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Abstract—Let G be a finite simple graph on n vertices. Let
P = {V1, V2, V3, . . . , Vk} be a partition of vertex set V (G) of
order k ≥ 2. For all Vi and Vj in P , i 6= j, remove the edges
between Vi and Vj in graph G and add the edges between Vi and
Vj which are not in G. The graph GP

k thus obtained is called the
k−complement of graph G with respect to the partition P . Let
P = {V1, V2, V3, . . . , Vk} be a partition of vertex set V (G) of
order k ≥ 1. For each set Vr in P , remove the edges of graph G
inside Vr and add the edges of G (the complement of G) joining
the vertices of Vr . The graph GP

k(i) thus obtained is called the
k(i)−complement of graph G with respect to the partition P .
Energy of a graph G is the sum of absolute eigenvalues of G.
In this paper, we study energy of generalized complements of
some families of graph. An effort is made to throw some light
on showing variation in energy due to changes in the partition
of the graph.

Index Terms—generalized complements, spectrum, energy.

I. INTRODUCTION

LET G be a graph on n vertices and m edges. The
complement of a graph G, denoted by Ḡ has same

vertex set as that of G, but two vertices are adjacent in
Ḡ if and only if they are not adjacent in G. If G is
isomorphic to Ḡ then G is said to be self-complementary
graph. For all notations and terminologies we refer [1],
[2]. E. Sampathkumar et al. in [3] introduced two types of
generalized complements of a graph.

Definition 1: [3] Let P = {V1, V2, V3, . . . , Vk} be a
partition of vertex set V (G) of order k ≥ 2. For all Vi and
Vj in P , i 6= j, remove the edges between Vi and Vj in graph
G and add the edges between Vi and Vj which are not in
G. The graph GP

k thus obtained is called k−complement of
graph G with respect to the partition P .

Definition 2: [3] Let P = {V1, V2, V3, . . . , Vk} be a
partition of vertex set V (G) of order k ≥ 1. For each set
Vr in P , remove the edges of graph G inside Vr and add
the edges of G joining vertices of Vr. The graph GP

k(i) thus
obtained is called the k(i)−complement of graph G with
respect to the partition P .
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The energy of a graph is defined by Ivan Gutman [4]
as the sum of absolute eigenvalues of G. It represents a
proper generalization of a formula valid for the total π-
electron energy of a conjugated hydrocarbon as calculated
by the Huckel molecular orbital (HMO) method in quantum
chemistry. For recent mathematical work on the energy of a
graph see [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16].

The characteristic polynomial of G is the characteristic
polynomial of adjacency matrix A(G) denoted as φ(G,λ).
The set of eigenvalues of A(G) given by {λ1, λ2, . . . , λn}
is called spectrum of graph G. Two graphs G and H are
said to be equienergetic if they have same energy. Two or
more graphs are called co-spectral graphs if they have same
spectra. In this paper we study the energy of generalized
complements of some classes of graph. For a graph, there
exists many k and k(i) complements. Hence, it is interesting
to study the variation of energy for these complements.

II. PRELIMINARIES

Now we present few results on k and k(i) self comple-
mentary graphs, characteristic polynomial of cluster graph
Kbp(k) and complete multi-partite graph, which are exten-
sively used to prove our main results.

Proposition 4: [3] The k-complement and k(i) comple-
ment of G are related as follows:

(i) GP
k
∼= GP

k(i)

(ii) GP
k(i)
∼= GP

k

Definition 5: [17] Let fi, i = 1, 2, . . . , k, 0 ≤ k ≤ bp2c be
independent edges of complete graph Kp, p ≥ 3. The graph
Kbp(k) is obtained by deleting fi, i = 1, 2, . . . , k from Kp.
In addition Kbp(0) ∼= Kp.

Proposition 6: [17] For p ≥ 3 and 0 ≤ k ≤ bp2c,

φ(Kbp(k), λ) = λk(λ+ 1)p−2k−1(λ+ 2)k−1[λ2 − (p− 3)

λ− 2(p− k − 1)].

Proposition 7: [10] The characteristic polynomial of com-
plete multipartite graph Kn1,n2,...,np is

φ(Kn1,n2,...,np , λ) = λn−p(1−
p∑

i=1

ni
λ+ ni

)

p∏
j=1

(λ+ nj).

Lemma 8: [10] Let

A =

[
A0 A1

A1 A0

]
be a 2 × 2 block symmetric matrix. Then eigenvalues of A
are the eigenvalues of matrices A0 +A1 and A0 −A1.

III. ENERGY OF GENERALIZED COMPLEMENTS OF
CLASSES OF GRAPHS

In this section, we find energy of generalized complements
of some standard graphs like complete, complete bipartite,
star, path, friendship, double star and cocktail party graph.
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We also compute energy of generalized complements of
graphs derived from star graphs like K1,n−1+e , K1,n−1+2e
and Gs = G(K1,n1−1,K1,n2−1, . . . ,K1,nr−1).

Theorem 9: Let P = {V1, V2, . . . , Vk} be a partition of
the complete graph Kn.

(i) If < Vi >= Ki, for i = 1, 2, . . . , n, then E(Kn)Pk =
2(n− k) and E(Kn)Pk(i) = E(Kn1,n2,n3,...,nk

), where
|Vi| = ni, i = 1, 2, . . . , k.

(ii) If |Vi| = 2 and any one partite Vi has order 1 for odd

n, then E(Kn)Pk =

{
n, if n is even

n− 1, if n is odd
and

φ((Kn)Pk(i);λ) = λb
n
2 c (λ+ 1)

n−2bn2 c−1

(λ+ 2)
bn2 c−1

[
λ2 − (n− 3)λ− 2(n− bn

2
c − 1)

]
.

Proof: For a partition P = {V1, V2, . . . , Vk}, let
G = (Kn)Pk be the graph.

(i) If < Vi >= Ki, for i = 1, 2, . . . , n, then G is union
of k disconnected complete subgraphs of order ni such

that
n∑

i=1

ni = n. Therefore,

E(G) =
k∑

i=1

E(Kni
) = 2(

k∑
i=1

ni−k) = 2(n−k). Also

we observe that G = Kn1,n2,n3,...,nk
, complete multi-

partite graph. Hence E(Kn)Pk(i) = E(Kn1,n2,n3,...,nk
),

which is given by Proposition 7.
(ii) If |Vi| = 2, i = 1, 2, . . . , k, then

k =


n

2
, if n is even

n+ 1

2
, if n is odd

By substituting the value of k in statement (i) of Theo-

rem 9, we obtain E(Kn)Pk =

{
n, if n is even

n− 1, if n is odd

We note that (Kn)Pk(i) = Kbn(bn2 c), a graph obtained
after deleting the independent edges of Kn. Hence,
from Proposition 6, we get

φ((Kn)Pk(i);λ) = λb
n
2 c (λ+ 1)

n−2bn2 c−1 (λ+ 2)
bn2 c−1[

λ2 − (n− 3)λ− 2(n− bn
2
c − 1)

]
.

Remark 10: (i) From Theorem 9, it follows that
E(Kn)Pk is independent of the order of each partite
set. Also, for fixed integers n and k, we obtain non-
co-spectral equienergetic graphs. E(Kn)Pk decreases as
order of the partition set k increases.

(ii) If P = {V1, V2} is the partition of Kn with |Vi| = ni,
i = 1, 2, then energy of k(i)- complement of Kn is
2
√
n1n2.

Theorem 11: Let Km,n be complete bipartite graph with
vertex set V = {Um, Un} and partition P = {V1, V2}.

(i) If < V1 >= Ks1,s2 and < V2 >= Km−s1,n−s2 , where
s1, s2 denote number of vertices of V1 such that s1
vertices belong to Um and s2 vertices belong to Un,
then E(Km,n)P2 = 2

√
(n− s1 + s2)(m− s2 + s1)

and E(Km,n)P2(i) = 2(m+ n− 2).
(ii) If |V1| = m − 1 such that all the vertices of V1 are

from first partite set of Km,n and |V2| = n + 1,

then E(Km,n)P2 = 2
√
m+ n− 1 and E(Km,n)P2(i) =

2(m+ n− 2).
Proof:

(i) If < V1 >= Ks1,s2 and < V2 >= Km−s1,n−s2 then
(Km,n)P2

∼= Kn−s1+s2,m−s2+s1 .
Hence, E(Km,n)P2 = 2

√
(n− s1 + s2)(m− s2 + s1).

Also (Km,n)P2(i)
∼= Km ∪ Kn. Thus, E(Km,n)P2(i) =

E(Km ∪Kn) = 2(m+ n− 2).
(ii) If |V1| = m − 1 such that all the vertices of V1 are

from first partite set of Km,n and |V2| = n + 1, then
(Km,n)P2

∼= K1,m+n−1. Hence
E(Km,n)P2 = 2

√
m+ n− 1 . Also (Km,n)P2(i)

∼= K1∪
Km+n−1. Hence, E(Km,n)P2(i) = 2(m+ n− 2).

Corollary 12: Let P = {V1, V2, . . . , Vk} be a partition
of Km,n such that < Vi >= K2 for i = 1, 2, . . . , k − 1
and < Vk > be the union of isolated vertices. The
characteristic polynomial of (Km,n)Pk and (Km,n)Pk(i) is
λn−2(λ+ 2)m−1[λ3− 2(m− 1)λ2 + (2m2− 2m−mn)λ+
m2(m + n + 1) − mn] and (λ + 1)n−2(λ − 1)m−1[λ3 −
(n−m− 1)λ2 + (2m−mn+ 1)λ+ (m− 1)2(m− n− 1)]
respectively.

Theorem 13: Let {V1, V2, . . . , Vk} be a partition of path
Pn. Then, E(Pn)Pk(i) = 2(k−1) and E(Pn)Pk = E(Kbn(k−
1)) in the following cases.

(i) Any one of the pendant(non pendant) vertex is in V1
or Vk, and remaining Vi are such that < Vi >= K2 ,
for odd path.

(ii) < Vi >= K2, for even path, i = 1, 2, . . . k.
Proof: We note that (Pn)Pk(i) is the union of k − 1

number of K ′2s and in addition two isolated vertices for
odd path. Hence, E(Pn)Pk(i) = 2(k − 1). Whereas (Pn)Pk is
the graph obtained from Kn by deleting all the independent
edges. Thus, E(Pn)Pk = E(Kbn(k−1)), which is estimated
using Proposition 6.

Theorem 14: Let P = {V1, V2, . . . , Vk} be a partition of
cycle Cn.

1) If < Vi >= K2, then E(Cn)Pk(i) = 2k and E(Cn)Pk =
E(Kbn(k)), for even n.

2) If < Vi >= K2 and one of |Vi| = 1, then E(Cn)Pk(i) =

2(n− k +
√

2), for odd n.
Proof:

1) For even n, we observe that (Cn)Pk(i) is the union of
k number of K2’s. Hence, E(Cn)Pk(i) = 2k. Whereas
(Cn)Pk is the graph obtained from Kn by deleting all
the independent edges. Thus, E(Cn)Pk = E(Kbn(k))
which can be computed by Proposition 6.

2) In case of odd n, (Cn)Pk(i) is the union of K1,2 and k-2
number of K2’s. Thus, E(Cn)Pk(i) = 2(n− k +

√
2).

Theorem 15: Let P = {V1, V2, . . . , Vk} be a partition of
star graph Sn. Then the following statements are true.

(i) For k = 2, if < V1 >= Sr, r ≥ 2, then E(Sn)P2 =√
(r − 1)(n− r + 1) and E(Sn)P2(i) = 2(n− 3).

(ii) If |V1| = 1 such that the central vertex belongs to
V1 and < Vi >= nrK1, 1 ≤ r ≤ n − 1, i ≥ 2
then E(Sn)Pk = E(K1 ∪ Kn2,n3,...,nk

), the energy of
complete multipartite graph of order n− 1.
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Proof:
(i) For a partition P in (i), (Sn)P2 is the com-

plete bipartite graph Kr−1,n−r+1. Hence E(Sn)P2 =√
(r − 1)(n− r + 1) and E(Sn)P2(i) = 2(n− 3), since

(Sn)P2(i) is the union of two complete subgraphs of
order r − 1 and n− r.

(ii) Suppose |V1| = 1 such that central vertex belongs to
V1 and < Vi >= nrK1, 1 ≤ r ≤ n − 1, i ≥ 2.
Then (Sn)Pk

∼= K1 ∪Kn2,n3,...,nk
. Hence, E(Sn)Pk =

E(K1∪Kn2,n3,...,nk
) which is given by Proposition 7.

Theorem 16: If τ = K1,n−1 + e is a unicyclic graph of
order n obtained by adding an edge between two pendant
vertices of star graph Kn−1, then

1) For partition P = {V1, V2} such that < V1 >= C3

and < V2 >= (n − 2)K1, E(τP2 ) = E(K1,1,n−2) and
E(τP2(i)) = 2(n− 3).

2) For partition P = {V1, V2} such that < V1 >= K2 and
< V2 >= (n− 2)K1, E(τP2 ) = 2

√
n− 2

3) For partition P = {V1, V2, V3} such that only central
vertex is in V1, < V2 >= K2 and < V3 >= (n−3)K1,
E(τP3(i)) = E(K1,1,n−3).

Fig. 1. τ = K1,5 + e

Proof:
1) For the given partition P , τP2 results into complete mul-

tipartite graph K1,1,n−2. Hence E(τP2 ) = E(K1,1,n−2),
which can be computed using Proposition 7. Note that
τP2(i) is an union of Kn−2 and two isolated vertices. So,
E(τP2(i)) = 2(n− 3).

2) For P = {V1, V2} such that < V1 >= K2 and < V2 >=
(n−2)K1, the resultant graph τP2 is an union of isolated
vertex and a star graph K1,n−2. Therefore, E(τP2 ) =
2
√
n− 2.

3) For P = {V1, V2, V3} such that only central vertex is in
V1 , < V2 >= K2 and < V3 >= (n− 3)K1, the graph
τP3(i) is a disconnected graph with K1 and K1,1,n−3 as
components. Thus E(τP3(i)) = E(K1,1,n−3) which can
be evaluated by Proposition 7.

Theorem 17: Let S(m,n) be double star graph with par-
tition P = {V1, V2}, such that the vertices of V1 and
V2 are of distance two. Then characteristic polynomial of
(S(m,n))P2(i) is (λ + 1)m+n−3[λ3 − (n + m − 3)λ2 +
(n(m − 3) + (4 − 3m))λ + (3m − 4)n − (4m − 4)] and
E(S(m,n))P2 = 2

√
(m− 1)(n− 1).

Proof: Let P = {V1, V2} be a partition of ver-
tices of S(m,n) such that the vertices of V1 and V2
are of distance two i. e, V1={v1, v2, v3, . . . , vm−1, u1} and
V2={vm, u2, u3, . . . , un−1, un}. We have A(S(m,n))P2(i) = (J − I)m−1 J(m−1)×2 0m−1×n−1

J2×m−1 (J − I)2 J2×m−1
0n−1×m−1 Jn−1×2 (J − I)n−1



Consider det(λI −A(S(m,n)P2(i)))

Step 1: Replacing Ri by Ri −Ri+1, for
i = v1, v2, v3, . . . , vm−2, vm and Ri by Ri −Ri−1, for
i= un, un−1, . . . , u4, u3, the determinant reduces to
(λ+ 1)m+n−3 det(D).
Step 2: In det(D), replacing Ci by Ci − Ci−1, where
i = v2, v3, v4, . . . , vm−1 and Ci by Ci − Ci+1, for
i = un−1, un−2, . . . , u3, u2 and simplifying, it reduces
to

det(D) =

∣∣∣∣∣∣∣∣
λ− (m− 2) −1 −1 0

0 1 −1 0
1−m −1 λ 1− n

0 −1 −1 λ− n+ 2

∣∣∣∣∣∣∣∣
Hence, det(D)= λ3 − (n + m − 3)λ2 + (n(m − 3) +
(4− 3m))λ+ ((3m− 4)n− (4m− 4)).

Thus, the characteristic polynomial of S(m,n)P2(i) is

(λ + 1)m+n−3[λ3 − (n + m− 3)λ2 + (n(m− 3) + (4−
3m))λ+ ((3m− 4)n− (4m− 4))].
We have S(m,n)P2

∼= Km−1,n−1 ∪ 2K1.
Hence, E(S(m,n)P2 ) = E(Km−1,n−1) + 2E(K1) =
2
√

(m− 1)(n− 1).

Theorem 18: Let P = {V1, V2, V3} be a partition of
double star graph S(m,n) such that < V1 >= (m −
1)K1, < V2 >= K2 and < V3 >= (n − 1)K1. Then
E(S(m,n)P3 ) = 2

√
mn and E(S(m,n)P3(i)) = 2(m+n−2)

Proof: For the partition P = {V1, V2, V3} such that
< V1 >= (m − 1)K1, < V2 >= K2 and < V3 >=
(n − 1)K1, we observe that S(m,n)P3 is a complete bi-
partite graph Km,n. Hence, E(S(m,n)P3 ) = 2

√
mn. Also,

S(m,n)P3(i) is an union of two subgraphs Km and Kn. Thus,
E(S(m,n)P3(i)) = E(Km) + E(Kn) = 2(m+ n− 2).

Definition 19: [18] A graph Gs obtained by
completely connecting the central vertices of
r star graphs K1,n1−1,K1,n2−1, . . .K1,nr−1 is
called generalized star graph. It is denoted by,
Gs = G(K1,n1−1,K1,n2−1, . . . ,K1,nr−1).

Theorem 20: Let Gs =
G(K1,n1−1,K1,n2−1, . . .K1,nr−1) be a generalized
star graph with partition P = {V1, V2, . . . , Vr+1}
such that < Vj >= (nj − 1)K1, j = 1, 2, . . . , r and
< Vr+1 >= Kr. Then E(Gs)

P
r+1 = E(Kn1,n2,...,nr

) and
E(Gs)

P
(r+1)(i) = 2(n1 + n2 + · · ·+ nr − r).

Proof: For partition P , (Gs)
P
r+1 results into complete

multipartite graph and thus its energy is E((Gs)
P
r+1) =

E(Kn1,n2,...,nr ) which can be obtained using Proposition 7.
On the other hand, (Gs)

P
(r+1)(i) is an union of r complete

subgraphs of order n1, n2, . . . , nr. So, E(Gs)
P
(r+1)(i) =

E(Kn1)+E(Kn2)+. . .+E(Knr ) = 2(n1+n2+. . .+nr−r)

Theorem 21: If H = K1,n−1 + 2e is a bicyclic graph of
order n obtained by adding an edge between a pendant vertex
and a vertex of degree two of the graph τ = K1,n−1 + e of
star graph Kn−1, then for partition P = {V1, V2} such that
< V1 >= (n − 4)K2 and < V2 >= K4 − e , E(HP

2 ) =
E(K1,3,n−4) and E(HP

2(i)) = 2(n− 3)
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Fig. 2. H = K1,6 + 2e

Proof: We observe that for the given partition P , graph
HP

2 reduces to complete tripartite graph K1,3,n−4. Hence,
E(HP

2 ) = E(K1,3,n−4) which is obtained using Proposition
7. On the other hand, HP

2(i) will be an union of disconnected
complete subgraphs of order 1,2 and n−3 respectively. Thus,
E(HP

2(i)) = E(Kn−3UK1UK3) = 2(n− 4 + 1) = 2(n− 3)

Theorem 22: Let Fn be friendship graph with partition
P = {V1, V2}, such that central vertex belongs to V1 and
< V2 >=

n

2
K2. Then E(Fn)P2(i) = 2(n+

√
n2 + 1−1) and

E(Fn)P2 = 2n.
Proof: Let P = {V1, V2} be a partition of vertices of Fn

such that central vertex belongs to V1 and < V2 >=
n

2
K2.

We have

A(Fn)P2(i) =

[
0 1T

n ⊗ 12

1n ⊗ 12 (Jn − In)⊗ J2

]
.

The result is proved by showing AX = λX for certain
vectors X and by making use of fact that the geometric
and algebraic multiplicity of each eigenvalue λ is same, as
A(Fn)P2(i) is real and symmetric.

Let X =

[
x

Y ⊗ Z

]
, Y ∈ Rn, Z ∈ R2.

Case (i). Let X = 0 and Y be any vector. Let Z =

[
1
−1

]
and 1T2 Z = 0. Then

AX =

[
1T
nY ⊗ 1T

2 Z
(Jn − In)Y ⊗ J2Z

]
=

[
1T
nY ⊗ 0

(Jn − In)Y ⊗ 0

]
= 0.

Thus, X is an eigenvector of A corresponding to eigen-
value 0. Since Y is any vector in Rn, eigenvector X can be
any one of n independent vectors. Hence, eigenvalue 0 of
matrix A has multiplicity at least n.

Case (ii). Let x = 0 and Y be a vector in the null space
of Jn, 1TnY = 0.

Let Z = 12, which implies J2Z = 2Z.

AX =

[
1T
nY ⊗ 1T

2 Z
(Jn − In)Y ⊗ J2Z

]
=

[
0

−Y ⊗ 2Z

]
= −2X

So, X is an eigenvector of A corresponding to eigenvalue
−2. Since the null space of Jn has dimension n − 1, the
eigenvector Y , and hence X can be any of n−1 independent
vectors. It implies that eigenvalue −2 of matrix A has
multiplication at least n− 1.

Case (iii). Let λ = n − 1 ±
√
n2 + 1, x = 2n, Y =

λ1nand Z = 12.

AX =

[
1TnY ⊗ 1T2 Z

X(1n ⊗ 12) + (Jn − In)Y ⊗ J2Z

]
=

[
2nλ

−2n(1n ⊗ 12) + (n− 1)λ1n ⊗ 2(12)

]
=

[
2nλ

(2n+ 2(n− 1)λ)1n ⊗ 12

]
We observe that λx = 2nλ and since λ is a root

of x2 − 2(n − 1)x − 2x = 0, we have λ(Y ⊗ Z) =
λ2(1n⊗12) = (2(n−1)λ+ 2n)1n⊗12. Thus, the spectrum

of A(Fn)P2(i) is given by


0 n
−2 n− 1

n+
√
n2 + 1− 1 1

n−
√
n2 + 1− 1 1

 .

So, E(Fn)P2(i) = 2(n +
√
n2 + 1 − 1). We have (Fn)P2

∼=
nK2 ∪K1. Hence, E(Fn)P2 = nE(K2) + E(K1) = 2n.

Theorem 23: Let Fn be friendship graph with partition
P = {V1, V2}, such that < V1 >= K3 and < V2 >=
n−2
n K2. Then E(Fn)P2(i) = 2(n− 2 +

√
n2 − 2n+ 2).

Proof: For partition P = {V1, V2}, such that < V1 >=
K3 and < V2 >= n−2

n K2 of graph Fn, the adjacency matrix
of k(i) complement of Fn is given by,

A(Fn)P2(i) =



01×1 0×2 J1×2 J1×2 . . . J1×2
02×1 02×2 02×2 02×2 . . . 02×2
J2×1 02×2 02×2 J2×2 . . . 02×2
J2×1 02×2 J2×2 02×2 . . . J2×2

...
...

...
...

. . .
...

J2×1 02×2 J2×2 J2×2 . . . 02×2


Consider det(λI −A(Fn)P2(i))

Step 1: Replace Ri by Ri −Ri−1, where
i = v2n+1, v2n, v2n−1, . . . , v5 and replace Rv4

by
Rv4
− Rv1

. Then det(λI − A(Fn)P2(i)) reduces to
the form λn+1 det(D).

Step 2: In det(D), replace Ri by Ri − Ri−1, where i =
v2n, v2n−2, v2n−4, . . . , v6. We get a new determi-
nant, let it be det(E).

Step 3: In det(E), we replace Ci by Ci +Ci+1, where i =
v2n, v2n−1, v2n−2, . . . , v4. It simplifies to

det(E) = (λ+ 2)n−2

∣∣∣∣∣∣∣∣
λ 0 0 2− 2n
0 1 0 0
0 0 1 0

−λ− 1 0 0 λ+ 2

∣∣∣∣∣∣∣∣
= (λ+ 2)n−2 det(F ).

Hence det(F )= (λ − (n − 2 +
√
n2 − 2n+ 2))(λ − (n −

2 −
√
n2 − 2n+ 2)). So, the spectrum of (Fn)P2(i) is

0 n+ 1
−2 n− 2

n− 2 +
√
n2 − 2n+ 2 1

n− 2−
√
n2 − 2n+ 2 1

 .

Thus, E(Fn)P2(i) = 2(n− 2 +
√
n2 − 2n+ 2).

Theorem 24: Let Fn be friendship graph with partition
P = {V1, V2}, such that < V1 >= K3 and < V2 >=
n−2
n K2. The characteristic polynomial of (Fn)P2 is (λ +

1)n(λ− 1)n−2[λ3 − 2λ2 − (4n− 3)λ+ 2].
Proof: Let P = {V1, V2} be a partition of vertices of

Fn, where < V1 >= K3 and < V2 >= n−2
n K2.

A(Fn)P2 =



01×1 J1×2 01×2 01×2 . . . 01×2
J2×1 X J2×2 J2×2 . . . J2×2
02×1 J2×2 X 02×2 . . . 02×2
02×1 J2×2 02×2 X . . . 02×2

...
...

...
...

. . .
...

02×1 J2×2 02×2 02×2 . . . X


where X = (J − I)2×2

Consider det(λI −A(Fn)P2 )

Step 1: Replacing Ri by Ri − Ri+1, where i =
v2, v3, v4, . . . , v2n, we obtain a new determinant say,
det(D).

Step 2: In det(D), replacing Cv3
by Cv3

− Cv2
, we get a

new determinant, let it be (λ+ 1)n det(E).
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Step 3: In det(E), expanding over last row, we see
that, det(E) = (−1)2n+3(−1) det(P ) +
(−1)4n+1(−1) det(Q) + (−1)4n+2(λ) det(R).

(a) In det(P ), replacing Ci = Ci + Ci+1, where
i = v2n−1, v2n−2, v2n−3, . . . , v3, we get a new
determinant, let it be det(S).
In det(S), replacing Ri by Ri = Ri + Ri−1,
where i = v5, v7, v9, . . . , v2n−1 and by simplify-
ing, we get det(S) = (−1)n−2(λ−1)n−2[2λ2+
4nλ− 6λ].

(b) In det(Q), replacing Ri by Ri = Ri + Ri−1,
where i = v5, v7, v9, . . . , v2n−1 and by simpli-
fying we obtain det(Q) = (−1)(λ−1)n−2[λ2+
λ− 2].

(c) In det(R), replacing Ri by Ri = Ri + Ri−1,
where i = v5, v7, v9, . . . , v2n−1 and further
reducing det(R), we see that det(R) = (λ −
1)n−2[λ2 + λ− 2].

Then from step 3, we obtain det(E) = (λ − 1)n−2[λ3 −
2λ2− (4n− 3)λ+ 2]. Thus, the characteristic polynomial of
(Fn)P2 is (λ+ 1)n(λ− 1)n−2[λ3 − 2λ2 − (4n− 3)λ+ 2].

Theorem 25: Let Kn×2 be cocktail party graph with par-
tition P = {V1, V2}, such that < Vi >= Kn, for i = 1, 2.
Then E(Kn×2)P2 = 4(n− 1) and E(Kn×2)P2(i) = E(S0

n).
Proof: Let Kn×2 be the cocktail party graph with

partition P = {V1, V2} such that < Vi >= Kn, for i = 1, 2.

We have A(Kn×2)P2 =

[
(J − I)n In

In (J − I)n

]
.

The result is proved by showing AZ = λZ for certain
vector Z and by making use of the fact that geometric
multiplicity and algebraic multiplicity of each eigenvalue λ
is same, as matrix A (Kn×2)

P
2 is real and symmetric.

Let Z =

[
X
Y

]
be an eigenvector of order 2n partitioned

conformally with A (Kn×2)
P
2 .

Note that(
λI2n −A (Kn×2)

P
2

)[
X
Y

]
=

[
[(λ+ 1)I − J ]X − InY
−InX − ((λ+ 1)I − J)Y

]
(26)

Case 1:Let X = 1n and Y = 1n. Suppose λ is any root
of the equation

[(λ+ 1)− n]1n − 1n = 0

(λ− n)1n = 0

λ = n

We conclude that n is an eigenvalue of A (Kn×2)
P
2 , with

multiplicity at least one.
Case 2: Let X = 1n and Y = −1n.

Now

[(λ+ 1)− n]1n + 1n = (λ− n+ 2)1n = 0 (27)

From Equation (27), we note that λ − n + 2 = 0. Thus
λ = n− 2 is an eigenvalue, with multiplicity at least one.

Case 3: Let X = Xi be an eigenvector with first element
1 and ith element −1, for i = 2, 3, . . . , n and remaining
elements equal to zero. Now Yi = (λ + 1)Xi, where λ is
any root of λ2 + 2λ = 0.
By noting JXi = 0 and from Equation (26),

−(J + λ− 1)Xi + I(λ− 1)Xi = −(λ− 1)Xi + (λ− 1)Xi = 0

and

− InXi − [(λ+ 1)In − J ](λ+ 1)Xi = (λ2 + 2λ)Xi.
(28)

From Equation (28), we obtain λ2 + 2λ = 0. Thus λ = 0
and λ = −2 are eigenvalues, each with multiplicity at least
(n−1), as there are (n−1) independent vectors of the form
Xi.
Since order of the graph is 2n, spectrum of (Kn×2)Pk is{

0 n −2 n− 2
n− 1 1 n− 1 1

}
and

E(Kn×2)P2 = 4(n− 1). Observe that (Kn×2)Pk(i)
∼= S0

n.
Hence, E(Kn×2)Pk(i) = E(S0

n).
Theorem 29: Let Kn×2 be cocktail party graph with ver-

tex set V = {v1, v2, · · · , vn, u1, u2, · · · , un} and partition
P = {V1, V2, · · · , Vn}, such that the partition < Vi >=<
viui >, where i = 1, 2, · · · , n. Then E(Kn×2)Pk = 0 and
E(Kn×2)Pk(i) = 4n− 2.

Proof: For the given partition, (Kn×2)Pk is the totally
disconnected graph. Hence, E(Kn×2)Pk = 0. We have
(Kn×2)Pk(i)

∼= K2n. Hence, E(Kn×2)Pk(i) = E(K2n) =
4n− 2.

Theorem 30: For cocktail party graph K(2n+1)×2 with
partition P = {V1, V2, . . . , V2n+2}, such that < Vi >=
K ′2s ofK2n+1 for i = 1, 2, . . . , 2n and < Vj >= K1 for j =
1, 2. Then E(K2n+1×2)P(2n+2)(i) = 6n−3+

√
16n2 + 8n+ 8

and E(K2n+1×2)P(2n+2) = 4n+ 2.
Proof: We have

A(K2n+1×2)P(2n+2)(i) =

[
A (J − I)2n+1

(J − I)2n+1 A

]

where A =


02×2 J2×2 . . . J2×2 J2×1
J2×2 02×2 . . . J2×2 J2×1

...
...

. . .
...

...
J2×2 J2×2 . . . 02×2 J2×1
J1×2 J1×2 . . . J1×2 0


2n+1×2n+1

It is of the form
[
A0 A1

A1 A0

]
. Hence, we can apply

Lemma 8. First we shall compute spectrum of A0 +A1.

Step 1: Consider det(A0 +A1)

(i) Replacing Ri by Ri − Ri+1, for i =
v1, v2, v3, . . . , v2n, the det(A0 + A1) will reduce to
(λ+ 1)n det(D).

(ii) In det(D), replacing Ci by Ci + Ci−1, for i =
v2, v3, v4, . . . , v2n, we get a new determinant det(E).

(iii) In det(E), replacing Ri by Ri − Ri+1, where i =
v2, v4, v6, . . . , v2n−2,we get
(λ+ 3)n−1 det(F ).

(iv) Expanding det(F ) over first row we obtain det(F ) =
[λ2 − (4n− 3)λ− 8n]. Thus, we have
det(A0+A1) = (λ+1)n(λ+3)n−1[λ2−(4n−3)λ−
8n].
Spectrum of A0 + A1 is given by,

4n−3+
√
16n2+8n+9
2 1

4n−3+
√
16n2+8n+9
2 1
−3 n− 1
1 n

 .

To compute spectrum of A0 −A1.
Step 2: Consider det(A0 −A1)
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(i) Replacing Ri by Ri − Ri+1, for i =
v1, v3, v5, . . . , v2n−1, we see that det(A0 − A1) is
of the form (λ− 1)n det(D).

(ii) Replacing Ci by Ci−Ci−1, for i = v2, v4, v6, . . . , v2n
in det(D), we obtain determinant of lower triangular
matrix. Hence, det(D) = λ(λ+ 1)n. Thus, we have
det(A0 −A1) = λ(λ− 1)n(λ+ 1)n.

Spectrum of A0 −A1 is
{

0 1 −1
1 n n

}
.

Combining spectra of A0 + A1 and A0 − A1, we ob-
tain, E(K2n+1×2)P(2n+2)(i) = 6n − 3 +

√
16n2 + 8n+ 8.

Note that (K2n+1×2)P(2n+2)
∼= nC4 ∪ K2. Hence,

E(K2n+1×2)P(2n+2) = 4n+ 2.
Theorem 31: For cocktail party graph K2n×2 with a

partition P = {V1, V2, . . . , V2n}, such that < Vi >=
K ′2s of K2n for i = 1, 2, . . . , 2n. Then, E(K2n×2)P2n(i) =

10n− 6 and E(K2n×2)Pk = 4n.
Proof: Let P = {V1, V2, . . . , V2n} be a partition of

K2n×2 such that < Vi >= K ′2s of K2n for i = 1, 2, . . . , 2n.
Then, we have

A(K2n×2)
P
(2n)(i) =

[
(J2n − I2n)⊗ J2 (J − I)2n×2n

(J − I)2n×2n (J2n − I2n)⊗ J2

]
It is of the form

[
A0 A1

A1 A0

]
. Hence, from Lemma 8, we

get spectra of (K2n×2)P2n(i) as{
−3 −1 1 4n− 3
n− 1 2n n 1

}
. So that E(K2n×2)P2n(i) =

10n−6. Also (K2n×2)P2n
∼= nC4. Thus, E(K2n×2)P2n = 4n.

IV. CONCLUSION

The energy of a graph is one of the emerging subject
within graph theory. It serves as a frontier between Chemistry
and mathematics. The energy of several graphs is found in
literature. In our study, we have derived explicit expression
for the energy of generalized complements of some classes
of graphs by taking partition of order 2, 3 and k ≥ 3 in some
cases.
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