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Abstract—This paper is concerned with the parameter es-
timation problem for partially observed mean-reversion type
stochastic systems. The Girsanov transformation is used to
simplify the equation because of the expression of the drift
coefficient. The suboptimal estimation of the state is obtained by
constructing the extended Kalman filtering equation. The like-
lihood function is provided based on state estimation equation.
The strong consistency of the estimator is proved by applying
maximal inequality for martingales, Borel-Cantelli lemma and
uniform ergodic theorem. An example is given to verify the
effectiveness of the estimation methods.

Index Terms—Mean-reversion type stochastic systems, par-
tially observed stochastic systems, Girsanov transformation,
state estimation equation, parameter estimation, strong con-
sistency.

I. INTRODUCTION

Stochastic systems have been widely used in many appli-
cation areas such as social, physics, physical, engineering
and life sciences.( [3], [4]). Recently, stochastic systems
have been applied to describe the dynamics of a financial
asset, asset portfolio and term structure of interest rates,
such as Black-Scholes option pricing model ( [5]), Va-
sicek and Cox-Ingersoll-Ross mean-reversion type models (
[7], [8], [25]), Chan-Karloyi-Longstaff-Sanders model ( [9])
and Ait-Sahalia model( [1]). Some parameters in stochastic
models describe the related assets dynamic, however, these
parameters are always unknown. In the past few decades,
some authors studied the parameter estimation problem for
economic models. For example, Yu and Phillips( [30]) used
Gaussian approach to study the parameter estimation for
continuous-time short-term interest rates model, Overback
and Rydén( [20]), Rossi( [23]), Wei et al.( [27]) investigated
the parameter estimation problem for Cox-Ingersoll-Ross
model by applying the maximum likelihood method, least-
square method and Gaussian method respectively. Moreover,
some methods have been used to estimate the parameters
in general nonlinear stochastic differential equation. For
instance, Bayes estimation( [6], [14], [21]), maximum like-
lihood estimation( [2], [28], [29]), least-square estimation(
[17]), minimum contrast estimation( [13]) and M-estimation(
[24]).

In practice, the state of stochastic systems can not be
observed completely. Some authors studied the state esti-
mation problem for stochastic systems by using Kalman
filtering or extend Kalman filtering( [12], [16], [18], [26]).
Furthermore, sometimes the parameters and states of a s-
tochastic system are unknown at the same time. Therefore,
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the parameter estimation and state estimation needed to
be solved simultaneously. In recent years, some authors
investigated the parameter estimation problem for partially
observed linear stochastic systems. For example, Deck and
Theting( [10]) used Kalman filtering and Bayes method to
study the linear homogenous stochastic systems. Kan et al.(
[11]) discussed the linear nonhomogenous stochastic systems
based on the methods used in ( [10]). Mbalawata et al. [19]
applied Kalman filtering and maximum likelihood estimation
to investigate the parameter and state estimation for linear
stochastic systems. However, the asymptotic property of the
parameter estimator has not been discussed in ( [19]), and in (
[10], [11]), only drift parameter estimation has been studied.

In this paper, the parameter estimation problem for par-
tially observed mean-reversion type stochastic systems is
investigated. This topic has not been studied in the past
literatures. Firstly, The Girsanov theorem has been used to
simplify the drift coefficient of the stochastic systems and a
new family of probability measures has been indexed. Then,
the suboptimal estimation of the state has been obtained by
constructing the extended Kalman filtering equation, both
drift and diffusion item of the state estimation equation
have the unknown parameter. The likelihood function has
been provided based on state estimation equation. Finally,
The strong consistency of the estimator has been proved by
applying maximal inequality for martingales, Borel-Cantelli
lemma and uniform ergodic theorem.

This paper is organized as follows. In Section 2, the drift
coefficient of the stochastic systems is simplified and a new
family of probability measures is indexed, the suboptimal
estimation of the state is obtained. In Section 3, the likelihood
function is given and the strong consistency of the estimator
is proved. An example is given in Section 4. The conclusion
is given in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, the parameter estimation problem for par-
tially observed mean-reversion type stochastic system is
investigated. The stochastic system is described as follows:{
dXt =(α+ µ(Xt))f(Xt, θ)dt+ g(Xt)dWt X0 ∼ uθ,
dYt =Xtdt+ dVt Y0 = Y0,

(1)

where θ is an unknown parameter, α is a constant, µ(x, ε) ∈
R is twice differentiable with respect to x, (Wt, t ≥ 0) and
(Vt, t ≥ 0) are independent Wiener processes defined on
a complete probability space (Ω,F , P), Xt is ergodic, uθ
is the invariant measure, {Yt} is observable while {Xt} is
unobservable.

Because of the complexity of Equation 1, the Girsanov
transformation will be used to simplify the drift coefficient.
From now on the work is under the assumptions below.
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Assumption 1: |f(x, θ) − f(y, θ)| + |g(x) − g(y)| ≤
K(θ)|x− y|, sup{K(θ)} <∞, θ ∈ Θ, x, y ∈ R.

Assumption 2: |µ(x, ε)f(x, θ)−µ(y, ε)f(y, θ)| ≤ K3|x−
y|, K3 is a positive constant, ε ∈ (0, 1].

Assumption 3: |f(x, s)| ≤ h(x),E[h(X0)]2 <
∞,E[g(X0)]2 <∞, s ∈ I(θ).

Assumption 4: E[f(X0, θ)(f(X0, θ0) − 1
2f(X0, θ))] has

the unique maximal value at θ = θ0, where θ0 is the true
parameter and m is a constant.

Firstly, we introduce the Girsanov theorem below.
Lemma 1: [15] Let Y (t) be an Itô process of the form

dY (t) = a(t, ω)dt+ dB(t); t ≤ T,

where T ≤ ∞ is a given constant and B(t) is Brownian
motion. Put

Mt = exp(−
∫ t

0

a(s, ω)dBs −
1

2

∫ t

0

a2(s, ω)ds); t ≤ T.

Assume that a(s, ω) satisfies Novikov’s condition

E[exp(
1

2

∫ T

0

a2(s, ω)ds)] <∞,

where E is the expectation with respect to P . Define the
measure Q on (Ω,FT ) by

dQ(ω) = MT dP (ω).

Then Y (t) is a Brownian motion with respect to the
probability law Q, for t ≤ T .

According to the Girsanov theorem, Equation 1 could be
written as

dXt = ((α+µ(Xt))f(Xt, θ)+g(Xt)m(Xt))dt+g(Xt)dW̃t,
(2)

where m(Xt) satisfies the Novikov condition, W̃t = Wt −∫ t
0
m(Xs)ds is an {Ft}t∈[0,1]-Brownian motion under the

probability Qt.
Let

µ(x)f(x, θ) + g(x)m(x) = 0,

hence
µ(Xt)f(Xt,θ) + g(Xt)m(Xt) = 0.

Therefore, Equation 2 becomes

dXt = αf(Xt, θ)dt+ g(Xt)dW̃t. (3)

Now we consider the parameter estimation for the follow-
ing stochastic system:{

dXt =αf(Xt, θ)dt+ g(Xt)dW̃t X0 ∼ uθ,
dYt =Xtdt+ dVt Y0 = Y0.

(4)

The likelihood function can not be given directly due to
the unobservability of {Xt}. Therefore, we should estimate
{Xt} firstly.

The state estimator is designed as follows:{
dX̂t =αf(X̂t, θ)dt+Kt(dYt − X̂tdt)

X̂0 =X0.
(5)

According to (1) and (5), one has

d(Xt − X̂t)

= (αf(Xt, θ)− αf(X̂t, θ)−Kt(Xt − X̂t))dt

+ g(Xt)dW̃t −KtdVt. (6)

From Itô lemma and (6), it can be checked that

d(Xt − X̂t)
2

= 2(Xt − X̂t)(αf(Xt, θ)− αf(X̂t, θ)

−Kt(Xt − X̂t))dt

+ 2(Xt − X̂t)(g(Xt)dW̃t −KtdVt)

+(g2(Xt) +K2
t )dt

= [2(Xt − X̂t)(αf(Xt, θ)− αf(X̂t, θ))

−2Kt(Xt − X̂t)
2 + g2(Xt) +K2

t ]dt

+ 2(Xt − X̂t)(g(Xt)dW̃t −KtdVt). (7)

Taking expectation from both sides of (7), we obtain that

dE(Xt − X̂t)
2

= [2E(Xt − X̂t)(αf(Xt, θ)− αf(X̂t, θ))

−2KtE(Xt − X̂t)
2 + E(g2(Xt)) +K2

t ]dt

= [K2
t − 2KtE(Xt − X̂t)

2 + E(g2(Xt))

+2E(Xt − X̂t)(αf(Xt, θ)− αf(X̂t, θ))]dt

= [(Kt − E(Xt − X̂t)
2)2 − (E(Xt − X̂t)

2)2

+E(g2(Xt))]dt

+ 2E(Xt − X̂t)(αf(Xt, θ)− αf(X̂t, θ))dt

≥ [−(E(Xt − X̂t)
2)2 + E(g2(X0)) + 2E(Xt − X̂t)

(αf(Xt, θ)− αf(X̂t, θ))]dt. (8)

Therefore, when Kt = E(Xt−X̂t)
2, (8) has the minimum

value

dE(Xt − X̂t)
2

= [−(E(Xt − X̂t)
2)2 + E(g2(X0))

+2E(Xt − X̂t)(αf(Xt, θ)− αf(X̂t, θ))]dt.

From the Assumption (1), one has

[−(E(Xt − X̂t)
2)2

+E(g2(X0)) + 2E(Xt − X̂t)

(αf(Xt, θ)− αf(X̂t, θ))]dt

≤ [−(E(Xt − X̂t)
2)2 + E(g2(X0))

+2K(θ)αE(Xt − X̂t)
2]dt.

Since f(Xt, θ) is nonlinear, we can not obtain the optimal
state estimation of Xt, the suboptimal state estimation is
considered.

Considering the equation

dE(Xt − X̂t)
2

= (2K(θ)αE(Xt − X̂t)
2 − (E(Xt − X̂t)

2)2

+E(g2(X0)))dt.

Let

E(Xt − X̂t)
2 = γt, E(g2(X0))) = m, (9)

one has
dγt = (2K(θ)αγt − γ2t +m)dt. (10)

It is easy to check that

γt =
(
√
K2(θ)α2 +m+K(θ)α)(m− e−2t

√
K2(θ)α2+m)

m+ (
K(θ)α+

√
K2(θ)α2+m√

K2(θ)α2+m−K(θ)α
)e−2t

√
K2(θ)α2+m

.

(11)
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Then, we obtain that

γt → K(θ)α+
√
K2(θ)α2 +m = γ(θ). (12)

Therefore, it is obvious that{
dX̂t =αf(X̂t, θ)dt+ γt(dYt − X̂tdt),

X̂0 =X0.
(13)

Let
dV ∗t = dYt − X̂tdt, (14)

where (V ∗t , t ≥ 0) is assumed as standard Wiener processes
defined on complete probability space (Ω,F ,P).

Hence, {
dX̂t =αf(X̂t, θ)dt+ γtdV

∗
t

X̂0 =X0.
(15)

It is assumed that the system (15) reaches the steady state,
which means that{

dX̂t =αf(X̂t, θ)dt+ γ(θ)dV ∗t

X̂0 =X0.
(16)

In summary, the suboptimal state estimation equation of
Xt is (16).

Remark 1: System (15) reaches the steady state means
that the Riccatti equation satisfies dγt

dt = 0. Hence, we obtain
γt=γ(θ).

Remark 2: In (16), both drift item and diffusion item have
the parameter. Thus, it is difficult to discuss the asymptotic
property of the estimator. In the next section, the problem is
solved.

III. MAIN RESULTS AND PROOFS

In the following theorem, the strong consistency of the
maximum likelihood estimator is proved by using maximal
inequality for martingales, Borel-Cantelli lemma and uniform
ergodic theorem.

Theorem 1: Under Assumptions 1-4, the maximum like-
lihood estimator θ̂t is strong consistent, namely

θ̂t
a.s.→ θ0.

The likelihood function has the following expression

`t(θ) =

∫ t

0

αf(X̂s, θ)

γ2(θ)
dX̂s −

1

2

∫ t

0

α2f2(X̂s, θ)

γ2(θ)
ds. (17)

Since θ0 is the true parameter, from (16), (17) can be
written as

`t(θ)

=

∫ t

0

αf(X̂s, θ)

γ2(θ)
(αf(X̂s, θ0)ds+ γ(θ0)dV ∗s )

−1

2

∫ t

0

α2f2(X̂s, θ)

γ2(θ)
ds

=

∫ t

0

α2f(X̂s, θ)f(X̂s, θ0)

γ2(θ)
ds

+

∫ t

0

αf(X̂s, θ)γ(θ0)

γ2(θ)
dV ∗s −

1

2

∫ t

0

α2f2(X̂s, θ)

γ2(θ)
ds

= α2

∫ t

0

f(X̂s, θ)[f(X̂s, θ0)− 1
2f(X̂s, θ)]

γ2(θ)
ds

+

∫ t

0

αf(X̂s, θ)γ(θ0)

γ2(θ)
dV ∗s .

By applying the uniform ergodic theorem, one has

1

t

∫ t

0

f(X̂s, θ)[f(X̂s, θ0)− 1
2f(X̂s, θ)]

γ2(θ)
ds

a.s.→ E[
f(X̂0, θ)[f(X̂0, θ0)− 1

2f(X̂0, θ)]

γ2(θ)
]

= E[
f(X0, θ)[f(X0, θ0)− 1

2f(X0, θ)]

γ2(θ)
].

By using the maximal inequality for martingales, it can be
checked that

Pθ( sup
0<t≤t0

|
∫ t

0

f(X̂s, θ)dV
∗
s | > ε)

≤
Eθ(

∫ t0
0
f(X̂s, θ)dV

∗
s )2

ε2

=
t0Eθ(f(X̂0, θ))

2

ε2

=
t0Eθ(f(X0, θ))

2

ε2
.

Let

Bn = { sup
2n−1<t<2n

sup
θ
|
∫ t

0

f(X̂s, θ)dV
∗
s | > 2

n
2 nα}, (18)

where n ≥ 1, α > 1
2 .

Then,

Pθ(Bn)

= Pθ( sup
0<t<2n−1

sup
θ
|
∫ t

0

f(X̂s, θ)dV
∗
s | > 2

n
2 nα)

≤ 2n−1Eθ(f(X̂s, θ))
2

2nn2α

=
Eθ(f(X̂0, θ))

2

2

1

n2α

=
Eθ(f(X0, θ))

2

2

1

n2α
.

Thus, it is easy to check that

Σ∞n=1Pθ(Bn) <∞. (19)

According to Borel-Cantelli lemma, one has

Pθ(lim sup
n→∞

Bn) = 0. (20)

As 2n−1 < t < 2n, it follows that

2
n
2 < 2

1
2 t

1
2 , (21)

and
nα < (ln t)α(

1

ln t
+

1

ln 2
)α. (22)

Therefore, when t is large enough,

lim sup
t→∞

sup
θ

|
∫ t
0
f(X̂s, θ)dV

∗
s |

t
1
2 (ln t)α

< 2
1
2 (

1

ln 2
)α a.s. (23)

sup
θ
|1
t

∫ t

0

f(X̂s, θ)dV
∗
s | <

(ln t)α

t
1
2

2
1
2 (

1

ln 2
)α, (24)

with probability one.
Since

(ln t)α

t
1
2

→ 0, (25)
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we obtain that

sup
θ
|1
t

∫ t

0

f(X̂s, θ)dV
∗
s |

a.s.→ 0. (26)

As

|1
t

∫ t

0

f(X̂s, θ)dV
∗
s | ≤ sup

θ
|1
t

∫ t

0

f(X̂s, θ)dV
∗
s |, (27)

one has
1

t

∫ t

0

f(X̂s, θ)dV
∗
s
a.s.→ 0. (28)

Form the above results, it follows that

1

t
`t(θ)

a.s.→ α2E[
f(X0, θ)[f(X0, θ0)− 1

2f(X0, θ)]

γ2(θ)
]. (29)

Therefore, it can be checked that

θ̂t
a.s.→ θ0. (30)

Remark 3: When the stochastic system is observed dis-
cretely, the approximate likelihood function can be written
as

`n(θ) =
n∑
i=1

f(X̂ti−1 , θ)

γ2(θ)
(X̂ti−X̂ti−1

)−∆

2

n∑
i=1

f2(X̂ti−1 , θ)

γ2(θ)
.

(31)
The following lemmas are useful to derive our results.
Lemma 2: Assume that {X̂t} is a solution of the stochas-

tic differential equation (15). Then, for any integer n ≥ 1
and 0 ≤ s ≤ t,

E|X̂t − X̂s|2p = O(|t− s|p).

Proof: Suppose θ0 is the true parameter value, by
applying Holder’s inequality, it follows that

|X̂t − X̂s|2p

= |
∫ t

s

f(X̂u, θ0)du+ γ(θ0)

∫ t

s

dV ∗u |2p

≤ 22p−1(|
∫ t

s

f(X̂u, θ0)du|2p + (γ(θ0))2p|
∫ t

s

dV ∗u |2p)

≤ 22p−1((t− s)2p−1∫ t

s

|f(X̂u, θ0)|2pdu+ (γ(θ0))2p|
∫ t

s

dV ∗u |2p)

Since

|f(X̂u, θ0)|2p ≤ K1(θ0)p2p−1(1 + |X̂u|2p), (32)

from Assumption 4 together with the stationarity of the
process, one has

E[

∫ t

s

|f(X̂u, θ0)|2pdu] = O(|t− s|). (33)

From Burkholder-Davis-Gundy inequality, it can be
checked that

E[|
∫ t

s

dV ∗u |2p] ≤ CpE|
∫ t

s

du|p = Cp(t− s)2p, (34)

where Cp is a positive constant depending only on p.
Then, we have

E[|
∫ t

s

dV ∗u |2p] = O(|t− s|p). (35)

From the above analysis, it follows that

E|X̂t − X̂s|2p = O(|t− s|p). (36)

The proof is complete.
Lemma 3: When ∆→ 0, one has

E|
n∑
i=1

∫ ti

ti−1

f(X̂ti−1
, θ)f(X̂s, θ0)

γ2(θ)
ds

−
n∑
i=1

f(X̂ti−1
, θ)f(X̂ti−1

, θ0)

γ2(θ)
∆| → 0.

Proof: By applying Holder’s inequality, it can be
checked that

E|
n∑
i=1

∫ ti

ti−1

f(X̂ti−1
, θ)f(X̂s, θ0)

γ2(θ)
ds

−
n∑
i=1

f(X̂ti−1
, θ)f(X̂ti−1

, θ0)

γ2(θ)
∆|

= E|
n∑
i=1

∫ ti

ti−1

f(X̂ti−1
, θ)(f(X̂s, θ0)− f(X̂ti−1

, θ0))

γ2(θ)
ds|

≤
n∑
i=1

∫ ti

ti−1

E|
f(X̂ti−1 , θ)(f(X̂s, θ0)− f(X̂ti−1 , θ0))

γ2(θ)
|ds

≤
n∑
i=1

∫ ti

ti−1

(E[
f(X̂ti−1

, θ)

γ2(θ)
]2)

1
2

(E[f(X̂s, θ0)− f(X̂ti−1 , θ0)]2)
1
2 ds.

Then, we have

E[f(X̂s, θ0)− f(X̂ti−1 , θ0)]2 = O(∆), (37)

and E[
f(X̂ti−1

,θ)

γ2(θ) ]2 is bounded.
From the above analysis, it follows that

E|
n∑
i=1

∫ ti

ti−1

f(X̂ti−1 , θ)f(X̂s, θ0)

γ2(θ)
ds

−
n∑
i=1

f(X̂ti−1
, θ)f(X̂ti−1

, θ0)

γ2(θ)
∆| → 0,

as ∆→ 0.
The proof is complete.
Theorem 2: When ∆→ 0, n→∞ and n∆→∞,

θ̂0
P→ θ0.

Proof: According to the expression of the approximate
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likelihood function and equation (1), it follows that

`n(θ)

=
n∑
i=1

f(X̂ti−1
, θ)

γ2(θ)
(

∫ ti

ti−1

f(X̂s, θ0)ds

+γ(θ0)

∫ ti

ti−1

dV ∗s )

−∆

2

n∑
i=1

f2(X̂ti−1
, θ)

γ2(θ)

=
n∑
i=1

∫ ti

ti−1

f(X̂ti−1
, θ)f(X̂s, θ0)

γ2(θ)
ds

+
n∑
i=1

∫ ti

ti−1

f(X̂ti−1
, θ)γ(θ0)

γ2(θ)
dV ∗s

−1

2

n∑
i=1

∫ ti

ti−1

f2(X̂ti−1
, θ)

γ2(θ)
ds

=
n∑
i=1

∫ ti

ti−1

f(X̂ti−1
, θ)(f(X̂s, θ0)− 1

2f(X̂ti−1
, θ))

γ2(θ)
ds

+
n∑
i=1

∫ ti

ti−1

f(X̂ti−1 , θ)γ(θ0)

γ2(θ)
dV ∗s .

Then, we have
1

n∆
`n(θ) (38)

=
1

n∆

n∑
i=1

∫ ti

ti−1

f(X̂ti−1 , θ)(f(X̂s, θ0)− 1
2f(X̂ti−1 , θ))

γ2(θ)
ds (39)

+
1

n∆

n∑
i=1

∫ ti

ti−1

f(X̂ti−1
, θ)γ(θ0)

γ2(θ)
dV ∗s .

From the martingale moment inequality, it can be checked
that

E| 1

n∆

n∑
i=1

∫ ti

ti−1

f(X̂ti−1 , θ)γ(θ0)

γ2(θ)
dV ∗s |2

≤ 1

(n∆)2
C
γ2(θ0)

γ4(θ)
E

n∑
i=1

∫ ti

ti−1

(f(X̂ti−1 , θ))
2ds

≤ 1

n∆
C1

→ 0,

where C and C1 are constants.
By applying Chebyshev inequality, it can be obtained that

1

n∆

n∑
i=1

∫ ti

ti−1

f(X̂ti−1
, θ)γ(θ0)

γ2(θ)
dV ∗s

P→ 0, (40)

when ∆→ 0, n→∞ and n∆→∞.
By the uniform ergodic theorem (see e.g. [21]), one has

1

n∆

n∑
i=1

∫ ti

ti−1

f(X̂ti−1
, θ)(f(X̂s, θ0)− 1

2f(X̂ti−1
, θ))

γ2(θ)
ds

P→ E[
f(x0, θ)(f(x0, θ0)− 1

2f(x0, θ)

γ2(θ)
],

when ∆→ 0, n→∞ and n∆→∞.

Hence, it leads to the relation that

1

n∆
`n(θ)

P→ E[
f(x0, θ)(f(x0, θ0)− 1

2f(x0, θ)

γ2(θ)
], (41)

when ∆→ 0, n→∞ and n∆→∞.
It is easy to check that

θ̂0
P→ θ0, (42)

when ∆→ 0, n→∞ and n∆→∞.
The proof is complete.
Theorem 3: When ∆ → 0, n

1
2 ∆ → 0 and n∆ → ∞ as

n→∞,
√
n∆(θ0 − θ̂0)

d→ N(0,
γ2(θ0)

E[f ′(x0, θ0)γ(θ0)− 2f(x0, θ0)γ′(θ0)]2
).

Proof: Expanding `′n(θ0) about θ̂0, it follows that

`′n(θ0) = `′n(θ̂0) + `′′n(θ̃)(θ0 − θ̂0), (43)

where θ̃ is between θ̂0 and θ0.
In view of Theorem 1, it is known that `′n(θ̂0) = 0, then

`′n(θ0) = `′′n(θ̃)(θ0 − θ̂0). (44)

From the same method used in Theorem 2, it is easy to
check that

1

n∆

n∑
i=1

∫ ti

ti−1

f ′′(X̂ti−1 , θ0)γ(θ0)− 4γ
′
(θ0)f ′(X̂ti−1 , θ0)

γ2(θ0)

dV ∗s
P→ 0,

and

1

n∆

n∑
i=1

∫ ti

ti−1

6f(X̂ti−1 , θ0)(γ
′
(θ0))2 − 2γ(θ0)γ

′′
(θ0)f(X̂ti−1 , θ0)

γ3(θ0)

dV ∗s
P→ 0.

By applying the results of Lemmas 3 and the uniform
ergodic theorem, it follows that

1

n∆

n∑
i=1

∫ ti

ti−1

f ′′(X̂ti−1
, θ0)(f(X̂s, θ0)− f(X̂ti−1

, θ0))

γ2(θ0)

ds
P→ 0,

1

n∆

n∑
i=1

∫ ti

ti−1

(f
′
(X̂ti−1

, θ0))2

γ2(θ0)
ds

P→ 1

γ2(θ0)
E[f

′
(x0, θ0)]2.

(45)
Therefore, we have

1

n∆
`′′n(θ0)

P→

E[
3(γ

′
(θ0))2 − γ2(θ0)(γ

′′
(θ0))2

γ4(θ0)

(f(x0, θ0))2 +
1

γ2(θ0)
(f
′
(x0, θ0))2].

According to the expression of `′′n(θ) and by employing
the martingale moment inequality, Chebyshev inequality, the
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uniform ergodic theorem and the dominated convergence
theorem, it follows that

1

n∆
(`′′n(θ̃)− `′′n(θ0))

P→ 0. (46)

Hence, it can be obtained that

1

n∆
`′′n(θ̃)

P→ E[
3(γ

′
(θ0))2 − γ2(θ0)(γ

′′
(θ0))2

γ4(θ0)

(f(x0, θ0))2 +
1

γ2(θ0)
(f
′
(x0, θ0))2].

Since

`′n(θ)

=
n∑
i=1

f ′(X̂ti−1
, θ)γ(θ)− 2f(X̂ti−1

, θ)γ
′
(θ)

γ3(θ)

(X̂ti − X̂ti−1
)

− ∆
n∑
i=1

f(X̂ti−1 , θ)f
′
(X̂ti−1 , θ)γ(θ)− f2(X̂ti−1 , θ)γ

′
(θ)

γ3(θ)

=
n∑
i=1

∫ ti

ti−1

f ′(X̂ti−1
, θ)(f(X̂s, θ0)− f(Xti−1

, θ))

γ2(θ)
ds

+
n∑
i=1

∫ ti

ti−1

f(X̂ti−1
, θ)γ

′
(θ)(f(Xti−1

, θ)− 2f(X̂s, θ0))

γ3(θ)
ds

+
n∑
i=1

∫ ti

ti−1

γ(θ0)
f ′(X̂ti−1

, θ)γ(θ)− 2f(X̂ti−1
, θ)γ

′
(θ)

γ3(θ)
dV ∗s ,

it follows that

1√
n∆

`′n(θ0)

=
1√
n∆

n∑
i=1

∫ ti

ti−1

f ′(X̂ti−1 , θ0)(f(X̂s, θ0)− f(Xti−1 , θ0))

γ2(θ0)
ds

+
1√
n∆

n∑
i=1

∫ ti

ti−1

f(X̂ti−1 , θ0)γ
′
(θ0)(f(Xti−1 , θ0)− 2f(X̂s, θ0))

γ3(θ0)
ds

+
1√
n∆

n∑
i=1

∫ ti

ti−1

f ′(X̂ti−1 , θ0)γ(θ0)− 2f(X̂ti−1 , θ0)γ
′
(θ0)

γ2(θ0)
dV ∗s .

From the Lemma 1 and Assumption 1, we have

E[f(X̂s, θ0)− f(X̂ti−1
, θ0)]2 = O(∆). (47)

Then, it follows that

E| 1√
n∆

n∑
i=1

∫ ti

ti−1

f ′(X̂ti−1 , θ0)(f(X̂s, θ0)− f(X̂ti−1 , θ0))

γ2(θ0)
ds| → 0,

when ∆→ 0, n
1
2 ∆→ 0 and n∆→∞ as n→∞.

By applying the Chebyshev inequality, it can be obtained
that

1√
n∆

n∑
i=1

∫ ti

ti−1

f ′(X̂ti−1 , θ0)(f(X̂s, θ0)− f(X̂ti−1 , θ0))

γ2(θ0)
ds

P→ 0.

By applying the same methods, we have

1√
n∆

n∑
i=1

∫ ti

ti−1

f(X̂ti−1 , θ)γ
′
(θ)(f(Xti−1

, θ)− 2f(X̂s, θ0))

γ3(θ)
ds

P→ 0.

It is obviously that

1√
n∆

n∑
i=1

∫ ti

ti−1

f ′(X̂ti−1
, θ0)γ(θ0)− 2f(X̂ti−1

, θ0)γ
′
(θ0)

γ2(θ0)
dV ∗s

d→

N(0,
1

γ2(θ0)
E[f

′
(x0, θ0)γ(θ0)− 2f(x0, θ0)γ

′
(θ0)]2).

Hence, we have

1√
n∆

`′n(θ0)
d→

N(0,
1

γ2(θ0)
E[f

′
(x0, θ0)γ(θ0)− 2f(x0, θ0)γ

′
(θ0)]2),

when ∆→ 0, n
1
2 ∆→ 0 and n∆→∞ as n→∞.

From the above analysis, it can be checked that
√
n∆(θ0 − θ̂0)

d→

N(0,
γ2(θ0)

E[f ′(x0, θ0)γ(θ0)− 2f(x0, θ0)γ′(θ0)]2
),

when ∆→ 0, n
1
2 ∆→ 0 and n∆→∞ as n→∞.

The proof is complete.

IV. EXAMPLE

Consider the following partially observed stochastic sys-
tems: dXt =(α+ εX−1t )θ

Xt√
1 +X2

t

dt+ εdWt X0 ∼ uθ,

dYt =Xtdt+ dVt Y0 = Y0,

where θ is an unknown parameter, α is a constant, (Wt, t ≥
0) and (Vt, t ≥ 0) are independent Wiener processes defined
on a complete probability space (Ω,F , P), Xt is ergodic, uθ
is the invariant measure, {Yt} is observable while {Xt} is
unobservable.
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Since

|θ x√
1 + x2

− θ y√
1 + y2

| ≤ 2θ|x− y|,

|εx−1θ x√
1 + x2

− εy−1θ y√
1 + y2

| ≤ εθ|x− y|,

|s x√
1 + x2

| ≤ sx, E[X0]2 <∞,

and E[θ X0√
1+X2

0

(θ0
X0√
1+X2

0

− 1
2θ

X0√
1+X2

0

)] has the unique

maximal value at θ = θ0.
It can be derived that coefficients of the stochastic system

satisfy Assumptions 1-4.
Therefore, it is easy to check that

θ̂t
a.s.→ θ0.

V. CONCLUSION

The aim of this paper is to estimate the parameter for
partially observed mean-reversion type stochastic system.
The Girsanov transformation has been used to simplify the
equation because of the expression of the drift coefficient.
The suboptimal state estimation equation has been obtained
by constructing the extended Kalman filtering equation. The
likelihood function has been given and the strong consistency
of the maximum likelihood estimator has been proved by
using maximal inequality for martingales, Borel-Cantelli
lemma and uniform ergodic theorem. Further research topics
will include the parameter estimation for partially observed
nonlinear stochastic systems driven by lévy process.
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