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Abstract—Sufficient conditions are obtained for the per-
manence and extinction of the following discrete model of
mutualism

x1(k + 1) = x1(k) exp

{
r1(k)

[
K1(k) + α1(k)x

β1
2 (k − τ2(k))

1 + xβ12 (k − τ2(k))

−xδ11 (k − σ1(k))
]}

,

x2(k + 1) = x2(k) exp

{
r2(k)

[
K2(k) + α2(k)x

β2
1 (k − τ1(k))

1 + xβ21 (k − τ1(k))

−xδ22 (k − σ2(k))
]}

,

where we assume that one of the following conditions holds.

(A) ri,Ki, αi, τi and σi, i = 1, 2 are nonnegative sequences
bounded above and below by positive constants, and αi >
Ki, i = 1, 2. βi, δi, i = 1, 2 are all positive constants;
(B) ri, αi, τiσi, i = 1, 2 and K1 are nonnegative sequences
bounded above and below by positive constants, K2 is a negative
sequences bounded above and below by negative constants, and
α1 > K1, βi, δi, i = 1, 2 are all positive constants.

The results obtained here generalize the main result of
Fengde Chen.

Index Terms—Nonautonomous; Mutualism model; Discrete
model; Delays; Permanence.

I. INTRODUCTION

THROUGHOUT this paper, for any bounded sequence
{h(n)}, set hu = sup

n∈N
{h(n)} and hl = inf

n∈N
{h(n)}.

The aim of this paper is to investigate the persistent
property of the following discrete model of mutualism

x1(k + 1) = x1(k) exp

{
r1(k)

[
f1(x2(k − τ2(k)))

−xδ11 (k − σ1(k))
]}
,

x2(k + 1) = x2(k) exp

{
r2(k)

[
f2(x1((k − τ1(k)))

−xδ22 (k − σ2(k))
]}
,

(1.1)
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where

f1(x2(k − τ2(k))) =
K1(k) + α1(k)x

β1

2 (k − τ2(k))
1 + xβ1

2 (k − τ2(k))

f2(x1((k − τ1(k))) =
K2(k) + α2(k)x

β2

1 (k − τ1(k))
1 + xβ2

1 (k − τ1(k))
.

We assume that the coefficients of system (1.1) satisfies:

(A) ri,Ki, αi, τiand σi, i = 1, 2 are nonnegative sequences
bounded above and below by positive constants, and αi >
Ki, i = 1, 2. βi, δi, i = 1, 2 are all positive constants.

(B) ri, αi, τiσi, i = 1, 2 and K1 are nonnegative sequences
bounded above and below by positive constants, K2 is a
negative sequences bounded above and below by negative
constants, and α1 > K1, βi, δi, i = 1, 2 are all positive
constants.

Let τ = sup
k
{τi(k), σi(k), i = 1, 2}, we consider (1.1)

together with the following initial conditions

xi(θ) = ϕi(θ) ≥ 0, θ ∈ N [−τ, 0] = {−τ,−τ + 1, ..., 0},
ϕi(0) > 0.

(1.2)
It is not difficult to see that solutions of (1.1)-(1.2) are well
defined for all k ≥ 0 and satisfy

xi(k) > 0, for k ∈ Z, i = 1, 2.

During the last decade, many scholars investigated the
dynamic behaviors of the mutualism model, see [1]-[26]
and the references cited therein. Some excellent results
about the existence of positive periodic solution (almost
periodic solution), the persistent property of the system etc
are obtained.

Li[1] proposed the following two species discrete model
of mutualism

x1(k + 1) = x1(k) exp

{
r1(k)

[
g1(x2(k − τ2(k)))

−x1(k − σ1(k))
]}
,

x2(k + 1) = x2(k) exp

{
r2(k)

[
g2(x1(k − τ1(k)))

−x2(k − σ2(k))
]}
,

(1.3)
where

g1(x2(k − τ2(k))) =
K1(k) + α1(k)x2(k − τ2(k))

1 + x2(k − τ2(k))
,

g2(x1(k − τ1(k))) =
K2(k) + α2(k)x1(k − τ1(k))

1 + x1(k − τ1(k))
.
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Under the assumption ri,Ki, αi, τi and σi, i = 1, 2 are
periodic positive sequences with common period ω, and
αi > Ki. By applying coincidence degree theory, he showed
that system (1.1) admits at least one positive ω-periodic
solution. Chen[2] argued that a general nonautonomous
nonperiodic system is more appropriate, and thus, he as-
sume that ri,Ki, αi, τi and σi, i = 1, 2 are nonnegative
sequences bounded above and below by positive constants,
and αi > Ki, i = 1, 2. Under those assumption, he showed
that system (1.3) is permanent.

It bring to our attention that the model (1.3) is based on
the following single species discrete model:

x(k + 1) = x(k) exp

{
r1(k)

[
K1(k)− x1(k)

]}
. (1.4)

Already, during the past decades, in his series works, based
on the traditional single species Ayala model, Fengde Chen
and his coauthors ([16]-[20]) proposed several kind of non-
linear population models, and investigated the extinction,
persistent, and stability property of the system. Specially, in
[19], they proposed the following discrete n-species Gilpin-
Ayala competition model

xi(k + 1) = xi(k) exp
[
bi(k)−

n∑
j=1

aij(k)(xj(k))
θij
]
,

(1.5)
where i = 1, 2, ..., n; xi(k) is the density of competition
species i at k-th generation. They investigated the per-
manence and stability of the system (1.5). Their success
motivated us to propose the nonlinear mutualism model (1.1).

The aim of this paper is, by further developing the analysis
technique of [2], [19], [20], to obtain a set of sufficient
conditions to ensure the permanence of the system (1.1).
More precisely, we will prove the following result.

Theorem 1.1. Under the assumption (A), system (1.1) is per-
manent, that is, there exist positive constants mi,Mi, i = 1, 2
which are independent of the solutions of system (1.1), such
that for any positive solution (x1(k), x2(k))

T of system (1.1)
with initial condition (1.2), one has:

mi ≤ lim inf
k→+∞

xi(k) ≤ lim sup
k→+∞

xi(k) ≤Mi, i = 1, 2.

Remark 1.1. When βi = δi = 1, Theorem 1.1 degenerate to
Theorem 1.1 in Chen[2], thus, we generalize the main result
of Chen[2] to the nonlinear case.

On the other hand, by considering the relationship of cus-
tomer fish and cleaner fish, Jiang, Xie and Ye[27] established
the following two species obligate mutualism model:

ẋ1 = r1x1

(
1− x1

N1
+ σ1

x2

N2

)
,

ẋ2 = r2x2

(
− 1 + σ2

x1

N1
− x2

N2

)
,

(1.6)

where x1 and x2 are the densities of first and second species
at time t, respectively. r1 is the intrinsic growth rate of
the first species, r2 is the death rate of the second species,
Ni, i = 1, 2 are the carrying capacity of the i-th species, re-
spectively. σi, i = 1, 2 reflects the efficiency of cooperation.
Here, obligate means that the first species benefiting from
the presence of each other, however it may also survive in
the absence of each other, while the second species may

survive only by association. The authors investigated the
local stability property of the equilibria of system (1.6).
By constructing a suitable Lyapunov function, Chen, Yang,
Han et al[28] obtained sufficient conditions which ensure the
global asymptotical stability of the positive equilibrium and
boundary equilibrium of above system. They showed that the
conditions which ensure the local stability of the nonnegative
equilibria is enough to ensure their global asymptotical
stability. Chen[29] and Wu et al[30] also proposed the
commensalism model with one party could not survival
independently. All of their study shows that with the help of
other species, the system may become permanent. However,
to this day, still no scholars investigated the discrete type
cooperation system with one species could not survival
independently. This leads us to study the dynamic behaviors
of system (1.1) under the assumption (B).
In system (1.1), without the help of the first species, then the
second species satisfies the equation

x2(k+1) = x2(k) exp

{
r2(k)

[
K2(k)− xδ22 (k− σ2(k))

]}
,

Since K2(k) is negative sequence, one could easily see that
x2(k) → 0 as k → +∞. Now, for system (1.1), under
the assumption (B), is it possible for us to investigate the
persistent or extinct property of the system? We will give the
affirm answer to this problem, indeed, we have the following
results:

Theorem 1.2. Assume that

rl2K
l
2

1 +Mβ2

1

+ ru2α
u
2 < 0 (H)

and (B) hold, then the species x2 will be driven to extinction,
and the species x1 is permanent, that for any positive solu-
tion (x1(k), x2(k))

T of system (1.1) with initial condition
(1.2), one has:

lim
k→+∞

x2(k) = 0,

m1 ≤ lim inf
k→+∞

x1(k) ≤ lim sup
k→+∞

x1(k) ≤M1

Theorem 1.3. Assume that

Kl
2 + αl2m

β2

1

1 +mβ2

1

> 0 (F )

and (B) hold, then system (1.1) is permanent.

We will prove Theorem 1.1 - 1.3 in the next section, and
end the paper by a briefly discussion.

II. PROOF OF THE MAIN RESULTS

Now we state several lemmas which will be useful in
proving of our main results.

Lemma 2.1.[2] Assume that {x(k)} satisfies x(k) > 0 and

x(k + 1) ≤ x(k) exp
{
a(k)− b(k)x(k)

}
for k ∈ N , where a(k) and b(k) are nonnegative sequences
bounded above and below by positive constants. Then

lim sup
k→+∞

x(k) ≤ 1

bl
exp(au − 1).
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Lemma 2.2.[2] Assume that {x(k)} satisfies

x(k + 1) ≥ x(k) exp
{
a(k)− b(k)x(k)

}
, k ≥ N0,

lim supk→+∞ x(k) ≤ x∗ and x(N0) > 0, where a(k) and
b(k) are nonnegative sequences bounded above and below
by positive constants and N0 ∈ N. Then

lim inf
k→+∞

x(k) ≥ min

{
al

bu
exp{al − bux∗}, a

l

bu

}
.

Now we are in the position to prove the main results of
this paper.

Proof of the Theorem 1.1. Let (x1(k), x2(k)) be any
positive solution of system (1.1) with initial condition (1.2).
From the first equation of system (1.1) it follows that

x1(k + 1)

≤ x1(k) exp
{
r1(k)

[K1(k) + α1(k)x
β1

2 (k − τ2(k))
1 + xβ1

2 (k − τ2(k))

]}

≤ x1(k) exp
{
r1(k)

[α1(k) + α1(k)x
β1

2 (k − τ2(k))
1 + xβ1

2 (k − τ2(k))

]}
= x1(k) exp

{
r1(k)α1(k)

}
≤ x1(k) exp

{
ru1α

u
1

}
.

(2.1)
By using (2.1), one could easily obtain that

x1(k − σ1(k)) ≥ x1(k) exp{−ru1αu1τ}. (2.2)

Substituting (2.2) into the first equation of system (1.1), it
follows that

x1(k + 1) ≤ x1(k) exp
{
ru1α

u
1

−rl1 exp{−δ1ru1αu1τ}x
δ1
1 (k)

}
.

(2.3)

That is

xδ11 (k + 1) ≤ xδ11 (k) exp
{
δ1r

u
1α

u
1

−rl1δ1 exp{−δ1ru1αu1τ}x
δ1
1 (k)

}
.

(2.4)

Set
u1(k) = xδ11 (k), (2.5)

then,

u1(k + 1) ≤ u1(k) exp
{
δ1r

u
1α

u
1

−rl1δ1 exp{−δ1ru1αu1τ}u1(k)
}
.

(2.6)

As a direct corollary of Lemma 2.1, according to (2.6), one
has

lim sup
k→+∞

u1(k) ≤
1

rl1δ1
exp

{
δ1r

u
1α

u
1 (τ + 1)− 1

}
def
= u∗1.

(2.7)

Consequently,

lim sup
k→+∞

x1(k) ≤

(
1

rl1δ1

) 1
δ1

exp
{
ru1α

u
1 (τ+1)− 1

δ1

}
def
= M1.

(2.8)
By using the second equation of system (1.1), similar to the
analysis of (2.1)-(2.8), we can obtain

lim sup
k→+∞

x2(k) ≤

(
1

rl2δ2

) 1
δ2

exp
{
ru2α

u
2 (τ+1)− 1

δ2

}
def
= M2.

(2.9)
For any small positive constant ε > 0, from (2.8)-(2.9) it
follows that there exists a N1 > 0 such that for all k > N1

and i = 1, 2,
xi(k) < Mi + ε. (2.10)

For k ≥ N1+τ , from (2.10) and the first equation of system
(1.1), we have

x1(k + 1)

= x1(k) exp
{
r1(k)

[K1(k) + α1(k)x
β1

2 (k − τ2(k))
1 + xβ1

2 (k − τ2(k))

−xδ11 (k − σ1(k))
]}

≥ x1(k) exp
{
r1(k)

[K1(k) +K1(k)x
β1

2 (k − τ2(k))
1 + xβ1

2 (k − τ2(k))

−xδ11 (k − σ1(k))
]}

≥ x1(k) exp
{
rl1K

l
1 − ru1 (M1 + ε)δ1

}
.

(2.11)
Thus, by using (2.11) we obtain

x1(k − σ1(k)) ≤ x1(k) exp
{
−
[
rl1K

l
1

−ru1 (M1 + ε)δ1
]
τ
}
.

(2.12)

Substituting (2.12) into the first equation of system (1.1), for
t ≥ N1 + τ , it follows that

x1(k + 1) ≥ x1(k) exp

[
rl1K

l
1 −H1x

δ1
1 (k)

]
, (2.13)

where

H1 = ru1 exp
{
− δ1

[
rl1K

l
1 − ru1 (M1 + ε)δ1

]
τ
}
,

and so

xδ11 (k + 1) ≥ xδ11 (k) exp

[
δ1r

l
1K

l
1 − δ1H1x

δ1
1 (k)

]
. (2.14)

Set
u1(k) = xδ11 (k), (2.15)

then,

u1(k + 1) ≥ u1(k) exp

[
δ1r

l
1K

l
1 − δ1H1u1(k)

]
, (2.16)
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Thus, as a direct corollary of Lemma 2.2, according to (2.7)
and (2.16), one has

lim inf
k→+∞

u1(k) ≥ min
{
A1ε, A2ε

}
, (2.17)

where

A1ε =
rl1K

l
1

ru1
exp

{
δ1

[
rl1K

l
1 − ru1 (M1 + ε)δ1

]
τ
}
, (2.18)

A2ε = A1ε exp

[
δ1r

l
1K

l
1 − δ1H1u

∗
1

]
. (2.19)

Noticing that

rl1K
l
1 − ru1 (M1 + ε)δ1

≤ Kl
1 −M

δ1
1

= Kl
1 −

1

rl1δ1
exp

{
ru1α

u
1δ1(τ + 1)− 1

}
≤ Kl

1 −
1

rl1δ
l
1

ru1α
u
1δ1(τ + 1)

< Kl
1 − αu1

≤ 0,

(2.20)

and so, by using (2.20), one has

δ1r
l
1K

l
1 − δ1H1u

∗
1

= δ1r
l
1K

l
1 − δ1H1

1

rl1δ1
exp

{
δ1r

u
1α

u
1 (τ + 1)− 1

}
< δ1r

l
1K

l
1 −

ru1
rl1

exp
{
δ1r

u
1α

u
1 (τ + 1)− 1

}
≤ δ1r

l
1K

l
1 − δ1ru1αu1 (τ + 1)

≤ 0.
(2.21)

Therefore,
lim inf
k→+∞

u1(k) ≥ A2ε. (2.22)

And so,

lim inf
k→+∞

x1(k) ≥
(
A2ε

) 1
δ1
.

Setting ε→ 0, then

lim inf
k→+∞

x1(k) ≥
1

2

(
A2

) 1
δ1 def

= m1. (2.23)

where

A2 = A1 exp

[
δ1r

l
1K

l
1 − δ1H∗1u∗1

]

A1 =
rl1K

l
1

ru1
exp

{
δ1

[
rl1K

l
1 − ru1 (M1)

δ1
]
τ
}
.

(2.24)

Similarly to the analysis of (2.11)-(2.24), by applying (2.9),
from the second equation of system (1.1), we also have that

lim inf
k→+∞

x2(k) ≥
1

2

(
B2

) 1
δ2 def

= m2 > 0, (2.25)

where

B2 = B1 exp

[
δ2r

l
2K

l
2 − δ2H2u

∗
2

]

B1 = =
rl2K

l
2

ru2
exp

{
δ2

[
rl2K

l
2 − ru2 (M2)

δ2
]
τ
}

H∗1 = ru1 exp
{
− δ1

[
rl1K

l
1 − ru1M

δ1
1

]
τ
}

H2 = ru2 exp
{
− δ2

[
rl2K

l
2 − ru2 (M2)

δ2
]
τ
}
,

u∗2 =
1

rl2δ2
exp

{
δ2r

u
2α

u
2 (τ + 1)− 1

}
.

(2.26)
(2.8), (2.9) (2.23) and (2.26) show that system (1.1) is
permanent. The proof of the Theorem 1.1 is completed.

Proof of the Theorem 1.2. Let (x1(k), x2(k)) be any
positive solution of system (1.1) with initial condition (1.2).
Similar to the analysis of (2.1)-(2.8), (2.11)-(2.23), we can
obtain

m1 ≤ lim inf
k→+∞

x1(k) ≤ lim sup
k→+∞

x1(k) ≤M1. (2.27)

From (H), there exists a small enough positive constant ε
such that

rl2K
l
2

1 + (M1 + ε)β2
+ ru2α

u
1 < 0. (2.28)

From (2.27), for above ε, there exists a N2 > 0 such that
for k > N2,

x1(k) < M1 + ε. (2.29)

Substituting (2.29) into the second equation of system (1.1),
for k ≥ N2 + τ , it follows that

x2(k + 1)

= x2(k) exp
{
r2(k)

[K2(k) + α2(k)x
β2

1 (k − τ1(k))
1 + xβ2

1 (k − τ1(k))

−xδ22 (k − σ2(k))
]}

≤ x2(k) exp
{
r2(k)

[ K2(k)

1 + xβ2

1 (k − τ1(k))
+ α2(k)

]}

≤ x2(k) exp
{ rl2K

l
2

1 + (M1 + ε)β2
+ ru2α

u
2

}
.

(2.30)
For condition (2.28), there exists small enough positive γ >
0, such that

rl2K
l
2

1 + (M1 + ε)β2
+ ru2α

u
2 < −γ < 0. (2.31)

Substituting (2.31)to (2.30), for all k ≥ N2 + τ , it follows

x2(k + 1) ≤ x2(k) exp{−γ}. (2.32)

Therefore,

x2(k+1) < x2(N2 + τ) exp
{
− [k− (N2 + τ)]γ

}
, (2.33)
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which yields

lim
k→+∞

x2(k) = 0. (2.34)

The proof of the Theorem 1.2 is completed.

Proof of the Theorem 1.3. Let (x1(k), x2(k)) be any
positive solution of system (1.1) with initial condition (1.2).
Let (x1(k), x2(k)) be any positive solution of system (1.1)
with initial condition (1.2). Similar to the analysis of (2.1)-
(2.24), we can obtain

m1 ≤ lim inf
k→+∞

x1(k) ≤ lim sup
k→+∞

x1(k) ≤M1

lim sup
k→+∞

x2(k) ≤ M2.
(2.35)

From (F ), there exists a small enough positive constant ε,
such that

Kl
2 + αl2(m1 − ε)β2

1 + (m1 − ε)β2
> 0. (2.36)

From (2.35) for above ε, there exists a N3 > 0, such that
for k > N3

x1(k) > m1 − ε, x2(k) < M2 + ε. (2.37)

Substituting (2.37) into the second equation of system (1.1),
for k ≥ N3 + τ , it follows that

x2(k + 1)

= x2(k) exp
{
r2(k)

[K2(k) + α2(k)x
β2

1 (k − τ1(k))
1 + xβ2

1 (k − τ1(k))

−xδ22 (k − σ2(k))
]}

≥ x2(k) exp
{rl2[Kl

2 + αl2(m1 − ε)β2 ]

1 + (m1 − ε)β2
− ru2 (M2 + ε)δ1

}
.

(2.38)

By using (2.38) we obtain

x2(k − σ2(k)) ≤ x2(k) exp
{
−
[
rl2
Kl

2 + αl2(m1 − ε)β2

1 + (m1 − ε)β2

−ru2 (M2 + ε)δ2
]
τ
}
.

(2.39)

Substituting (2.39) into the second equation of system
(1.1), for k ≥ N3 + τ , it follows that

x2(k + 1) ≥ x2(k) exp

{
rl2[K

l
2 + αl2(m1 − ε)β2 ]

1 + (m1 − ε)β2

− H3x
δ2
2 (k)

}
,

(2.40)

where

H3 = ru2 exp
{
−δ2

[
rl2
Kl

2 + αl2(m1 − ε)β2

1 + (m1 − ε)β2
−ru2 (M2+ε)

δ2
]
τ
}
,

and so

xδ22 (k + 1) ≥ xδ22 (k) exp

{
δ2r

l
2[K

l
2 + αl2(m1 − ε)β2 ]

1 + (m1 − ε)β2

− δ2H3x
δ2
2 (k)

}
,

(2.41)
. Set

u2(k) = xδ22 (k), (2.42)

then,

u2(k + 1) ≥ u1(k) exp

{
δ2r

l
2[K

l
2 + αl2(m1 − ε)β2 ]

1 + (m1 − ε)β2

− δ2H3u2(k)

}
.

(2.43)
According to (2.9), we have

lim sup
k→+∞

u2(k) ≤
1

rl2δ2
exp

{
δ2r

u
2α

u
2 (τ + 1)− 1

}
= u∗2.

(2.44)
Thus, as a direct corollary of Lemma 2.2, according to

(2.43) and (2.44), one has

lim inf
k→+∞

u2(k) ≥ min
{
C1ε, C2ε

}
, (2.45)

where

C1ε =
rl2[K

l
2 + αl2(m1 − ε)β2 ]

ru2 [1 +m1 − ε]β2
exp

{
δ2[

rl2
Kl

2 + αl2(m1 − ε)β2

1 + (m1 − ε)β2

− ru2 (M2 + ε)δ2
]
τ
}
,

(2.46)

C2ε = C1ε exp

{
δ2r

l
2[K

l
2 + αl2(m1 − ε)β2 ]

1 + (m1 − ε)β2

− δ2H3u
∗
2

}
.

(2.47)

And so

lim inf
k→+∞

x2(k) ≥ min
{(
C1ε

) 1
δ1
, C2ε

) 1
δ2
}
.

Setting ε→ 0, then

lim inf
k→+∞

x2(k) ≥
1

2
min

{(
C1

) 1
δ1
,
(
C2

) 1
δ1
}

def
= m3.

(2.48)
where

C2 = C1 exp

{
δ2r

l
2[K

l
2 + αl2m

β2

1 ]

1 +mβ2

1

− δ2H∗3u∗2

}

C1 =
rl2(K

l
2 + αl2m

β2

1 )

ru2 (1 +mβ2

1 )
exp

{
δ2

[rl2(Kl
2 + αl2m

β2

1 )

1 +mβ2

1

− ru2M
δ2
2

]
τ
}
,

(2.49)
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where

H∗3 = ru2 exp
{
−δ2

[
rl2
Kl

2 + αl2m
β2

1

1 +mβ2

1

−ru2M
δ2
2

]
τ
}
. (2.50)

(2.35), (2.49) and (2.50) show that system (1.1) is perma-
nent. The proof of the Theorem 1.3 is completed.

III. DISCUSSION

In this paper, we proposed the nonlinear discrete cooper-
ative system (1.1), which can be seen as the generalization
of the model (1.2). Under the assumption (A), we show that
system (1.1) is permanent, the result generalize the main
result of Chen [2]. Also, it bring to our attention that in
the nature, many species could not be survival without the
help of the other species, this motivated us to study the
dynamic behaviors of the system (1.1) under the assumption
(B). By developing some new analysis technique, we finally
obtain sufficient conditions which ensure the partial survival
or permanence of the system.
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