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Abstract—Improving the quality of reconstructed images
in blind image restoration tasks remains a challenging and
important problem. To solve this problem, a new methodology is
proposed based on sparse representation and regularization. In
this method, blind image restoration is divided into two steps:
blur estimation and high-quality image reconstruction. In the
blur estimation step, a new sparse regularized blur estimation
model is built; it uses the l1 norm of the gradient image and
the l1 − l2 mixed norm of the blur kernel as the regularization
terms. The variable splitting method is applied to the sparse
regularized blur estimation model to perform an equivalent
model transformation; alternating minimization is then utilized
to decompose the equivalent model into several simpler sub-
problems. As a result, the blur kernel estimate can be obtained
with an alternating estimation approach for the subproblems by
using a fast Fourier transform, soft-thresholding iteration, etc.
To improve the accuracy, a multiscale strategy is integrated into
the iterative estimation process of the blur kernel, and the model
parameters are updated with a continuous method. In the clear
image reconstruction stage, the image deconvolution problem
in reconstruction is solved with a hyper-Laplacian sparse prior-
based method. In the experiments, simulations are performed,
and the results are compared with the results of two similar
methods. In the experiment, famous synthetic blurred images
and real-world blurred images from a public image library are
used. The comparative results validate the effectiveness of the
proposed method and demonstrate its effectiveness.

Index Terms—blind image restoration, sparse regularization,
variable splitting, alternating minimization, soft-thresholding
iteration.

I. INTRODUCTION

W ITH the popularization of social networks and the
powerful multimedia capabilities of smartphones, im-

ages are playing an increasingly important role as multi-
media information carriers. However, the quality of digital
images has always been degraded by blurring and noise.
To eliminate the adverse effects of image degradation, blind
image restoration concepts and theories have been proposed
since the 1960s and 1970s. With the complexity, variability,
and unpredictability of the image degradation process, the
blind image restoration problem has remained an actively
investigated topic, and interesting and valuable solutions have
been proposed. With years of research results, blind image
restoration methods are inseparable from prior knowledge
(hypothesis). As a result, accurate prior information for
unknown clear images, unknown blur kernels, noise, etc. can
undoubtedly improve the quality of blindly restored images.
In recent years, new technologies and theories have been
introduced to improve the quality of blind image restoration,
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where the introduction of sparse representation technology is
recognized as a classic method. Within the sparse represen-
tation framework, the prior knowledge of the image can be
used to represent the image in a sparse way under a given
transformation, such as gradients of images or coefficients
under wavelet decomposition. Because the lp(0 ≤ p ≤ 2)
norm can be used to measure the sparseness of signals, the
lp norm can be naturally used to induce the sparsity of the
solution. In recent years, excellent sparsity-driven blind im-
age restoration methods have been proposed by incorporating
regularization, variational Bayesian, and other techniques in
which variable splitting, alternating optimization, a Bregman
iteration, etc. are widely used.

Babacan et al. [1] proposed a blind image restoration
method based on a Bayesian inference and hyper-Gaussian
sparsity prior to overcoming the drawbacks of the con-
ventional maximum a posteriori approach. However, the
authors only considered the prior models of the Gaussian
image; they recognized that other prior models could lead
to further improvements in the efficiency of blind image
restoration. Under the Bayesian framework, Amizic et al.
[2] proposed a novel blind restoration method for images
based on an image with a sparse prior with an lp norm
and a blur prior with a total variation norm. In this case, a
majorization-minimization method was adopted to perform
a Bayesian inference and obtain the maximum a posteriori
result of the unknown image and the unknown blur and
model parameters. Because total variation regularization can
effectively restore the edges of an image, Li et al. [3]
extended the standard total variation model to the blind
image restoration problem, and the extended split Bregman
method was used to iteratively solve the minimization prob-
lem caused by restoration. Clear images with a simple or
complex background were successfully restored with low
computational complexity. By utilizing a Bayesian inference
and convex analysis, Zhang et al. [4] proposed a spatially
adaptive sparse image regularization and blind restoration
method. Based on an implicit normalization process, the form
of the regularization term was automatically adapted to match
the estimated degree of local blur and the image structure.
Therefore, a key advantage of this approach is the avoidance
of parameter tuning. The success of image restoration with
the maximum a posteriori estimation partly comes from the
respective intermediate steps, which implicitly or explicitly
reconstruct an unnatural image with a significant structure.
Based on this approach, Xu et al. [5] adopted the “unnatural”
l0 norm to perform a kernel estimation and large-scale
optimization, where the gradient sparsity of l0 eliminates the
harmful small-amplitude structures. The proposed method
not only provides a principled understanding of efficient
blind image restoration but also significantly improves opti-
mization performance. To perform a satisfactory blur kernel
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estimation, a maximum a posteriori estimation-based blind
image restoration usually depends on well-designed regu-
larization operators and manual parameter tuning. Various
regularization operators can reflect the smoothness of the
structure but are unable to enhance the edges. Therefore,
in the MAP framework, Zuo et al. [6] proposed a method
to solve the edge enhancement problem with an iterative
lp norm sparse regularization operator and a data-driven
strategy. The generalized shrinkage-thresholding operator
was first extended to suppress fine details and enhance
edges. Subsequently, an iterative generalized contraction-
thresholding operator parameter was specified for dynamic
edge selection and time-varying regularization. Finally, the
principle discriminant learning method was used to learn the
iterative generalized shrinkage-thresholding operator from
the training data. Cai et al. [7] proposed a blind restoration
method based on sparse regularization. The sparse modeling
of clear images and blur kernels was performed within
the tight wavelet framework. The improved split Bregman
method was also used to optimize the restoration. In an
alternative research direction, the problem of obtaining sat-
isfactory results without prior information related to the blur
kernel has been investigated. Pan et al. [8] proposed a simple
and effective l0 regularization prior based on the intensity and
gradient for the blind restoration of text images. Based on
this prior, an efficient optimization method was proposed to
obtain reliable intermediate results for blur kernel estimation.
In this method, no complicated filtering strategy was required
to select the edges. In the final clear image reconstruction
step, a simple method was proposed to eliminate artifacts
and obtain the desired results. With a dual l0 − l2 norm
sparse regularization approach, Shao et al. [9] proposed
a simple and fast estimation method by alternately using
the coupling operator splitting method and the augmented
Lagrangian method to identify the clear image portions and
blur kernels, respectively. In the final clear image recon-
struction step, a simple method was designed to eliminate
artifacts and achieve the desired results. In [10], Yan et al.
observed that bright channel pixels were bright long after
the blurring process, and an extreme channel prior-based
blind image restoration method was proposed with sparse l0
norm regularization. In particular, this approach combined
the advantages of the bright channel prior and the dark
channel prior, where the method of semi-quadratic splitting
was utilized. According to the blind restoration of sparsely
optimized images, this paper proposes the application of
ll − l2 dual regularization for the blur kernel. Based on this
method, a new sparse regularization model is constructed
that adopts variable splitting, alternating minimization, a fast
Fourier transform, soft threshold iteration, and other methods
to process images and obtain the best estimate of the blur
kernel. To improve the accuracy of blur estimation, the blur
kernel estimation and parameter updating strategies are care-
fully selected and integrated into the iterative process. In the
stage of clear image reconstruction, image deconvolution is
performed by using the mature and effective super-Laplacian
prior method proposed by Krishnan et al. [11].

II. BLUR ESTIMATION MODEL AND ITS SOLUTION

Let k and x denote the unknown blur kernel and clear
image, respectively. y denotes the observed blurred image,

and n denotes the additive noise. Thus, the image degradation
process can be expressed as

y = k ⊗ x+ n, (1)

where ⊗ denotes a convolution operation. Because convo-
lution is a linear operation, Equation (1) can be expressed
as

∇y = k ⊗∇x+ n, (2)

where ∇ denotes a gradient operation, and ∇y and ∇x de-
note the gradient images of x and y, respectively. Obviously,
the purpose of blur estimation is to obtain the best estimate
of k through y (or ∇y). Compared with Equation (1), the
degradation model shown in Equation (2) usually provides
an accuracy improvement for blur estimation [12].

Under the regularization framework, the blur estimation
problem can be expressed as

min
x,k

1

2
L(k, x) +R1(x) +R2(k), (3)

where L(k, x) is a reliability term. In the linear system of
Equation (2), L(k, x) = 1

2×||∇y−k⊗∇x||
2
2, || · ||2, i.e., the

l2 norm. Moreover, R1(x) and R2(k) are the regularization
terms. In the sparse representation framework, these terms
are usually the lp(0 ≤ p ≤ 2) norms or are given by a
mixed representation.

Considering the sparsity of the gradient image, let
R1(x) = α||∇x||1, where || · ||1 is the l1 norm. Addi-
tionally, considering the sparseness of the blur kernel and
its composition of edges and smooth regions, let R2(k) =
β||k||1 + γ||k||22. The l1-regularization term can be used
to ensure that the blur estimation is sparse, and the l2-
regularization term can accurately reconstruct the smooth
region of the blur kernel by eliminating isolated points.
Accordingly, the blur estimation model based on the sparse
regularization established in this paper can be expressed as

min
k,u

||g − k ⊗ u||22
2

+ α||u||1 + β||k||1 +
γ

2
||k||22, (4)

where g = ∇y, u = ∇x, and α, β, and γ are positive
constants.

Equation (4) shows the multivariate minimization task,
and the objective function is non-differentiable due to the
existence of the l1 norm. To avoid directly processing prob-
lem (4), the variable splitting method is used to obtain the
equivalent transformation:

min
k,u,v,w

||g − k ⊗ u||22
2

+ α||v||1 + β||w||1 +
γ

2
||k||22,

s.t. v = u,w = k,

(5)

where v and w are the introduced relaxation variables.
Variable splitting is a convenient method that is widely
used. The purpose of introducing new variables is to make
multivariate non-differentiable optimization problems easier
to solve.

Next, the application of an alternating minimization oper-
ation to Equation (5) yields the following expressions:

um+1 = argmin
u

||g − km ⊗ u||22 + µ1||vm − u||22, (6)

vm+1 = argmin
v

α||v||1 +
µ1

2
||v − um+1||22, (7)
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km+1 = argmin
k

||g−k⊗um+1||22+µ2||wm−k||22+γ||k||22,
(8)

wm+1 = argmin
w

β||w||1 +
µ2

2
||w − km+1||22. (9)

Alternating minimization embodies a “divide and conquer”
concept. When addressing multiple unknowns, this method
solves the optimization problem for one of the unknowns at
a time, and the remaining unknown variables are fixed.

Each of the objective functions of the minimization prob-
lems in Equations (6) and (8) is quadratic differentiable.
According to the Plancherel theory [13], the fast Fourier
transform of a quadratic differentiable function is equal to
the sum of the fast Fourier transform of each term, which
can be directly used to solve the minimization problems in
Equations (6) and (8):

um+1 = F−1(
F∗(km)F(g) + µ1F(vm)

F∗(km)F(km) + µ1
), (10)

km+1 = F−1(
F∗(um+1)F(g) + µ2F(wm)

F∗(um+1)F(um+1) + γ + µ2
). (11)

where F represents the fast Fourier transform, F∗ represents
the complex conjugate of F, and F−1 represents the inverse
fast Fourier transform. Because Equation (7) and Equation
(9) have separable structures, a soft-thresholding iteration
method can be used to calculate vm+1 and wm+1 as follows:

vm+1
l = max(|um+1

l | − α

µ1
, 0)

um+1
l

|um+1
l |

, (12)

wm+1
l = max(|km+1

l | − β

µ2
, 0)

km+1
l

|km+1
l |

, (13)

where vm+1
l , wm+1

l , um+1
l and km+1

l represent the l-th
element of vm+1, wm+1, um+1, and km+1, respectively.

III. BLUR ESTIMATION METHOD AND CLEAR IMAGE
RECONSTRUCTION

Based on Equations (10) and (11), by combining necessary
strategies and methods, the proposed methods are demon-
strated in Fig. 1, and the corresponding description is given
in Method 1.

Method 1 Proposed Method
Input: α, β, µ, and range of µ1 and µ2

Input: k1 (corresponding to g1), v and w
Output: Final Estimate of blur kernel kM+1

N

1: For j = 1 to N do
2: For m = 0 to M do
3: According to Equation (10), calculate um+1

4: According to Equation (11), calculate km+1
j

5: km+1
j =

km+1
j

sum(km+1
j )

and km+1
j = abs(km+1

j )

6: µ1 = µ1 × 2, µ2 = µ2/2
7: EndFor
8: Upsample from kM+1

j to kj+1
0

9: EndFor

Because the actual size of the blur kernel is often un-
known, a “coarse-to-fine” multiscale strategy [14] is incor-
porated into the blur estimation process to avoid the blur
estimation from converging to a local minimum or local

maximum and to improve the estimation accuracy. This
process updates the blur kernel according to a {5 × 5, 7 ×
7, 11×11, 17×17, 25×25, 35×35, 51×51} size sequence.
To construct a multiscale strategy, the image pyramid gj
(1 ≤ j ≤ N ) is established based on the image g, where
gN = g, gj (1 ≤ j ≤ N − 1) is sequentially downsampled
by g. In the iterative process, gj (1 ≤ j ≤ N ) corresponds to
the blur kernel km+1

j (1 ≤ j ≤ N ). Moreover, the normalized
constraint km+1

j = km+1
j /sum(km+1

j ) and the non-negative
constraint km+1

j = abs(km+1
j ) are applied to the blur

kernel obtained in each iteration, which further improves
the estimation accuracy. To promote the convergence of
the iterative process and improve the efficiency under the
premise of accuracy, the continuation method proposed in
[15] is used to automatically update the parameters µ1 and
µ2 in each iteration.

After obtaining the final estimate of the blur kernel, the
blind image restoration problem becomes an image decon-
volution problem (i.e., reconstructing a clear image). For
such problems, many effective methods have been proposed
in recent years. This paper uses a representative hyper-
Laplacian prior method that deconvolves the image as a
sparse regularization problem.

min
x
λ||y − k ⊗ x||22 + ||∇hx||

2
3
1 + ||∇vx||

2
3
1 , (14)

where ∇h represents a gradient operation in the horizontal
direction and ∇vrepresents a gradient operation in the verti-
cal direction.

IV. EXPERIMENTAL RESULTS

Experiments were conducted on a laptop with the follow-
ing configuration: Windows 10 operating system, MATLAB
R2012a emulation platform, i7-7700HQ CPU, and 16 GB
memory. The experimental blurred images are from the im-
age libraries provided by Levin et al. [16], Kohler et al. [17]
and Lai et al. [18]; the image libraries provide well-known
standard test images in the field of blind restoration. The
experiments are divided into three groups, including the first
group and the second group of quantitative experiments and
the third group of qualitative experiments. To evaluate the
performance of the proposed method, the methods developed
by Pan et al. [11] and Yan et al. [14] are introduced and used
for comparison. For the entire experiment, the parameters of
the proposed method are set as follows: α = 6 × 10−2,
β = 8 × 10−3, γ = 2.5 × 10−3, µ1 = [10−5 105],
µ2 = [105 10−5], and M = 10. For Pan’s method and
Yan’s method, the default settings are used.

First Group of Quantitative Results. The first group
of experiments restores the blurred images in the Levin
image library, and the clear images and blur kernels are
shown in Fig. 2. The Levin image library contains four
clear grayscale images, eight blur kernels with different sizes
and shapes, and 32 blurred images. The blurred images
are generated by using blurred kernels in otherwise clear
images. Because the original clear images are known, the
peak signal-to-noise ratio (PSNR) is used as an objective
evaluation criterion for the quality of the restored image.
Generally, when the PSNR value is higher, the quality of the
restoration is higher. Because images are generated for each
clear image, the PSNR averages obtained from the restoration
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Fig. 1: Overall Process of the Proposed Method.

(a) (b)

(c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2: Clear Images and Blur Kernels in the Levin Image
Library. (a)-(d) Clear Images, and (e)-(l) Blur Kernels.

of the homologous eight blurred images are used to compare
the restoration results of the respective methods. The average
PSNR values obtained by the three methods are shown in Fig.
3, where P, Y and Pr represent the Pan’s method, the Yan’s
method and the proposed method, respectively. The figure
clearly indicates that the proposed method achieves the best
recovery result, and the average for all of the PSNR values
is the highest. To compare the accuracy of each method for
blur kernel estimation, TABLE I records the average MSE
values for the eight blur kernel estimates (smaller is better).
Ker01 to Ker08 in TABLE I represent the blur kernels in
Figs. 2(e) to 2(l). The estimation results in TABLE I clearly
show that the proposed method has an advantage over other

Fig. 3: Average PSNR Values for the Recovered Images in
the Levin Image Library.

methods; that is, the proposed method can estimate the blur
kernels more accurately, which contributes to improving the
quality of blind image restoration.

Second Group of Quantitative Results. The images
to be processed in the second group of experiments are
shown in Fig. 4 and are from the public image library
provided by Kohler et al. These images differ from the
blurred versions of the same clear image. The images in
this library are actually non-uniform blurred images, but
they are still treated as uniform blurred images during the
experiments. Because the original clear images are known,
the experimental results are quantitatively analyzed, and the
quantitative results are expressed by reconstructing the PSNR
values of the clear image (larger is better). The quantitative
results of the restored blurred image in Fig. 4 are reported
in TABLEs II and III, where dB is the unit of the PSNR
values. As shown in Fig. 5, the actual visual effects of the
reconstructed sharp images are also substantially consistent
with the quantitative results. In the figure, the proposed
method obtains clearer image details, while the other two
methods reconstruct images with significant blurs. Although
Fig. 5 shows only partial visual results, the results are still
representative. The quantitative PSNR results and visual
results both indicate that the proposed method is effective
in restoring blurred images from the Kohler image library.
Although the processing objects are non-uniform blurred
images, the proposed method still performs the task well.

Qualitative Results. The third group of experiments in-
volved blind restorations of the representative eight degen-
erated images in the Lai image library. As shown in Fig. 6,
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TABLE I: Average MSE Values for the Recovered Blur Kernels in the Levin Image Library.

Methods Ker01 Ker02 Ker03 Ker04 Ker05 Ker06 Ker07 Ker08
Pan 5.59× 10−2 6.21× 10−2 5.02× 10−2 3.39× 10−2 6.24× 10−2 4.69× 10−2 4.77× 10−2 4.04× 10−2

Yan 3.40× 10−2 4.55× 10−2 4.11× 10−2 1.99× 10−2 4.26× 10−2 2.07× 10−2 1.31× 10−2 1.67× 10−2

Proposed 9.71× 10−3 8.93× 10−3 9.42× 10−3 3.84× 10−3 2.92× 10−3 1.28× 10−3 7.75× 10−3 4.85× 10−3

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Fig. 4: Blurred Images from the Kohler Image Library.

(a) (b) (c)

(d) (e) (f)

Fig. 5: Visual Results by Restoring Fig. 4(f) and Fig. 4(s).
(a)-(b) Results of Pan’s Method, (c)-(d) Results of Yan’s
Method, and (e)-(f) Results of the Proposed Method

the resolution, structural features, and degradation degrees
of the eight blurred images are all different. Because the
images in the library are blurred images collected from
the real world, there are no original clear images, and the
quality of the restoration results cannot be quantitatively
analyzed. Most existing research qualitatively evaluates the
restoration results of blurred images based on the correspond-
ing visual effects (e.g., sharpness, brightness, artifacts, etc.).
The experimental results for the three methods are shown
in Figs. 7 to 10, where subfigures (a)-(b) are the results
using Pan’s method, subfigures (c)-(d) are the results using
Yan’s method, and subfigures (e)-(f) are the results using the
proposed method. In general, the clear image reconstructed
by Pan’s method contains more artifacts than the images
produced by the other methods. Notably, some artifacts
are very obvious, as shown in Fig. 9(b), because Pan’s
method is most appropriate for relatively sparse text images.
Therefore, the method is inclined to provide sparse solutions.
However, there are few sparse real-world images. The blur
estimation results based on Yan’s method indicate that the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6: Real-world Blurred Images from the Lai Image
Library.

prior model used is likely to produce a relatively smooth
solution. Therefore, the reconstructed image is relatively
smooth. Typically, the blur of the image does not seem to
be alleviated, as shown in Fig. 8(c). Among the three blind
image restoration methods, the images reconstructed by the
proposed method display the best visual effect. The blur
removal in the reconstructed images is relatively thorough,
and the images are therefore clearer, containing relatively
few artifacts and retaining important details.

V. CONCLUSION

A blind image restoration method based on sparse reg-
ularization is proposed in this paper. This method divides
blind image restoration into two stages: blur estimation
and clear image reconstruction. In the first stage, a new
l1 − l2 regularization optimization model is established, and
the model is effectively processed to obtain an accurate
estimation of the blur. In the second stage, the results of blur
estimation are applied to image deconvolution, and the hyper-
Laplacian prior method is used to complete clear image

(a) (b)

(c) (d)

(e) (f)

Fig. 7: Recovery Results for the Images Presented in Figs.
6(a) and 6(b). (a)-(b) Output of Pan’s Method, (c)-(d) Output
of Yan’s Method, and (e)-(f) Output of the Proposed Method.

(a) (b) (c)

(d) (e) (f)

Fig. 8: Recovery Results for the Images Presented in Figs.
6(c) and 6(d). (a)-(b) Output of Pan’s Method, (c)-(d) Output
of Yan’s Method, and (e)-(f) Output of the Proposed Method.

reconstruction. Experiments are performed by using three
methods, including two methods for comparative purposes
and the proposed method. The experimental objects are well-
known standard test images from public image libraries. We
perform restoration experiments on the blurred images of
different color types and different blur types. The results of
the methods are compared based on objective criteria and
visual effects. The effectiveness of the proposed method is
validated, and the advantages of this method over the other
two methods are demonstrated.
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TABLE II: PSNR Values (dB) for the Recovered Figs. 4(a)-(l).

Methods Fig4a Fig4b Fig4c Fig4d Fig4e Fig4f Fig4g Fig4h Fig4i Fig4j Fig4k Fig4l
Pan 30.60 30.40 32.67 32.68 32.76 30.69 30.64 33.73 31.37 33.48 32.07 32.46

Yan 29.84 29.90 32.42 31.98 32.94 28.97 30.21 33.41 31.89 32.88 31.24 32.56

Proposed 31.10 31.15 33.44 32.92 33.20 31.20 30.73 33.36 32.17 33.09 32.16 32.56

TABLE III: PSNR Values (dB) for the Recovered Figs. 4(m)-(x).

Methods Fig4m Fig4n Fig4o Fig4p Fig4q Fig4r Fig4s Fig4t Fig4u Fig4v Fig4w Fig4x
Pan 32.21 32.23 31.01 33.03 33.46 30.97 30.41 33.90 32.23 32.69 34.16 33.50

Yan 32.02 31.94 30.74 32.45 32.83 30.49 28.82 33.56 32.70 33.06 33.39 32.63

Proposed 33.03 32.39 31.12 33.34 33.63 31.66 29.85 35.92 33.78 34.08 34.17 33.68

(a) (b) (c)

(d) (e) (f)

Fig. 9: Recovery Results for the Images Presented in Figs.
6(e) and 6(f). (a)-(b) Output of Pan’s Method, (c)-(d) Output
of Yan’s Method, and (e)-(f) Output of the Proposed Method.

(a) (b)

(c) (d)

(e) (f)

Fig. 10: Recovery Results for the Images Presented in Figs.
6(g) and 6(h). (a)-(b) Output of Pan’ Method, (c)-(d) Output
of Yan’s Method, and (e)-(f) Output of the Proposed Method.
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