ1, τ2, . . . , τn}. Each task τi is a four-tuple, denoted by
τi = (ri, ci, di, wi), where i is the index of the task. Each
entry is described as follows.

• ri is the request time instant.
• ci is the required execution time.
• di is the deadline.
• wi is the weight.
The weight wi reflects the importance of τi. In a task

set T , when wi is larger, τi is more important, and higher
priority should be given to the task. If all tasks have
indistinguishable importance, the weights of all tasks are
set as any equal number. In our work, the following two
situations are considered.

• Tasks with identical weights indicate that the pri-
orities of all tasks are the same.

• Tasks with different weights indicate that tasks with
higher weight values should have higher priority.

To allow preemption, each task τi ∈ T , is regarded
as a series of indivisible fragments of f i

j , where τi =
(f i

a, f
i
b , . . . , f

i
qi), qi is the total number of fragments of

τi, and f i
a denotes the ath fragment of the task τi. The

symbol sia denotes the start time of the ath fragment of
τi, and cia denotes the execution time of the ath fragment
of the task. With the above definitions, siqi denotes the
start time of the last fragment of task τi, and ciqi denotes
the execution time of the last fragment of task τi. When
siqi + ciqi ≤ di, the task τi is completed successfully. For
the symbol cia, ci =

∑qi
a=1 c

i
a(1 ≤ a ≤ qi). For the symbol

sia, it is obvious that sia ≥ ri and cia+1 ≥ sia + cia.
In a real scheduling environment, there are usually

dependencies between tasks. For example, task τi needs
the result of τj , and τi can only be executed after τj is
completed. We define such dependency as τj ≺ τi.

The purpose of this paper is to improve the scheduling
algorithm proposed by Cheng et al. [20]. When overload
occurs in real-time systems, we seek to obtain the optimal
scheduling scheme with higher efficiency. The scheduling

TABLE I
Symbols and Explanations in this paper

Symbol Explanation
t System time instant
T A set of real-time tasks
τi A real-time task τi ∈ T , i is the index of the task
ri The request time instant of τi

ci The required execution time of τi

di The deadline of τi

wi The weight of τi

qi The number of indivisible fragment in τi

f i
a The ath indivisible fragment of τi

sia The start execution time of f i
a

cia The execution time of f i
a

τj ≺ τi τi relies on τj

ESi
a The earliest start execution time of f i

a

LSi
a The latest start execution time of f i

a

ECi
a The earliest completion time of f i

a

LCi
a The latest completion time of f i

a

Ti The completion status of τi

Wi The weight value obtained by τi

Ci The completion flag of τi

target taken into consideration are two-folded, which is
summarized as follows:
(1) If all tasks have identical weights, the goal is to

maximize the total number of tasks to be executed
before their deadlines.

(2) If the tasks are associated with distinct weights, the
goal is to maximize the sum of weights of the tasks
to be executed before their deadlines.

To maximize the number of the completed tasks in the
system, we use symbol Ti to represent the completion
status of τi. Ti = 1 if τi accomplishes before its deadline,
otherwise Ti = 0. To maximize the sum of weight of
the completed tasks, we use symbol Wi to represent the
weight value obtained by τi. If τi accomplishes before its
deadline in the context of tasks with distinct importance,
Wi is assigned with wi, otherwise Wi equals 0. To
facilitate the subsequent elaboration, we use symbol Ci

as a completion flag to indicate whether τi is completed
before its deadline. Ci = true if τi accomplishes before
its deadline, otherwise Ci = false. Ti, Wi and Ci will
be exploited in the next section to encode the scheduling
targets in Cheng et al.’s work [20].

To make it easier to represent certain time points for
fragment f i

a, the following four symbols are defined:
(1) ESi

a denotes the earliest start execution time of
f i
a, which indicates that any fragment f i

a should start at
ESi

a or after ESi
a, where ESi

a = ri +
∑a−1

b=1 c
i
b.

(2) LSi
a denotes the latest start execution time of f i

a,
if sia > LSi

a, then the task τi will lose the meaning of
accomplishment. LSi

a = di −
∑qi

b=a c
i
b.

(3) ECi
a denotes the earliest completion time of f i

a,
and obviously ECi

a = ri +
∑a

b=1 c
i
b, showing that any

fragment f i
a cannot end before ECi

a.
(4) LCi

a denotes the latest completion time of f i
a, and

obviously LCi
a = di −

∑qi
b=a+1 c

i
b. If fragment f i

a cannot
accomplish at LCi

a or before LCi
a, task τi will lose the

meaning of accomplishment.

Engineering Letters, 28:1, EL_28_1_15

Volume 28, Issue 1: March 2020

__

IV. An improved SMT encoding
In this section, we will elaborate on the optimization

methods for Cheng et al. [20]. For the sake of clarity,
the encoding is divided into two categories. One is the
encoding of task attributes and the other is the encoding
of scheduling targets. These encodings will be elaborated
in the subsequent subsections.

A. Encoding task attributes
Cheng et al. [20] encoded four task attributes into

SMT assertions, which are summarized as follows. In
Z3 syntax, all these constraints are written in prefix
expression, where the operator is put foremost, followed
by a list of operands. Keyword “assert” indicates that the
constraint should be satisfied with no exception. That is
called a hard constraint.

(C1) ∀τi ∈ T , (assert (>= si1 ri))
(C2) ∀τi ∈ T ,∀f i

a, f
j
b ∈ τi, a < b, (assert(>= sib(+siac

i
a)))

(C3) ∀τi, τj ∈ T , i ̸= j, ∀f i
a ∈ τi,∀f j

b ∈ τj ,
(assert (or (>= sia (+ sjb c

j
b)) (>= sjb (+ sia c

i
a))))

(C4) ∀τi, τj ∈ T , τi ≺ τj , (assert (and (>= sj1 (+ siqi c
i
qi))

(⇒ (> (+ siqi c
i
qi) di) (> sj1 dj))))

Constraint (C1) ensures that the first fragment of task
τi starts not earlier than the request time of τi. (C2)
ensures that the ath fragment of task τi is executed prior
to the bth fragment of τi (a < b). (C3) states either of
the two fragments in different tasks executes prior to the
other. (C4) ensures that when task τi depends on task
τj , the last fragment of τj is executed prior to the first
fragment of τi.

Although constraints (C1)-(C4) are complete and ex-
pressive enough to model the scheduling problems, there
are redundant assertions, which may reduce the efficiency
of problem solving.

First of all, the condition i ̸= j in (C3) leads to a
large number of duplicated encodings. Strictly following
the constraint (C3), we have to generate assertions like:

• (assert (or (>= sia (+ sjb c
j
b)) (>= sjb (+ sia sia))))

• (assert (or (>= sjb (+ sia sia)) (>= sia (+ sjb c
j
b))))

Obviously, these two assertions are equivalent due to
the commutative law of “or” operations. In the following
discussion of encoding redundancy, we replace i ̸= j with
i < j to eliminate such trivial duplication.
Example 1. Given a task set T = {τ1, τ2, τ3}, tasks
attributes are specified in a four-tuple, i.e., τi =
(ri, ci, di, wi), shown as follows:

• τ1 = (0, 1, 2, 1)
• τ2 = (1, 1, 4, 1)
• τ3 = (2, 1, 4, 1)

Assume that τ2 depends on the computed results of τ1,
denoted by τ1 ≺ τ2. For convenience, each task consists
of only one fragment.

According to (C3), three assertions should be gener-
ated:
(1) (assert (or (>= s11 (+ s21 1)) (>= s21 (+ s11 1))))
(2) (assert (or (>= s11 (+ s31 1)) (>= s31 (+ s11 1))))
(3) (assert (or (>= s21 (+ s31 1)) (>= s31 (+ s21 1))))

First, let us consider (1), which indicates f1
1 starts after

f2
1 or f2

1 after f1
1 . Since we have the constraint τ1 ≺ τ2,

explicitly forcing that τ2 starts after the completion of
τ1 by (C4), assertion (1) makes no sense. In addition,
constraint (2), which states that f1

1 starts after f3
1 or f3

1

after f1
1 , is also redundant. According to the attributes of

τ1 and τ3, it is clear that the deadline of τ1 is equal to the
request time of τ3, both at time point 2. Consequently,
there is no overlap in execution time period, and τ3 starts
after the execution of τ1. Thus, explicitly specifying the
execution order between these two tasks is unnecessary.
Therefore, both (1) and (2) are redundant.

In order to eliminate the aforementioned redundancies
of Cheng et al. [20], additional conditions are added to
(C3), making it a new constraint (C3) as follow.

(C3) ∀τi, τj ∈ T , i ̸= j, ∀f i
a ∈ τi,∀f j

b ∈ τj
τi ⊀ τj , τj ⊀ τi, ESj

b < LCi
a, ESi

a < LCj
b

(assert (or (>= sia (+ sjb c
j
b)) (>= sjb (+ sia cia)))),

where i < j

In constraint (C3), conditions τi ⊀ τj and τj ⊀ τi
eliminate the situation in which τi and τj have depen-
dency relations, which has already captured by (C4).
Conditions ESj

b < LCi
a and ESi

a < LCj
b guarantee that

the execution time periods of f i
a and f j

b overlap. Only in
this situation do we need to specify the execution orders
of two fragments. After example 1 is re-encoded by using
(C3), only assertion (3) is retained. For convenience,
(C∗) represents the conjuncted assertions in (C1), (C2),
(C3), and (C4).

B. Encoding scheduling targets
In ideal circumstances, the system scheduling goal is to

complete each scheduled task before its deadline. When
overload occurs, the goal is to maximize the number of
tasks completed by the deadlines or maximize the sum of
weights of tasks completed before their deadlines. These
two targets are respectively formalized by the method of
Cheng et al. [20] as the following assertions:

(T1) Max(|T|) where T ⊆ T , satisfying: ∀τi ∈ T ,
(assert (ite (<= (+ siqi c

i
qi) di)) (= Ti 1) (= Ti 0))

(T2) Max(|W|) where W ⊆ W, satisfying ∀τi ∈ T ,
(assert (ite (<= (+ siqi c

i
qi)di)) (= Wiwi) (= Wi 0))

where the “ite (c e1 e2)” is an “if-then-else” expression
denoting e1 if c is true and e2 otherwise. For instance,
ite (> x y) (= x 0) (= y 0) means that if x > y, then
x = 0, otherwise, y = 0.

In (T1), |T| represents the total number of tasks that
can be completed before their deadlines. |T| =

∑|T |
i=1 Ti,

where Ti is an integer variable, representing the comple-
tion status with respect to τi. If τi is completed before
its deadline, Ti is assigned with a bonus value of 1,
otherwise, Ti equals 0. Clearly, |T| is in the interval
of [0,|T |]. To find the maximum |T|, Cheng et al. [20]
conducted binary search through [0,|T |] until a critical
value of |T| is determined, with which the Z3 solver
returns a non-empty model and an empty model with
|T|+ 1.

In (T2), |W| represents the sum of weights of all tasks
in T , and |W| represents the total weight of tasks that
are completed before their deadlines. |T| =

∑|W|
i=1 Wi,

where Wi is the weight obtained by τi. Wi is equal to wi

if τi is completed before the deadline, and 0 otherwise.

Engineering Letters, 28:1, EL_28_1_15

Volume 28, Issue 1: March 2020

__

Obviously, |W| is in interval [0,|W|]. Similar with (T1),
to find out the optimum |W|, Cheng et al. [20] conducted
binary search to determine the maximum value of |W|,
with which the Z3 solver returns a non-empty model and
an empty model with |W|+ 1.

Although assertions in (T1) and (T2) guarantee a
Z3 solver can output the correct scheduling result, and
binary search, to some extent, facilitates the search
of the optimal solution, it should be noted that the
successive calls of a Z3 solver are likely to increase
the overall computation time. Recently, motivated by
the tremendous progress of SMT solvers, we take great
advantage of the optimized version of Z3 and eliminate
the cycle calls of the solver. In this section, assertions
(T1) and (T2) are updated in two different ways, which
are called METHOD1 and METHOD2 in the following.
Both METHOD1 and METHOD2 eliminate successive
Z3 calls.

To uptate the scheduling targets in Cheng et al.’s work
[20], we propose compromised assertions (T1′) and (T2′)
in METHOD1, which are listed as follows:

(T1′) ∀τi ∈ T , (assert− soft Ci)
(assert (ite (<= (+ siqi ciqi) di)) (= Ci true) (=
Ci false))

(T2′) ∀τi ∈ T , (assert− soft Ci : weight wi)
(assert (ite (<= (+ siqi ciqi) di)) (= Ci true) (=
Ci false))

where Ci corresponds to an intermediate variable. The
keyword “assert-soft” will make Ci equal to true as many
as possible, and the value of Ci is controlled by the
condition after the keyword “ite”. If τi is completed
before its deadline, Ci is true, otherwise, Ci equals to
false. Under the condition that all the constraints in
(C∗) are satisfied, the Z3 solver would maximize the
number of completed tasks of satisfied assertions in (T1′)
with the combination of (C∗) and (T1′). Similarly, when
all constraints in (C∗) are satisfied, Z3 solver would
maximize the sum of weights of satisfied assertions in
(T2′) with the combination of (C∗) and (T2′). The
keyword “weight” in (T2′) specifies the obtained value
when the soft assertion is satisfied. Weight wi is gained
by the solver when the assertion is satisfied, otherwise,
the gain is 0.

Although assertions (T1′) and (T2′) modified by
METHOD1 seem to be perfect, it should be noted
that METHOD1 uses intermediate variables, which may
increase the processing steps of Z3. In what we follows,
we present another updated assertions, which are sum-
marized in METHOD2, listed as follows:

(T1) ∀τi ∈ T , (assert− soft (<= (+ siqi c
i
qi) di))

(T2) ∀τi ∈ T , (assert−soft(<= (+siqic
i
qi)di) : weight wi)

where “assert-soft” is a keyword provided by the opti-
mized version of Z3. All constraints defined after this
keyword are declared as soft constraints, which should
be satisfied to the largest extent. (T1) states that
∀τi ∈ T , that τi is completed before its deadline is a
soft constraint. Combined with (C∗) and (T1), the Z3
solver would maximize the satisfied assertions in (T1),
provided that all the constraints in (C∗) are met.

Similarly, combined with (C∗) and (T2), the Z3 solver
would maximize the sum of weights of satisfied assertions

TABLE II
Critical time instant of each fragment in four tasks

Task Fragment ES LS EC LC

τ1

f1
1 1 4 2 5

f1
2 2 5 3 6

f1
3 3 6 4 7

τ2 f2
1 0 0 5 5

τ3 f3
1 0 2 4 6

τ4 f4
1 3 7 4 8

in (T2), provided that all the constraints in (C∗) are met.
The keyword “weight” in (T2) specifies the obtained
value when the soft assertion is satisfied. In this case,
weight wi is gained by the solver, otherwise, the gain
is 0. By using the keywords “assert-soft” and “weight”,
the scheduling target can be achieved without successive
calls of the Z3 solver. To sum up, we have updated
SMT formulation with Z3 syntax on the basis of Cheng
et al.’s work [20] by METHOD1 and METHOD2. The
modifications are two-folded. First, more conditions are
added to encode the task attributes, making the encoding
more concise. Second, we have made full use of the
keywords “assert-soft” and “weight” in Z3 syntex to
eliminate successive calls of the Z3 solver. With the
updated formulation, the optimal scheduling algorithm
based on SMT becomes more compact and efficient.

C. A pedagogical example
How the SMT formulation works is described consider-

ing a simple scheduling problem. A set of real-time tasks
T = {τ1, τ2, τ3, τ4} are assumed. The request time instant
ri, required execution time ci, deadline di, and weight
wi of task τi are expressed in a four tuple (ri, ci, di, wi).
τ1 has three fragments, and the execution time of each
fragment is 1. The rest tasks τ2, τ3, and τ4 have only
one fragment, and the execution time of every fragment
is 5, 4, and 1, respectively. In addition, τ4 relies on τ2,
indicating that τ4 is executed after the end of τ2.

• τ1 = (1, 3, 7, 1), q1 = 3
• τ2 = (0, 5, 5, 2), q2 = 1
• τ3 = (0, 4, 6, 1), q3 = 1
• τ4 = (3, 1, 8, 3), q4 = 1
• τ2 ≺ τ4

In this scheduling problem, the critical time instant of
each fragment in the four tasks is summarized in Table
II.

The SMT formulations applied to the scheduling
problem with the Z3 solver are shown in Figure 1, 2,
and 4. Figure 1 shows the encoded task attributes, and
the encoded scheduling targets are shown in Figure 2 and
Figure 4 with METHOD1 and METHOD2, respectively.
Constraint (C1) states that a task is execute after it
requests to run, which means that the start time of the
first fragment of a task should be longer than or equal to
its ES. τ1 consists of three fragments f1

1 , f1
2 , and f1

3 . The
start time of f1

1 should be longer than or equal to ES1
1 .

Constraint (C2) ensures that the series of fragments in
a task should be executed sequentially. For example, τ1
consists of three fragments f1

1 , f1
2 , and f1

3 , s12 ≥ s11 + c11,

Engineering Letters, 28:1, EL_28_1_15

Volume 28, Issue 1: March 2020

__

(C1) (assert (>= s11 1))
(assert (>= s21 0))
(assert (>= s31 0))
(assert (>= s41 3))

(C2) (assert (>= s12(+ s11 1)))
(assert (>= s13(+ s11 1)))
(assert (>= s13(+ s12 1)))

(C3) (assert (or (>= s11(+ s21 5))(>= s21(+ s11 1))))
(assert (or (>= s12(+ s21 5))(>= s21(+ s12 1))))
(assert (or (>= s13(+ s21 5))(>= s21(+ s13 1))))

(assert (or (>= s11(+ s31 4))(>= s31 (+ s11 1))))
(assert (or (>= s12(+ s31 4))(>= s31 (+ s12 1))))
(assert (or (>= s13(+ s31 4))(>= s31 (+ s13 1))))
(assert (or (>= s11(+ s41 1))(>= s41 (+ s11 1))))
(assert (or (>= s12(+ s41 1))(>= s41 (+ s12 1))))
(assert (or (>= s13(+ s41 1))(>= s41 (+ s13 1))))
(assert (or (>= s21(+ s31 4))(>= s31 (+ s21 5))))
(assert (or (>= s31(+ s41 1))(>= s41 (+ s31 4))))

(C4) (assert (and (>= s41(+ s21 5))(⇒ (> (+ s21 5) 5)
(> s41 8))))

Fig. 1. Modified Z3-coded SMT tasks attribute constraints for the examplified problem

(T1′)
(assert− soft C1)
(assert− soft C2)
(assert− soft C3)
(assert− soft C4)
(assert (ite (<= (+ s13 1)7)(= C1 true)(= C1 false)))
(assert (ite (<= (+ s21 5)5)(= C2 true)(= C2 false)))
(assert (ite (<= (+ s31 4)6)(= C3 true)(= C3 false)))
(assert (ite (<= (+ s41 1)8)(= C4 true)(= C4 false)))

(T2′)
(assert− soft C1 : weight 1)
(assert− soft C2 : weight 2)
(assert− soft C3 : weight 1)
(assert− soft C4 : weight 3)
(assert (ite (<= (+ s13 1)7)(= C1 true)(= C1 false)))
(assert (ite (<= (+ s21 5)5)(= C2 true)(= C2 false)))
(assert (ite (<= (+ s31 4)6)(= C3 true)(= C3 false)))
(assert (ite (<= (+ s41 1)8)(= C4 true)(= C4 false)))

Fig. 2. Modified Z3-coded SMT target constraints with METHOD1 for the examplified problem

(T1) (assert− soft (<= (+ s13 1) 7))
(assert− soft (<= (+ s21 5) 5))
(assert− soft (<= (+ s31 4) 6))
(assert− soft (<= (+ s41 1) 8))

(T2) (assert− soft (<= (+ s13 1) 7) : weight 1)
(assert− soft (<= (+ s21 5) 5) : weight 2)
(assert− soft (<= (+ s31 4) 6) : weight 1)
(assert− soft (<= (+ s41 1) 8) : weight 3)

Fig. 3. Modified Z3-coded SMT target constraints with METHOD2 for the examplified problem

s13 ≥ s11+c11, and s13 ≥ s12+c12. Constraint (C3) states that
if two independent fragments overlap in their execution
period, the execution order should be explicitly specified,
so that a processor execute only one fragment at a time.
Constraint (C4) deals with the situation in which tasks
have dependency relation with each other. Take τ2 and
τ4 as an example. Since τ2 ≺ τ4, τ4 can only run after
τ2 finishes.

As for the scheduling targets, Z3 satisfies the assertions
in constraints (T1′) and (T1) to the largest extent with
the keyword “assert-soft” and satisfies the constraint
(T2′) and (T2) with keywords “weight” and “assert-soft”.

If the scheduling target is to maximize the number of
the completed tasks, we will conjunct all task attribute
constraints (C∗) and target constraints (T1′) or (T1).
If some tasks are more important than others and are
scheduled with higher priority, we will conjunct all task
constraints (C∗) and target constraints (T2′) or (T2).
All these constraints are combined together and form a
SMT problem, which is called a SMT model. After this
SMT model is imported into Z3 solver, we can get a
scheduling table by the returned non-empty model.

Because METHOD1 uses the intermediate variable Ci,
it increases the in and out of the stack’s times of Z3,
and extra time is needed to generate the intermediate
results. As a result, METHOD2 is more efficient than
METHOD1. In our experiments, it is also proved that
METHOD2 is faster than METHOD1.

TABLE III
Parameter setting in experiments

Parameter Description Value Setting
λ Arriving rate {1, 5, 10}

n
The total number [50,120]

of tasks in T
sfi Slack factor of τi [1, 4]

ci Execution time of τi [1, 13]

qi
The number of

[1, 3]
fragments in τi

di Deadline of τi di = ri + sfi ∗ ci

wi Weight of τi [1, n]

V. Experiments

A. Experimental Settings
We follow the method of creating scheduling problems

in the work [20], which is summarized as follows. The
tasks are created according to uniform distribution with
arriving rate λ, which represents the number of tasks that
arrive per 100 time units. It is obvious that the larger the
λ is, the more serious the overload of the system. In our
experiments, λ is assigned with 1, 5, and 10 to represent
various degrees of system overload. For each λ, a set of
real-time tasks T are generated, where the total number
of tasks in T , denoted by n, ranges from 50 to 120. For
each task τi, the execution time ci ranges from 1 to 13,
and the number of fragments in τi, denoted by qi, ranges
from 1 to 3. The value of deadline di is calculated by the
formula di = ri + sfi ∗ ci, where sfi is the slack factor

Engineering Letters, 28:1, EL_28_1_15

Volume 28, Issue 1: March 2020

__

50 60 70 80 90 100 110 120

n

10 -2

10 -1

10 0

10 1

10 2

A
ve

ra
g

e
co

m
p

u
ta

ti
o

n
 ti

m
e

(s
)

Cheng et al.'s method [20]
Improved method 1
Improved method 2

(a) λ = 1.

50 60 70 80 90 100 110 120

n

10 -2

10 -1

10 0

10 1

10 2

10 3

A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e

(s
)

Cheng et al.'s method [20]
Improved method 1
Improved method 2

(b) λ = 5.

50 60 70 80 90 100 110 120

n

10 -1

10 0

10 1

10 2

10 3

A
ve

ra
g

e
co

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Cheng et al.'s method [20]
Improved method 1
Improved method 2

99% 98%

95% 90%
87%

(c) λ = 10.

50 60 70 80 90 100 110 120

n

10 -1

10 0

10 1

10 2

10 3

A
ve

ra
g

e
co

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Cheng et al.'s method [20]
Improved method 1
Improved method 2

97%
85%

78%
66%

53%
47% 47% 30%

98%

99%

(d) λ = 15.

Fig. 4. Average computation time of three SMT encodings with scheduling target: maximizing the number of tasks completed before
their deadlines.

that indicates the tightness of task deadline. We suppose
that sfi ranges from 1 to 4 for each task τi. Each task
τi is associated with an integer weight wi to reflect its
importance. The weight wi is uniformly chosen between
1 and the number of tasks at random. For each fixed
λ and n, 100 problem instances are generated, and the
number of task dependency relation is randomly assigned
to 10% of n. For convenience, the parameter settings are
listed in Table III.

In the following experiments, we carried out tests on
Linux virtual machine with version Ubuntu 16.04 on
VMware Workstation 14, and the machine is i7-6700HQ
at 2.60GHz with 8GB Intel(R) Core(TM). Z3 was used
as the core SMT solver. All methods were run on the
same set of test cases, and their results are directly
comparable.

B. Comparisons of Three SMT Encodings
To decrease unnecessary experiments and initially

determine the optimal scheduling method, the following
three methods are evaluated:
(1) Cheng et al.’s method, which is the primitive method

presented in [20]. The method has a lot of redundant
encodings and successive SMT calls.

(2) Improved method 1, which combines (C∗) with
METHOD1 by replacing (T1) and (T2) with (T1′)
and (T2′).

(3) Improved method 2, which combines (C∗) with
METHOD2 by replacing (T1) and (T2) with (T1)
and (T2).

Figures 4 and 5 depict the average computation time
of these three encoding. The scheduling target is to
maximize the number of tasks completed before the
deadlines (shown in Figure 4) and maximizing the sum
of weights of completed tasks (shown in Figure 5). Each
data point is the average computation time of the solved
problem instances. The number with an arrow shown
in the figures means the percent age of the instances
successfully solved within the time limit by Z3, and it
is omitted if Z3 managed to slove all the 100 instances.
When the percentage of the solved instances drops to
zero, the corresponding curve is omitted as the average
computation time becomes unpredictable.

As shown in Figures 4 and 5, no matter how λ and n
change, both improved method 1 and improved method
2 are far better than Cheng et. al’s method [20], and
improved method 2 is invariably superior to the other
two methods. When λ equals to 1, 5 and 10, the overload
of the system is not so serious, and the process of solving

Engineering Letters, 28:1, EL_28_1_15

Volume 28, Issue 1: March 2020

__

50 60 70 80 90 100 110 120

n

10 -2

10 -1

10 0

10 1

10 2

A
ve

ra
g

e
co

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Cheng et al.'s method [20]
Improved method 1
Improved method 2

(a) λ = 1.

50 60 70 80 90 100 110 120

n

10 -2

10 -1

10 0

10 1

10 2

10 3

A
ve

ra
g

e
co

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Cheng et al.'s method [20]
Improved method 1
Improved method 2

97%
90%

(b) λ = 5.

50 60 70 80 90 100 110 120

n

10 -1

10 0

10 1

10 2

10 3

A
ve

ra
g

e
co

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Cheng et al.'s method [20]

Improved method 1

Improved method 2

97% 96%

(c) λ = 10.

50 60 70 80 90 100 110 120

n

10 0

10 1

10 2

10 3

A
v

e
ra

g
e

 c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s)

Cheng et al.'s method [20]

Improved method 1

Improved method 2

71%
53%

41%

22%
8%

3%

98%
97%

91%

99%

(d) λ = 15.

Fig. 5. Average computation time of three SMT encodings with scheduling target: maximizing the number of tasks completed before
their deadlines.

the optimal scheduling results is not so complicated. As
a result, the curve representing improved method 1 is
quite close to the curve representing improved method
2, but the former is still above the latter. When λ
increases to 15, the system overload situation becomes
more serious. Compared with improved method 2, the
increased number of solving steps in improved method 1
influences the final computation time more significantly.
Thus, the curves of improved method 1 and improved
method 2 show more obvious intervals, and improved
method 2 is more efficient.

Specifically, as can be seen in Figure 4, when λ = 15,
improved method 2 took around 1.5 seconds on average
to solve instances with n = 120, while improved method
1 took around 4 seconds, which is more than twice as
much as improved method 2. Meanwhile, the number of
tasks which are not solved by improved method 1 within
the time limit is twice that of improved method 2, and
the original Cheng et al.’s method [20] consumes more
than 500 seconds for 30% instances, with the rest 70%
instances unsolved within the time limit.

Similar results can be found in Figure 5. When λ = 15

and n = 110, improved method 2 can tackle all instances
in the limited time, while two instances are not solved by
improved method 1. Cheng et. al’s method [20] can only
solve three instances, which makes the system almost
unable to run.

According to the results, compared with Cheng et al.’s
method [20], improved method 1 and improved method 2
can greatly improve the solving efficiency. No matter how
λ and n change, improved method 2 always outperforms
improved method 1.

C. Extensive Experiments on Improved Method 2
According to Subsection V.B, it can be found that the

improved method 2 have better performance than other
methods. In this subsection, we further investigate how
this method improves the problem solving efficiency by
evaluating the following four methods:
(1) Cheng et al.’s method. This is the original SMT-

based formulation presented in [20], and it is con-
sistent with the above experiment.

(2) Removing redundant encoding, which is updated
from [20] by replacing constraint (C3) with (C3).

Engineering Letters, 28:1, EL_28_1_15

Volume 28, Issue 1: March 2020

__

50 60 70 80 90 100 110 120
n

10 -2

10 -1

10 0

10 1

10 2

A
ve

ra
g

e
 c

o
m

p
u

ta
tio

n
 ti

m
e

 (s
)

Cheng et al.'s method [20]
Removing redundant encoding
Eliminating successive SMT calls
Our updated SMT method

(a) λ = 1.

50 60 70 80 90 100 110 120
n

10 -2

10 -1

10 0

10 1

10 2

10 3

A
v

e
ra

g
e

 c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s)

Cheng et al.'s method [20]
Removing redundant encoding
Eliminating successive SMT calls
Our updated SMT method

(b) λ = 5.

50 60 70 80 90 100 110 120
n

10 -1

10 0

10 1

10 2

10 3

A
ve

ra
g

e
co

m
p

u
ta

ti
o

n
 t

im
e

(s
)

Cheng et al.'s method [20]
Removing redundant encoding
Eliminating successive SMT calls
Our updated SMT method

99% 98%

95%
90%

87%

(c) λ = 10.

Fig. 6. Average computation time of four SMT encodings with scheduling target: maximizing the number of tasks completed before
their deadlines.

50 60 70 80 90 100 110 120
n

10 -2

10 -1

10 0

10 1

10 2

A
v

e
ra

g
e

 c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s)

Cheng et al.'s method [20]
Removing redundant encoding
Eliminating successive SMT calls
Our updated SMT method

(a) λ = 1.

50 60 70 80 90 100 110 120
n

10 -2

10 -1

10 0

10 1

10 2

10 3

A
v

e
ra

g
e

 c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s)

Cheng et al.'s method [20]
Removing redundant encoding
Eliminating successive SMT calls
Our updated SMT method

97%
90%

(b) λ = 5.

50 60 70 80 90 100 110 120
n

10 -1

10 0

10 1

10 2

10 3

A
v

e
ra

g
e

 c
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s)

Cheng et al.'s method [20]
Removing redundant encoding
Eliminating successive SMT calls
Our updated SMT method

96%97%

(c) λ = 10.

Fig. 7. Average computation time of four SMT encodings with scheduling target: maximizing the sum of weights of tasks completed
before their deadlines.

This method removes redundant encoding, but suc-
cessive calls of the Z3 solver are needed to find out
the optimal solution.

(3) Eliminating successive SMT calls, which is updated
from [20] by replacing constraints (T1) and (T2)
with (T1) and (T2) through METHOD1. This
method eliminates successive SMT calls, but retains
redundant encoding.

(4) Improved method 2. This is our fasted improved
SMT formulation which combines both updates in
(2) and (3) from the above-mentioned experiment.

Figures 6 and 7 show the average computation time of
these four encodings to generate the optimal scheduling,
and the scheduling objectives are the same as those
depicted in Figures 4 and 5 respectively. The meanings
of each data point in Figures 6 and 7 are consistent with
those in Figures 4 and 5, and for convenience, we will
not elaborate here.

Figures 6 and 7 demonstrate that our updated SMT-
based method is invariably superior to the other three
methods, no matter how λ and n change. To be specific,
as can be seen in Figure 6, when λ = 10, our updated
SMT method took less than one second on average to
solve instances with n = 120, and the original Cheng

et al.’s method [20] consumed around 400 seconds for
87% instances, with the rest 13% instances unsolved
within the time limit. In the middle are the methods of
removing redundant encoding and eliminating successive
SMT calls. The comparison results of these two methods
differ as the overload degree changes, which is adjusted
by parameter λ. When λ = 1, the curve with rectangles
is always above the curve with hollow circles, indicating
that eliminating redundant encoding at this point can
reduce the computation time more significantly than
eliminating successive SMT calls. By contrast, when
λ = 5, the performance of these two methods becomes
comparable. When λ = 10, eliminating successive SMT
calls is dominant in reducing the overall computation
time. The comparison results are briefly explained as
follows. When λ is small, the overload degree is not
severe and it is easy to run the SMT solver once to check
whether the currently preset number of tasks would lead
to an empty model. In this situation, the main factor that
lowers the solving efficiency is the redundant encoding.
After redundant encoding is eliminated, the enhanced
efficiency is great enough to compensate the additional
time consumed on successive SMT calls. In comparison,
when λ is large, the increase of the overload degree makes

Engineering Letters, 28:1, EL_28_1_15

Volume 28, Issue 1: March 2020

__

TABLE IV
The average number of assertions generated by Cheng et al.’s method and Removing redundant encoding

λ = 1 λ = 5 λ = 10

n Cheng et al.’s Removing redundant Cheng et al.’s Removing redundant Cheng et al.’s Removing redundant
method encoding method encoding method encoding

50 10228.21 401.14 9964.30 649.86 10079.96 958.84
60 14738.08 474.73 14478.28 778.93 14703.89 1168.81
70 19841.32 557.41 19976.22 928.71 19634.30 1435.00
80 26238.10 647.14 25845.15 1093.91 25885.74 1663.07
90 32700.64 724.21 32695.55 1222.09 32555.71 1852.42
100 39781.03 785.88 40288.00 1412.56 39996.73 1959.84
110 48376.08 872.45 48830.94 1584.31 46425.50 2087.53
120 58197.69 952.72 58045.52 1746.19 56082.78 2442.00

the problem so difficult that running the SMT solver once
consumes a large amount of time, let alone repeated
calls of the solver. Thus, successive calls of the SMT
solver becomes the overwhelming influencing factor of
efficiency.

Similar results can be found in Figure 7, showing
that when λ is small, removing redundant encoding
plays a dominant role in reducing the computation time.
With the increase of λ, eliminating successive SMT calls
gradually becomes the noticeable factor to enhance the
efficiency.

According to the experiment results, compared with
Cheng et al.’s method [20], improved method 2, which
eliminates redundant encoding and successive SMT calls,
can improve the solving efficiency by more than two
orders of magnitude.

In what follows, the number of assertions is compared
quantitatively. Considering that a great multitude of
assertions are derived from the redundant encoding, we
only investigate the percentage of assertions that have
been reduced by removing redundant encoding.

Figure 8 shows the evaluation results for scheduling
target that maximizes the number of the completed
tasks1. Evidently, after removing redundant encoding,
the number of assertions has been reduced by more than
90%, and the reduced proportion increases continuously
with the increase of the total number of tasks. On the
other hand, we should notice that such proportional
reduction is trending downward as λ rises. Particularly,
given n is fixed at 120, when λ = 1, the percentage of
the reduced assertions is over 98%, which is less than
96% when λ = 10. The reason for the downward trend is
explained as follows. Smaller λ indicates that fewer tasks
arrive at the system per 100 time units. Consequently,
fewer pairs of tasks have overlap in their execution
period. According to the updated condition (C3), fewer
assertions are required. As λ gets larger, more tasks
arrive per 100 time units, and more tasks tend to overlap
in their execution time. Therefore, their execution order
should be explicitly specified by (C3) to prevent two
tasks from being executed simultaneously. As a result,
the number of assertions generated by (C3) increases
as λ goes up. By contrast, (C3), which is adopted

1Similar results could be obtained from the target that maximizes
the sum of weights of completed tasks. For conciseness, we only
exhibit one figure.

50 60 70 80 90 100 110 120

n

0.9

0.92

0.94

0.96

0.98

Av
er

ag
e

re
du

ce
d

pr
op

or
tio

n
of

 a
ss

er
tio

ns

Fig. 8. Average reduced proportion of assertions caused by
the step of removing redundant encoding with scheduling target:
maximizing the number of tasks completed before their deadlines.

by Cheng et al. [20], generates a constant number of
assertions, no matter whether tasks have overlap in
their execution period. In other words, the number of
assertions generated by Cheng et al’s method is not
dependent on the value of λ. As a result, the percentage
of the reduced assertions decreases as λ increases.

To verify our analysis, we further investigated the
number of assertions generated by Cheng et al. [20] and
the method of removing redundant encoding. Statistical
results are exhibited in Table IV. Given a fixed n, the
average number of assertions generated by Cheng et
al’s method is basically unchanged with the increase
of λ, while that by the method of removing redun-
dant encoding increases gradually. For example, given
n = 100, as λ increases from 1 to 10, the number of
assertions in Cheng et al.’s method is kept constantly
around 40, 000, while the value drops from 785.88 to
1959.84 after removing redundant encoding. As a result,
the average reduced proportion decreases from 98.02%
to 95.10%. This demonstrates the exhibition of Figure
5, showing that the curve with smaller λ is above that
with larger λ. Furthermore, we explored the number
of assertions, and found that after removing redundant
encoding, the number of assertions was reduced by more
than 90%. This further demonstrates the great advantage
of the updated SMT formalization.

Engineering Letters, 28:1, EL_28_1_15

Volume 28, Issue 1: March 2020

__

VI. Conclusion
Applying SMT to scheduling problems in real-time

systems has been proved to be efficient in previous
research [20]. In the present study, the SMT-based
method of Cheng et al. [20] was improved by removing
redundant encoding and successive calls of the SMT
solver. Experiment results demonstrate that efficiency
of the improved method significantly outperforms the
previous works by more than two orders of magnitude,
no matter how the number of tasks and the degree of
overload change.

References
[1] W. L. Al-Yaseen, Z. A. Othman, and M. Z. A. Nazri, “Real-

time intrusion detection system using multi-agent system,”
IAENG International Journal of Computer Science, vol. 43,
no. 1, pp. 80–90, 2016.

[2] S. Choi and C. Poon, “An rfid-based anti-counterfeiting
system.” IAENG International Journal of Computer Science,
vol. 35, no. 1, pp. 80–91, 2008.

[3] M. K. Gardner and J. W. S. Liu, “Performance of algorithms
for scheduling real-time systems with overrun and overload,”
in Euromicro Conference on Real-time Systems, 1999.

[4] A. Burns, “Scheduling hard real-time systems: a review,”
Software Engineering Journal, vol. 6, no. 3, pp. 116–128, 1991.

[5] S. K. Baruah and J. R. Haritsa, “Scheduling for overload in
real-time systems,” Computers IEEE Transactions on, vol. 46,
no. 9, pp. 1034–1039, 1997.

[6] S. Baruah, J. Haritsa, and N. Sharma, “On-line scheduling
to maximize task completions,” in Real-time Systems Sympo-
sium, 1994.

[7] C. Tres, L. B. Becker, and E. Nett, “Real-time tasks scheduling
with value control to predict timing faults during over-
load,” in 10th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing
(ISORC’07). IEEE, 2007, pp. 354–358.

[8] A. Marchand and M. Chetto, “Dynamic scheduling of periodic
skippable tasks in an overloaded real-time system,” in 2008
IEEE/ACS International Conference on Computer Systems
and Applications. IEEE, 2008, pp. 456–464.

[9] Z. Cheng, H. Zhang, Y. Tan, and A. O. Lim, “Dpsc: A
novel scheduling strategy for overloaded real-time systems,” in
2014 IEEE 17th International Conference on Computational
Science and Engineering. IEEE, 2014, pp. 1017–1023.

[10] ——, “Greedy scheduling with feedback control for overloaded
real-time systems.” in Ifip/ieee International Symposium on
Integrated Network Management, 2015.

[11] K. Kuchcinski, “Constraints-driven scheduling and resource
assignment,” Acm Transactions on Design Automation of
Electronic Systems, vol. 8, no. 3, pp. 355–383, 2003.

[12] W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye, “Satisfiability
modulo graph theory for task mapping and scheduling on
multiprocessor systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 8, pp. 1382–1389, 2010.

[13] J. M. Crawford and A. B. Baker, “Experimental results
on the application of satisfiability algorithms to scheduling
problems,” in Twelfth Aaai National Conference on Artificial
Intelligence, 1994.

[14] J. Franco and J. Martin, “A history of satisfiability.” Handbook
of satisfiability, vol. 185, pp. 3–74, 2009.

[15] S. Gubin, “Polynomial size asymmetric linear model for sat,”
in Advances in Electrical and Electronics Engineering-IAENG
Special Edition of the World Congress on Engineering and
Computer Science 2008. IEEE, 2008, pp. 62–66.

[16] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in
Handbook of Model Checking. Springer, 2018, pp. 305–343.

[17] L. De Moura and N. Bjørner, “Satisfiability modulo theories:
introduction and applications,” Communications of the ACM,
vol. 54, no. 9, pp. 69–77, 2011.

[18] C. Zhuo, H. Zhang, Y. Tan, and Y. Lim, “Scheduling over-
load for real-time systems using smt solver,” in IEEE/ACIS
International Conference on Software Engineering, 2016.

[19] Z. Cheng, H. Zhang, Y. Tan, and Y. Lim, “Smt-based schedul-
ing for multiprocessor real-time systems,” in 2016 IEEE/ACIS
15th International Conference on Computer and Information
Science (ICIS). IEEE, 2016, pp. 1–7.

[20] ——, “Smt-based scheduling for overloaded real-time sys-
tems,” IEICE TRANSACTIONS on Information and Systems,
vol. 100, no. 5, pp. 1055–1066, 2017.

[21] V. Popov, “The approximate period problem,” IAENG In-
ternational Journal of Computer Science, vol. 36, no. 4, pp.
268–274, 2009.

[22] A. Gorbenko, M. Mornev, and V. Popov, “Planning a typical
working day for indoor service robots,” IAENG International
Journal of Computer Science, vol. 38, no. 3, pp. 176–182, 2011.

[23] A. Gorbenko and V. Popov, “The c-fragment longest arc-
preserving common subsequence problem,” IAENG Interna-
tional Journal of Computer Science, vol. 39, no. 3, pp. 231–
238, 2012.

[24] J. Blazewicz, J. K. Lenstra, and A. R. Kan, “Scheduling
subject to resource constraints: classification and complexity,”
Discrete applied mathematics, vol. 5, no. 1, pp. 11–24, 1983.

[25] M. Bofill, J. Coll, J. Suy, and M. Villaret, “Solving the multi-
mode resource-constrained project scheduling problem with
smt,” in 2016 IEEE 28th International Conference on Tools
with Artificial Intelligence (ICTAI). IEEE, 2016, pp. 239–246.

[26] H. Takamatsu, H. Sato, S. Oyama, and M. Kurihara, “Au-
tomated test generation for object-oriented programs with
multiple targets,” IAENG International Journal of Computer
Science, vol. 41, no. 3, pp. 198–203, 2014.

[27] L. D. Moura and N. Bjørner, “Z3: An efficient smt solver,”
2008.

[28] L. Moura and N. Bjørner, “Satisfiability modulo theories: An
appetizer.” Lecture Notes in Computer Science, vol. 5902, pp.
23–36, 2009.

[29] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani,
“The mathsat5 smt solver,” in International Conference on
Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 2013, pp. 93–107.

[30] N. Bjørner, A.-D. Phan, and L. Fleckenstein, “νz-an optimiz-
ing smt solver,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems.
Springer, 2015, pp. 194–199.

[31] R. Sebastiani and P. Trentin, “Optimathsat: A tool for
optimization modulo theories,” in International conference on
computer aided verification. Springer, 2015, pp. 447–454.

[32] S. F. Roselli, K. Bengtsson, and K. Åkesson, “Smt solvers
for job-shop scheduling problems: Models comparison and
performance evaluation,” in 2018 IEEE 14th International
Conference on Automation Science and Engineering (CASE).
IEEE, 2018, pp. 547–552.

[33] J. R. Haritsa, “On being optimistic about real-time con-
straints,” in Acm Sigact-sigmod-sigart Symposium on Prin-
ciples of Database Systems, 1990.

Engineering Letters, 28:1, EL_28_1_15

Volume 28, Issue 1: March 2020

__

