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Abstract—The Volterra series are widely employed to 

represent the input-output relationship of a nonlinear system. 

This representation is based on the Volterra transfer functions. 

The Volterra transfer functions are evaluated by a so-called 

harmonic probing method. In this paper the simulation of a 

stochastic resonance effect using a nonlinear device is 

discussed. Three cases are under consideration: harmonic 

input, Gaussian noise input, and sine wave plus Gaussian noise 

input. The output signal is determined by the Runge-Kutta 

method and in terms of the Volterra series. Expressions for the 

output harmonics were derived. If the Volterra transfer 

functions are known, the items of interest regarding the output 

signal can be obtained by substituting them into the general 

formulas derived from the Volterra series representation. 

These items include expressions for the output power 

spectrum. Frequency dependences of the output power spectral 

density of a non-linear stochastic filter, as well as amplitude 

characteristics are calculated and analyzed for the case of 

different parameter values of the filter. Numerical calculations 

of the output signal by the Runge-Kutta method were carried 

out to estimate the accuracy and reliability of results obtained. 

The comparative analysis has shown that the dependences of 

output signal power spectrum densities, obtained using the 

numerical calculation and Volterra series, are of the same 

character. 

 

Index Terms—stochastic resonance, power spectral density, 

Volterra series, Volterra transfer functions, white Gaussian 

noise.  

I. INTRODUCTION 

N the nonlinear systems analysis it is somewhat difficult 

to obtain explicit expressions for output signal 

characteristics. Wide prospects are offered by the analysis 

method using transfer functions, which is developed in more 

detail for linear systems. At the same time, there is an 

opportunity either to calculate the output signal spectrum, 

using a spectral analysis method, or to derive the expression 

for an output signal instant value by means of the 

convolution integral. Here it is supposed that the transfer 

function and the pulse response, being an imposing integral 

kernel, are related by the Fourier transform [1], [2]. 

Using a graphic representation of a nonlinear system, it is 

possible to separate the linear and nonlinear parts and their 

corresponding characteristics. As is shown in [3], any 

functional nonlinear system without a feedback, consisting 

of inertial linear subsystems and inertial nonlinearity, can be 

described by the Volterra series. Such systems are refer red 

to as “system with memory”. [4]. Thus, the nonlinear system 
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response can be calculated by means of the transfer 

functions basing on the Volterra series. 

The Volterra series is a type of functional series which 

relates the system input, ( )x t  [3] – [5] to the system output, 

( )y t , as: 
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where ( )y t  is the output, ( )x t  is the input, and the kernels 

 1 , ...,n ng u u
 

describe the nonlinear system. The first-

order kernel 1 1( )g u  is simply a familiar pulse response of 

the linear circuit. The higher-order kernels are the higher-

order pulse responses and serve to characterize various 

orders of nonlinearity. The coefficient 1 !n  has been 

introduced by A. Bedrosian and D. Rice [4] to simplify 

many of equations.  

Analysis of a nonlinear component of the system is based 

on the multi-dimensional Fourier transform. As is shown in 

[3], [4], the n-fold Fourier transform is described by the 

expression 
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Here 0G  is identically zero as our Volterra series starts 

with 1n   and  1 1G f  is the transfer function of the 

system’s linear part. For linear systems possible output 

frequencies are the same as the input frequencies. However, 

for the nonlinear systems, the relationship between the input 

and output frequencies is more complicated [1], [2]. 

Thus, the transform of the n th-order Volterra kernel is 

seen to be analogous to the n th -order Volterra transfer 

function. In many cases nG  can be obtained without first 

calculation of kernels  1 , ...,n ng u u .  

The complete formulas are infinite series. Fortunately, in 

the study of communication systems it is often possible to 

neglect terms of the Volterra series of the order higher then 

the second or third one. They are usually used because of 

the fast increase in the computation complexity [3], [4]. The 

n -fold Fourier transform significantly simplifies the 

solution of a large number of problems.  

To calculate the transfer functions, we use the harmonic 

input method [4]. This method is based on the fact that a 

harmonic input must result in a harmonic output when (1) 

takes place. The system under consideration in [3], [4] is 

described by the nonlinear differential equation  
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under condition that the system satisfies the causality 

principle ( ( )y t vanishes if ( )x t  is zero). We assumed that 

one and only one such solution exists (this is proved in [3]) 

and the system is stable. ( / )F d dt is a polynomial in /d dt , 

and the coefficients in ( / )F d dt  and the coefficients la  are 

independent on t, x and y. 

As is shown in [3], equation (3) has a unique solution 

for the given initial conditions. 

The Volterra transfer functions for (3) can be written as 

[4] 
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The last equation is the recurrence relation as 
( )l
nG  is 

given by 
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for the n-fold Fourier transform of the n-th kernel in the 

Volterra series for [ ( )]ly t , l  being a positive integer, and 

1 l n  . ( )
1( , ..., )l

n nG f f is zero for l n  and 

( )
1( , ..., )n

n nG f f  equals to 1 1 1 2 1! ( ) ( )... ( )nn G f G f G f .  

It is usual to regard the noise in the system as a negative 

factor and so the noise abatement is a problem of current 

importance for radio systems. Low-noise devices and 

methods for noise immunity increase, noise-proof codes and 

digital communication signals with necessary correlation 

properties are developed. However, the research conducted 

recently in the field of theoretical and experimental physics 

has shown that in some cases a weak input signal can be 

amplified and optimized with the assistance of noise [6] – 

[8]. The integral characteristics of the process at the system 

output, such as the spectral power amplification, the signal-

to-noise ratio (SNR) contains a peak at a certain optimal 

noise level.  

The notion of a stochastic resonance (SR) defines a group 

of phenomena where the nonlinear system response to a 

weak input signal can be significantly increased by 

appropriate tuning of the noise intensity. SR refers to a 

generic physical phenomenon typical for nonlinear systems.  

A weak input signal significantly increases with noise 

intensity increasing and reaches its maximum at a certain 

noise level in the nonlinear systems where SR occurs. 

Let us consider a nonlinear system which can be 

described by the following stochastic differential equation 

[6], [7] 

3( ) ( ) ( )
dy

ay t by t x t
dt

   ,                 (4) 

where a and b are positive, usually given in terms of system 

parameters, ( ) ( ) ( )x t s t n t  , 0( ) sin(2 )s t A f t    is the 

driving signal, ( )n t  is the input noise. The input signal 

consists of the driving signal ( )s t  and the additive white 

Gaussian noise ( )n t  [6], [8]. This equation describes a 

stochastic resonance effect (SR) [6] – [8]. The Volterra 

transfer functions for ( )y t  are given in Table I for the 

general case (equation 3) and for the SR equation (equation 

4). 

The solution of the nonlinear equation can be obtained 

in terms of the Volterra transfer functions without 

calculation, firstly, of kernels  1 , ...,n ng u u .  

II. SINUSOIDAL INPUT 

If there is no noise, the input signal can be written as 

0( ) ( ) sin(2 )x t s t A f t    . We solve the SR equation 

for this case. The leading terms of the output signal are 

given in Table II. 

We calculate the output signal of the non-linear system 

by the Runge-Kutta method and by the Volterra series. The 

calculation results are given in Fig. 1 for 1A  , 0 0.5f   

Hz.  

Results from Fig.1 show that the numerical calculation 

by the Runge-Kutta method has a transient having duration 

of about two signal periods. Further the output signals 

calculation results obtained by the both methods are 

coinciding. 

Let us determine the power spectral density (PSD) of the 

output signal. The powers of the first and third harmonics 

are given in Table III. 

Results in Table III show that the PSD of the output 

signal decreases drastically with its frequency increasing. 

The third harmonic also increases sharply with sine signal 

amplitude increasing, that is a negative factor. Therefore, to 

obtain the powerful output signal, the input sine wave 

amplitude, as well as its frequency, should be low. 

III. GAUSSIAN NOISE INPUT 

In the following the input signal ( )x t  is a zero-mean 

stationary Gaussian process with a two-sided power 

spectrum, ( )IW f . The output signal ( )y t  is a stationary 

process, and the ensemble average [ ( )]iy t  and associated 

cumulants ik  do not change with t .  

The leading terms for the 2d moment of ( )y t  are given in 

Table IV, where the first column contains the common 

expressions obtained in [4] and the second column contains 

 
Fig. 1.  The output signal in the case of a sinusoidal input signal obtained 

by different methods: Volterra series (solid line); Runge-Kutta method 

(dotted line)  
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the SR calculation results. 

The result can be written as 
2 3

2

2 3

/ 2 3 / 4 ,  if 0,
( )

/ 2 3 / 4 ,  if 0.
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I I
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. 

Using the Volterra transfer functions, we determine the 

two-sided power spectrum of the output signal ( )yW f . The 

leading terms in the series for the two-sided power spectrum 

( )yW f  of ( )y t  are shown in Table V. 

The components of the double-sided power spectrum of 

the output signal for the initial values n  are 
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Using this formula, we construct a graph of the power 

spectral density (PSD) output signal and compare it with 

the numerical calculation by the Runge-Kutta method (Fig. 

2). 

The graphs are similar: the output signal PSD of a 

stochastic nonlinear filter decreases with its frequency 

increasing, that is characteristic for the nonlinear systems 

[1], [2]. 

IV. SINE WAVE PLUS NOISE INPUT 

In the following ( ) cos ( )x t A t n t  , where ( )n t  is a 

zero-mean stationary Gaussian process with the two-sided 

power spectrum ( )IW f . 
The ensemble average of ( )x t  at time t is 

( ) cosx t A t . Similarly, the ensemble average of ( )y t  

consists of a sum of sinusoidal harmonics of cos t . The 

leading terms of the expression for ( )y t  are shown in 

Table VI. 

If ( )n t  is identically zero, ( )IW f  is zero, and Table VI 

reduces to Table IV if ( ) cosx t A t . If 0A  , Table VI 

reduces to Table V if ( )x t  is a Gaussian noise. 

 

It is possible to study the influence of the PSD noise, 

sine wave amplitude and system parameters on the output 

signal. 

Having summed up components PSD of the output signal, 

we will get a resultant power at the stochastic filter output 

(Fig. 3). 

The spectral power density curve, which is characteristic 

for nonlinear systems [9], drastically falls with frequency 

increasing. Since ω = 4 Gz the value of spectral power 

density is almost equal to 0. 

CONCLUSIONS 

The Volterra series is a powerful tool that can be used to 

describe a wide class of nonlinear systems. In this paper to 

develop algorithms we have applied the Volterra series for 

nonlinear stochastic filter analysis. 

The Volterra transfer functions for a nonlinear stochastic 

filter were determined. The solution of the nonlinear 

equation can be obtained in terms of the Volterra transfer 

functions without calculation of kernels. 

Three cases were considered: sinusoidal input, Gaussian 

noise input, and sine wave plus Gaussian noise input. 

The sinusoidal input investigation results show the 

following: 

- in the numerical calculation by the Runge-Kutta 

method a transient takes place during about two signal 

periods. Further the output signal calculation results, 

obtained using the both means (numerical calculation by the 

Runge-Kutta method and Volterra series) are coinciding. 

- the output signal PSD decreases drastically with its 

frequency increasing. The third harmonic also increases 

sharply with sine amplitude increasing that is a negative 

factor. 

The Gaussian noise input investigation results show the 

following: 

- the graphs of the PSD output signal (numerical 

calculation by the Runge-Kutta method and Volterra series) 

are of the same character, the output signal PSD of the 

stochastic nonlinear filter decreases with its frequency 

increasing, that is a feature of nonlinear systems. 

The expressions for the PSD output signal of the sine 

wave plus Gaussian noise input are derived. We expected 

that they can be applied for studying the influence of the 

PSD noise, sine wave amplitude and system parameters.  

 
Fig. 2. The output signal PSD in the case of a sinusoidal input obtained 

by different methods: Volterra series (black line); Runge-Kutta method 

(blue line), 1a b    

 
Fig. 3.  The power spectral density of an output signal for different values 

of input noise power ( 1A  ; 1IW  ; 0 1  ) 
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APPENDIX 

TABLE I 

VOLTERRA TRANSFER FUNCTIONS 

 Volterra transfer functions  for (3) [2] Volterra transfer functions  for (5) 
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TABLE II 

THE  LEADING TERMS OF THE OUTPUT SIGNAL 
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TABLE III 

THE  PSD  OF THE OUTPUT SIGNAL 

 The  PSD of the output signal for . (3) [2] The  PSD of the output signal for .( 4) 

0
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TABLE IV 

THE  LEADING TERMS FOR THE 2TH MOMENT OF ( )y t  
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TABLE V 

THE  LEADING TERM OF THE TWO-SIDED POWER SPECTRUM OF THE OUTPUT SIGNAL. 

The leading terms  of the two-sided power spectrum of the output 

signal 

 for (3) [2] 

The leading terms  of the two-sided 

power spectrum of the output signal 
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where ( )y t  is the dc component of ( )y t  and ( )f  is the unit impulse function 

 

TABLE VI 

LEADING TERMS OF THE OUTPUT POWER SPECTRUM OF THE STOCHASTIC NONLINEAR FILTER 

Leading terms of the output power 

spectrum ( )YW f [2] 
Leading terms of the output power spectrum for SR 
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