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Abstract—With the prompt growth of distributed systems
architectures, in particularly cloud computing, the authenti-
cation policy has becomes a crucial element for distributed
communication. To ensure a secure access to data, numerous
schemes have been designed to prevent listening, dictionary and
intrusion attacks into stored password lists. These approaches
remain relatively weak in terms of computer security; thus, they
have defects on mutual authentication and they try to overcome
their existing vulnerability.

Our goal in this paper, is to enhance security in distributed
systems, without affecting its performance. For this reason, we
propose a new secure mutual authentication architecture for
distributed systems, based on secure cryptographic primitives at
the three communication entities involved (client, authentication
server and n-servers of services), a consistent analysis regarding
the complexity of our approach has been demonstrated with
the BAN logic. It’s composed of three main consists phases
namely: 1)registration phase for secure exchange of authen-
tication parameters, 2)communication phase aims to ensure
mutual authentication of the three actors, based on secure
cryptographic primitives and function (S2KExS) for key
generation and 3)renewal phase to update the authentication
parameters.

Index Terms—Distributed-systems, authentication-policy,
computer-security, cryptographic-primitives, mutual-
authentication.

I. INTRODUCTION

THE present invention relates to new architectures such
as distributed systems and cloud computing which treats

a big data mass and ensures transparency for its users [1].
It can be divided into three layers related to security re-
quirements: confidentiality [2], authentication [3] and access
control [4], [5]. In practice, the trend of the proposed security
protocols migrates to authentication without sending the
password [6], [7], [8], [9] in a client/server environment, it
appears in several techniques like cryptographic primitives
[7], [10], the use of shared encryption keys between different
actors [11], authentication by physical primitives such as
smart card [12], [13] or biometrics [14], [10] or Electronic
Records [15]. The main objective is to ensure a trustworthy
exchange of the authentication parameters for each client
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(often its ID and password) at the server side, this requires
a higher measures for the adoption of a communication
channel and the storage of these parameters [2], [5], [16]
during the registration phase. All these results show us that
the authentication protocols without sending the password
face several attacks such as brute force or man in the middle
[6], [17], [9] and expose the robustness of these protocol.
We mention some protocols like SSO, Kerberos and Timely
authentication which are still the most used in practice by
several companies and functional, compared to the different
existing protocols. In our approach, we propose an authenti-
cation protocol by integrating an authentication server, that
guarantees on one hand the management exchange of the
encryption keys and on the other hand, a strong mutual
authentication. This protocol is structured of three phases, as
follow: The registration phase to exchange the authentication
parameters based on a pseudo-random regenerator [18] for
each user and per session to reinforce the password, and on a
hash function. The communication phase guarantees a strong
mutual authentication by the authentication server in both the
client and server of the services side; by using the keys gen-
erations function (S2KExS)[19], [8] and the dynamic salt
regenerator(RGSCG)[18] to guarantee non-traceable keys;
and to narrow the message lifespan by using tickets principle.
The renewal phase firstly requires the client authentication
then the settings update. This phase is recommended after the
registration phase for more securing communication channel
by the use of associated session encryption keys.

II. RELATED WORK

With the extended use of distributed computer networks,
it has become common to provide various accesses to users
in several network services offered by distributed services
providers. From the IT security view, the challenge for
distributed systems is not only to support several security
policies [4], [20], [21], [22]; but also the interaction between
those different policies[23], [21]. However, the protection of
such systems is a complex issue: indeed, in which entities
of the system can we have confidence, and given this confi-
dence, how to ensure the protection of the global system? As
a result, user authentication plays a crucial role in distributed
computer networks [24], [11], it verifies if a user has legal
access or not to the requested services [18], [25], [17],
[26]. In this sense, several techniques have been proposed
to automate the configuration tasks management [27], [11],
[28].Many techniques focus on the planning and implementa-
tion phases, where requirements and abstract security policies
are designed [12], [23]. Among the authentication models,
we mention KERBEROS, one of the most used protocols in
distributed environments, based on the principle of Trusted
Third Parties and the management of authentication keys.
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TABLE I
NOTATIONS

C Client.

B Browser.

U User.

AS Authentication server.

IDc Client identity.

@X Address of X.

SSi Server of services.

Sj Service.

SS(i,Sj) The Sj service of server SSi .

PW Client password.

Ax,y,z Authenticator generated by x to authenticate y to z.

KT Temporary key regenerated during the registration phase.

Kbase Basic key.

Kia Initial mutual authentication key per session between C and AS.

Kas AS secret key.

Kc Associated client Key.

Kx,y Shared key between x and y.

Kpu Public key.

Kpr Private key.

H Hash function.

S2KexS String to key extends salt function.

RotDy Dynamic rotation function.

Max() Function returns the maximum of two numbers.

LCM Least common multiple.

EK() Encryption function using the key K.

DK() Decryption function using the key K.

Tex Expiration time of a ticket.

T Clock time.

TGT Ticket Garanting Ticket.

TS or TS’ Ticket Garanting Service.

HTTP HTTP protocole.

HTTPS HTTPS protocole.

== Comparaison.

= Affectation.

|| Concatenation.

This protocol has proved its robustness in several analyzes
against many attacks like brute force and man in the middle
etc [29]. But, it is still a questionable domain, due to it
represents a model known by its computational complexity
and the lack of mutual authentication [8]. In fact, several
approaches have been proposed to improve the functionality
of this protocol without touching the basic principle; we
mention the use of the public key [30], [9] and smart cards
[13], [31]. Another technique also proposed is the single
sign on (SSO) [32]. In this technique, a client can access
to several services using one session translated by a prior
authentication into its own authentication server, where the
client is registered, this technique gives more agility to
clients to access multiple services without re-authentication.
The major problem of this technique, is that, it has not
experienced many changes and does not guarantee mutual
authentication, in other words does not provide original
source of data between the client and all servers of services.
In this paper, we propose mutual authentication architecture
for a distributed environment. It represents the security
trend in distributed environments divided into three phases

that guarantee, between different communication entities, a
secure and faithful exchange of encryption keys.

III. OUR APPROACH

Our architecture (Fig. 1) has three main actors: a client
identified by a unique IDc and a password PW, an authenti-
cation server aims to generate encryption keys and n-servers
of services supposedly decentralized.
As a first step, each client must register into the authen-
tication server before communicating with the requested
services. This phase is the most important one, because it
allows the exchange and the storage of client authentication
parameters at the AS side, for this reason, the use of the
HTTPS protocol was required to ensure a safe and faithful
exchange of authentication parameters which improves more
robustness of our protocol.

A. Registration Phase

In a second step, the AS generates a single salt for
each client. On the client side the browser must include
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Fig. 1. Description of the distributed authentication architecture

cryptographic primitives and a pseudo random generator [18]
for the salts regeneration in different phases. The registration
phase (Fig. 2) is described as follows:
• The client sends his IDc to AS.
• The AS checked client’s IDc:
◦ If IDc exists, it returns an error message.
◦ Otherwise, the AS

? Generates a salt AS.
? Calculates a key KT which equals to the hash of
IDc concatenated with the salt AS.

? Sends the key KT to the client.
• The client:
◦ Computes M = H(RotDy(PW ||H(PW ))).
◦ Encrypts M using the key KT: C ′ = EKT {M}.
◦ Sends C ′ to AS.
• Then, the AS:
◦ Decrypts C ′ by KT to get M .
◦ Stores IDc and M .

B. Communication Phase

In this phase, each client registered at the AS must first
authenticate to get access to the requested service. What’s
new in this phase, that the three players must authenticate
to each other, which is to say in each communication, the
client must authenticate his authentication server and vice
versa. This translates the property of mutual authentication
to define the source of data in our protocol, with a safe
and faithful exchange of data during this phase. Indeed, the
impact of mutual authentication is to reduce the probability
of recovering the requests by a client and send falsified
response requests, so the communication phase is subdivided
into three parts:
1) Mutual authentication between client and AS; for the

description, see Fig. 3.
2) Mutual authentication between AS and Server of ser-

vices; for the description see Fig. 4.
3) Mutual authentication between client and Server of

services; for description see Fig. 5.
1) Mutual Authentication between client and AS: The

dialog in the first part of the communication phase between
client and authentication server is described as follows:

• The client sends its IDc to AS.
• The AS checks the existence of IDc in the database:
◦ If IDc does not exist, the AS requests client regis-

tration.
◦ Otherwise, it::

? Generates a new Salt new.
? Computes the key Kia = H((M ||Salt new)).
? Computes the basic key Kbase = S2KexS(Kia).
? Generates two keys Kc = H(Kbase||Salt new),
Kas = H(Kbase||Kc).

? Encrypts Kia and Kc using the key Kia and TGT
using Kas.

? Sends EKia{Kc,Kia}, EKas{TGT} and
Salt new to client.

• The client:
◦ Computes M = H(RotDy(PW ||H(PW ))) .
◦ Computes A = H(M ||Salt new) .
◦ Decrypts EKia{Kc,Kia} using A to obtain Kc and

Kia.
◦ Compares Kia with A :

? If (Kia == A), then the AS server is authenti-
cated by the client, next it:
∗ Generates an authenticator Ac,c,as which con-

tains the client authentication parameters and
the requested service.

∗ Sends L = EKc
{Ac,c,as} and S =

EKas
{TGT}) to AS.

? Otherwise, the client rejects the request and re-
quests again the authentication of its AS server.

• The AS decrypts S = EKas
{TGT}) using Kas and

verifies TGT :
◦ If TGT is expired, the AS requests the authentication

of the client.
◦ Otherwise, it:

? Decrypts L = EKc
{Ac,c,as} and recuperates

Ac,c,as.
? Compares Kia with A :
∗ If (Kia == A), the mutual authentication is

verified and the AS sends a broadcasts request
for the service Sj to all servers of services.
∗ Otherwise, it asks for re-authentication of the

client.
2) Mutual authentication between AS and Server of Ser-

vices: After the success of the first phase of mutual au-
thentication between the client and the AS. The second
part of the communication phase aims to ensure the mutual
authentication property between the AS and all the servers of
the services, that is, each time a client registered in the AS
side, this latter requests a service, the AS authenticates one
of the servers that contains this service, so the description
of the communication phase between AS and service server
(Fig. 4) is described as follows:

• The set of servers of services checks the availability of
service Sj asked, if it is available, they send a response
message.
• The AS selected @SSi address of the first response of

services’s server:
◦ Generates Salt−AS∗.
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Fig. 2. Description of the registration phase

Fig. 3. Description of the communication phase between client and authentication server

◦ Computes N which equal to the sum of Salt−AS∗

bits.
◦ Computes M , which equal to the sum complemen-

tarily restricted to one of Salt−AS∗.
◦ Computes F which equal to the max between N and
M .
◦ Encrypts TS = {@AS, Tex,@SSi, Salt − AS∗}

using Kas.
◦ Sends F and EKas

{TS} to the selected server of
services SSi.

• Server of services SSi

◦ Computes two keys: a public key Kpu and private
key Kpr from F .

◦ Computes Z = EKpr
{@SSi,@AS, Service −

name}
◦ Sends Kpu, EKas

{TS} and Z to the authentication
server AS.

• Authentication server AS:
◦ Decrypts EKas

{TS} using Kas.
◦ Checks the expiration time of the TS and the Salt−
AS∗:
? If the time or Salt − AS∗ are invalid, the AS

requests SSi to authenticate again.
? Otherwise, it :
∗ Decrypts Z = EKpr{@SSi,@AS, Service−

name} using Kpu and get @SSi,@AS,
Service-name.

∗ If @AS, @SSi and the service-name are
correct, it:
. Computes Kc,ssi = H(Kbase||Kas) the

key to share between the service server and
the client.

. Generates an authenticator Aas,C,SSi

. Encrypts the key Kc,ssi using the key
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Fig. 4. Description of the communication phase between AS and server of services SSi

Kpu and encrypts the client authenticator
Aas,C,SSi using the key Kc,ssi.

. Sends EKpu
{Kc,ssi} and

EKc,ssi{Aas,C,SSi} to the server of
services SSi.

∗ Otherwise, it requests SSi to authenticate
again.

• Server of services SSi:
◦ Decrypts EKpu

{Kc,ssi} using Kpr and obtains
Kc,ssi .
◦ Decrypts EKc,ssi

{Aas,C,SSi} using Kc,ssi and recov-
ers Aas,C,SSi.
◦ Verifies if @AS and Kpu of Aas,C,SSi are valide. If

this check is successful, then mutual authentication is
guaranteed between SSi and AS, and SSi identifies
the client via AS.

3) Mutual authentication between Client and Server of
Services: At this level, the authentication server has shared
the encryption keys at the client side and the servers of
services, all that is remaining to the client is to send his
authentication parameters and the requested service to the
server of services so he can access to his desired ser-
vices. The communication phase between the client and
the service server means that the mutual authentication is
satisfied between AS and the server of services (SSi), the
communication phase between the client C and SSi (Fig. 5)

is described as follows:

• The authentication server (AS):
◦ Generates a ticket TS′ = {@AS, Tex,@SSi, Salt−

AS∗} to manage access to services.
◦ Encrypts the ticket TS′ using the public key Kpu.
◦ Sends EKc

{Kpu,@SSi,Kc,ssi} and EKpu
{TS′} to

the client.
• Thee client:
◦ Decrypts EKc{Kpu,@SSi,Kc,ssi} using Kc and ob-

tains Kc,ssi and Kpu.
◦ Encrypts its authenticator AC,C,SSi using Kc,ssi.
◦ Sends EKc,ssi

{AC,C,SSi} and EKpu
{TS′} to SSi.

• Server of services SSi:
◦ Decrypts EKpu{TS′} using its private key Kpr to

obtain TS′ .
◦ Verifies @AS and Kpu of TS′.

? If @AS or Kpu are incorrect, it returns error
message.

? Otherwise, it:
∗ Decrypts EKc,ssi

{AC,C,SSi} using Kc,ssi to
obtain AC,C,SSi.

∗ Compares AC,C,SSi and Aas,C,SSi. If
AC,C,SSi == Aas,C,SSi, it:
. Computes EKc,ssi

{Sj}.
. Sends to client EKc,ssi

{Sj}.
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Fig. 5. Description of the communication phase between client and server of services

∗ Otherwise, it sends a re-authentication request
to the client.

• The client:
◦ Decrypts EKc,ssi

{Sj} using Kc,ssi.
◦ Obtains the requested service Sj .

4) Renewal phase: In this phase, the client updated its
authentication parameters stored at the AS side; to note, that
after the first communication and after the client authenti-
cation, we require this phase in our architecture to make
the parameters stored at the AS side more safe. In this
phase, each client must have a session opened in advance
as described in the first part of the communication phase,
after having exchanged the key shared between the client
and the AS. The description of the renewal phase (Fig. 6) is
described as follows:

• The client sends its IDc to AS.
• The AS verifies if IDc exists, then it:
◦ Generates Salt new.
◦ Computes the initial authentication key Kia =

H(M ||Salt new).
◦ Computes the basic key Kbase = S2KexS(Kia).
◦ Computes Kc = H(Kbase||Salt new).
◦ Computes Kas = H(Kbase||Kc).
◦ Encrypts Kc and Kia using Kia.
◦ Generates a ticket TGT .
◦ Encrypts TGT using Kas.
◦ Sends EKia{Kc,Kia}, EKas{TGT} and Salt new

to the client.
• Otherwise, the AS sends a re-authentication request.
• The client
◦ Computes M = H(RotDy(PW ||H(PW ))).

◦ Computes A = H(M ||salt new).
◦ Decrypts EKia{Kc,Kia} using A and obtains Kc

and Kia.
◦ Compares A with Kia.

? If (A == Kia), it :
∗ Enters his new password PWnew.
∗ Computes the new value M ′ =

H(RotDy(PWnew||H(PWnew))).
∗ Encrypts M ′ using Kc.
∗ Sends EKc

{M ′} to AS.
? Otherwise, it returns the error message.

• The authentication server (AS):
◦ Decrypts EKas

{TGT} using Kas. If TGT is vali-
dated, it:
? Decrypts EKc

{M ′} using Kc.
? Stores the new value of M ′.

◦ Otherwise, it sends an error message.
In our architecture, we aim to satisfy the mutual authenti-

cation property between different actors during a session, this
makes our protocol more secure and reliable against different
attacks that will be proved by the behavioral study of the
keys management used, also, with a consistent analysis of
complexity based on BAN logic to prove more the robustness
of our scheme.

IV. BEHAVIORAL STUDY
In this part we will treat the keys used between the

different entities to check the robustness of these keys. Each
browser must support the cryptographic primitives used in
our approach such as hash function and dynamic rotation
function RotDy [18]. For the servers of services side, they
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Fig. 6. Description of the renewal phase between client and authentication server

must adopt the authentication server extension that defines
symmetric and asymmetric encryption primitives and the
generation of public and private keys. In our case, we set
up the management of the different keys used using PHP 5
to program the different functions as follow:
• DES CBC mode as a symmetric encryption algorithm.
• RSA as a asymmetric encryption algorithm.
• SHA256 as a hash function.
• RGSCS [18] as a dynamic salt regenerator.
• RotDy function [18] as a dynamic rotation function.
• S2KexS function [19], [8] for the generation of the

basic key.
The hardware used in our experiments is a processor

1.3GHz CPU and 4GB of memory.

A. KEY MANAGEMENT

In order to verify the results of our approach, we have
implemented it for three sessions and a given password and
processed the results obtained as described in Fig. 7: We
analyze all the keys regenerated by the AS server to see the
robustness of these keys and we deduce the following results:
• The salt’s impact per session makes the password un-

traceable.
• Using the RotDy function makes the initial information

opaque.
• The use of tickets enhances mutual authentication be-

tween the three entities and limit the dictionary attack
by session expiration time
• The keys used are dynamic and per session.
1) NORMALIZED HAMMING DISTANCE: In our ap-

proach, session keys are dynamic, per session and have a
variable size. Furthermore, in order to prove the robustness
of the keys used in our approach, we admit the definition
(4.1) and property (4.1):

Definition 4.1: Let S and S’ be two binary sequences
having successively the periods K and K’ not necessarily
equal. The Normalized Hamming Distance [33], named D,
defined as follows:

D(S, S′) =

k−1∑
i=0

((S(i mod K) + S′(i mod K ′)) mod 2)

k
(1)

with k = LCM(K,K ′).
In order to prove the non-correlation between the keys used
in our approach, Asimi et al [18] demonstrated that for S
and S′ two periodic binary strings are weakly correlated if
D(S, S′) ' 0.5; so we adopt the following property:

Proposition 4.1: Let S and S’ be two periodic binary
strings, we say that S and S’ are weakly correlated if
D(S, S′) ' 0.5.

According to the figure, the definition (4.1) and the
property (4.1), the results in figure Fig. 8 accumulate in the
neighborhood of 0.5; which translate the non-correlation of
the keys used during the communication phase even with
a minimum perturbation for a given password. This means
that the keys used even if they are derived from the same
password, in several different sessions are totally independent
of each other.

B. BAN LOGIC

BAN logic [34] was proposed in 1989 as a formal method
for analyzing authentication protocols. As to describe a for-
mal system, we first present the notations, then the deduction
rules of the BAN logic. The logics of the BAN logic describe
the concepts in the cryptographic protocols. The objective
of this logic in our case is used to prove the robustness of
mutual authentication and its impact on the entire protocol
during the communication phase.
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Fig. 7. Key management for three sessions with same password and different salts

Fig. 8. Study of the non-correlation of the keys used in the communication phase

Notations of BAN logic:

P | ≡ X : P believes in X.
P CX : P sees X.
P | ∼ X : P once said X.
#(X) : The formula X is fresh.
P K←→Q : P and Q share the secret key K.
K−→ P : P has a public key K.
XK : X is encrypted by the key K.
XK−1 : X is encrypted by the public key K.
< X >Y : X combined with Y, X ‖ Y .

Rule Definitions:

• Rule 1:
P | ≡ Q

K←→P, P C {X}K
P | ≡ Q| ∼ X

or

P | ≡ K−→ Q,P C {X}K−1

P | ≡ Q| ∼ X

• Rule 2:
P C (X,Y )

P CX
or

PC < X >Y

P CX

• Rule 3:
P | ≡ X,P | ≡ Y

P | ≡ (X,Y )
Our goal is to prove the sharing of the key Kc,ssi between

B and SSi which translates mutual authentication implicitly
between the three actors, which is translated by the following
goals:

• Goal 1 : B| ≡ SSi

KC,SSi


 B.

• Goal 2 : SSi| ≡ SSi

KC,SSi


 B.
In our protocol we divide the communication phase into

three parts. To prove the mutual authentication and agreement
of the session key we enumerate the verification objectives

then we enumerate the idealized form transformed from the
proposed scheme (Fig. 9):

Part one between browser and AS:

• Message 1 : B −→ AS : IDc.
• Message 2 : AS −→ B : (EKia

{KC ,Kia},
EKas

{TGT}, Salt−new).
• Message 3 : B −→ AS :
(EKC

{Ac,c,as}, EKas
{TGT}).

Part Two between AS and SSi:

• Message 4 : AS −→∗ SSi : (Sj).
• Message 5 : SSi −→ AS : {@SSi}.
• Message 6 : AS −→ SSi : (EKas{TGT}, F ).
• Message 7 : SSi −→ AS : (Kpu, EKas{TGT},
EKpu

{@AS,@SSi, nom− service}).
• Message 8 : AS −→ SSi : (EKpu

{KC,SSi},
EKC,SSi

{Aas,C,SSi}).
Part three between B and SSi:

• Message 9 : AS −→ B :
(EKC

{KC,SSi}, EKpu
{TS′}).

• Message 10: B −→ SSi : (EKC,SSi
{AC,C,SSi},

EKpu{TS′}).
• Message 11: SSi −→ B : (EKC,SSi

{Sj}).
In our protocol, we have several exchanges of keys and

tickets in the different phases to verify mutual authentication
between different entities. In a session, the following assump-
tions are assumed to be true to improve our system if all
hypotheses are verified. Therefore, the mutual authentication
is satisfied.

Assumptions:
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Fig. 9. Prototype for different phases

• H1 : B| ≡ #(Salt−new).
• H2 : AS| ≡ #(TGT ).
• H3 : AS| ≡ #(T ).

• H4 :
AS| ≡ B CKc

AS| ≡ B| ∼ Sj
.

• H5 :
AS| ≡ (TS)

AS| ≡ Kpu−−−→ SSi
.

• H6 :
SSiC {X}KC,SSi

SSi| ≡ AS| ∼ X
.

Verification: Part One: Communication between client
and AS
• From message 2, we have B C (EKia

{KC ,Kia},
EKas

{TGT}, Salt new) According to rule 2, B C
Salt new and B| ∼ PW . According to H1 B| ≡
#(Salt−new) : B computes A = H(M ||Salt−new), Ac-
cording to rule 2, we get BC(EKia

{KC ,Kia}), B decrypts
EKia

{KC ,Kia} using A.
If A == Kia therefore: B| ≡ AS| ∼ (KC ,Kia), we deduce:

Rule1:
{

B| ≡ AS| ∼ Kia

B| ≡ AS| ∼ KC

According to the message 3 and rule 2 :{
AS C EKas{TGT}

AS C EKc{AC,C,as}

• According to H2 AS| ≡ #(TGT ). According to AS de-
crypts EKc

{AC,C,as} using Kc. From rule 2 ASCAC,C,as =
(IDc, T,@AS,A, Sj). According to H3 and rule 2, ASCA.

• If A == Kia, we deduce:

Rule2 :

{
AS| ≡ B CKC

AS| ≡ B| ∼ Kia}

As a result, from Rule1 and Rule2 we deduce the rule
modeling mutual authentication between the client and the
authentication server:

TABLE II
MUTUAL AUTHENTICATION (RULE1)

AS| ≡ B| ∼ Kia, B| ≡ AS| ∼ Kia

Therefore, we conclude:

{
AS| ≡ AS

KC←→B

B| ≡ AS
KC←→B

Part two: Communication between AS and server of
services SSi
• According to message 5, AS C @SSi. According to

message 6, SSi C (EKsa{TS}, F ). According to rule 2,
SSi C F , therefore, SSi| ∼ Kpu and SSi| ∼ Kpr.
• According to message 7 and rule 2, AS C Kpu, AS C
EKas

{TS} and
AS C EKpr{@SSi,@AS, service− name}.
• AS decrypts Kpr{@SSi,@AS, service − name} using
Kpu.
• If all parameters are valid we deduce according to H5:

Engineering Letters, 28:2, EL_28_2_02

Volume 28, Issue 2: June 2020

 
______________________________________________________________________________________ 



R’1 : AS → EKpu{SSi}
• According to message 8, SSi C (EKpu{KC,SSi},
EKC,SSi

{Aas,C,SSi}). According to rule 1,
SSi C EKpu

{KC,SSi} and SSi C EKC,SSi
{Aas,C,SSi}.

• According to rule 1, SSi CKC,SSi therefore,
SSi C Aas,C,SSi = (IDc,@AS, service −
name,@SSi,Kpu). Then, According to rule 2, SSiCKpu.
• According to rule 2 and H6, we deduce:

R’2 :
SSi C {Aas,C,SSi}KC,SSi

SSi| ≡ AS| ∼ Aas,C,SSi

From R’1 and R’2, the mutual authentication is verified
and the rule modeling mutual authentication between the
authentication server and the server of services is as follows:

TABLE III
MUTUAL AUTHENTICATION (RULE2)

SSi| ≡ AS
KC,SSi
←−−−−→SSi

Part three: Communication between client and SSi

• According to message 9, B C (EKC
{KC,SSi},

EKpu
{TS′}), thus according to rule 2

B C EKC
{KC,SSi,Kpu,@SSi} and B C EKpu{TS′}.

According to rule 1 we note B C EKc,ssi

• From Rule 1 we deduce B| ≡ AS| ∼ KC,SSi

• According to the hypothesis H5 B| ≡ AS
KC,SSi
←−−−→B, and

according to M.A.Rule1 et M.A.Rule2 B| ≡ AS
KC,SSi
←−−−→SSi

• According to message 10,
SSi C (EKC,SSi

{AC,C,SSi},
EKpu

{TS′}), According to rule 2,
SSiC EKC,SSi

{AC,C,SSi} and SSi C EKpu
{TS′}

• We have SSi C KC,SSi according to Rule 2, therefore,
according to rule 1 and H4
SSi C AC,C,SSi = {IDc,@AS, Sj ,@SSi,Kpu}. therefore,
according to rule 2, SSi CKpu

Since Rule 3, and ”Mutual Authentication (Rule 2)” III,
we deduce the mutual authentication rule between the server
of services and the authentication server:

TABLE IV
AUTHENTIFICATION MUTUELLE (RULE3)

SSi| ≡ AS| ∼ TS′, SSi| ≡ B| ∼ Kpu

• Then SSi| ≡ B| ∼ Sj and SSi| ≡ AS
KC,SSi
←−−−→B.

• According to the message 11, BCEKC,SSi
{Sj}, and rule

1, B C Sj .

According to rules (II, III and IV) which define the
mutual authentication between the three actors in different
communication phases we conclude from the demonstration
of the BAN logic that the mutual authentication aims to prove
the source of the data exchanged in each step as well, the
effectiveness of the protocol at the keys management level by
treating each request sent to the network. The obtained results
based on well-defined rules and solid assumptions prove the
utility of mutual authentication in order to guarantee a secure
exchange. Indeed, the addition of bi-directional authentica-
tion features with a limited expiration time of ticket in a

session ensures the identification of each actor in different
communication steps. in addition, the impact of dynamic
and per session salts makes the whole protocol dynamic
and per session, which limits the chance that information
such as passwords imprint or even the requested service will
be guessed by the exchanged information during a session,
therefore according to these studies we grant the following
remarks which are based on (support) the results proved
previously:
• Mutual authentication is an obligation in distributed

environments.
• The policy package must be targeted before adding the

mutual authentication mechanism, without perturbing
the full functionality of the used protocols.
• Despite the complexity of the architecture of distributed

systems, mutual authentication improves the robustness
of all the policies used.
• The use of a dynamic protocol per session reduces the

chance of perceiving the exchanged entities, such as the
identification parameters.

V. SECURITY ANALYSIS

Typically, a client process relies on an authentication pro-
tocol before grant his access. Most authentication protocols
are based on passwords or information derived from it. In
most architecture that define distributed systems, the set of
systems must guarantee the transparency and integrity of
data sent to the client, we mention in this case, the use of
protocols such as SSO [32] and Kerberos [29]. Whereas,
with the development of those architectures which becomes
more and more complicated, mutual authentication becomes
a criterion required to check the source of the data [12]. In
our approach, we have targeted this requirement by keeping
the notions of transparency and integrity of the data sent and
dealing with different attacks that still remain a real threat
and affect the functionality of this type of system.

A. Salt impact

Most IT systems that have one or more processes are
accessible by client. A process authenticates the client by
comparing information derived from his password [6], [17]
that are exchanged during the registration phase. Adding an
often static salt increases the chance of guessing the pass-
word that represents the core of the authentication process
[12]. In our approach we used RGSCS, wich is a dynamic
and cryptographically safe salt generator [18]. The point is to
perturb the original password, and diminishes the chance of
finding original information especially by dictionary attack,
because the salt is renewed at each session and regenerated
for each user.

B. Ticket impact

The three main types of authentication in a distributed
computer system are message content authentication, mes-
sage origin authentication, and identity authentication of
message transmitter. The use of tickets principle makes our
protocol safer. It represents the entity generated by the au-
thentication server and encrypted with its own key. It contains
the authentication parameters with a limited expiration time

Engineering Letters, 28:2, EL_28_2_02

Volume 28, Issue 2: June 2020

 
______________________________________________________________________________________ 



in purpose to reduce the chance of falsification of these
settings. Additionally, it provides mutual authentication in
all three parts of the communication phase.

C. Robustness against man in the middle

In this technique, the attacker should be able to observe
and intercept (Sniffing) the encrypted data exchanged be-
tween two entities during a communication in a valid time.
In our protocol, to cope with this attack, we define the
mutual authentication property, one side by using symmetric
cryptographic primitives with robust and dynamic keys. The
other side by adding tickets to define the source of the
messages. Moreover, limiting life of the data transmitted at
the session time reduces the chance to find out the origin of
the message.

D. Robustness against Dictionary Attack

This type of attacks is very effective in case of authentica-
tion systems based on breakable hash functions. This attack
represents a real threat to the distributed architectures cited in
several analyses [35], [29]. In our system, the cryptographic
quality of passwords is strongly related to user-appropriate
salts, dynamic rotation, and irreversible hash function. For an
attacker, the chance to find the password from the messages
exchanged during a session is too low especially with the
impact of the tickets which reduces the lifetime of the
exchanged messages.

E. Robustness against brute force

This attack depends, in general, on the resistance of the
passwords also to their complexity. The principle is to launch
software to test the possible combinations of the passwords.
In our approach, the attacker does not only need to find
the hash of the password, but he must guess the original
password from the M = H(RotDy(PW ||H(PW ))), it is
very difficult considering the limited session time, moreover,
the dynamic rotation applied on the password guarantees
the non-correlation between the original passwords. So we
confirmed the unpredictable nature of passwords makes our
architecture secure against brute force attacks.

F. Comparison between Our Protocol and other authentica-
tion protocols

Our protocol, designed for distributed systems, aims to
ensure the confidential exchange and mutual authentication
between clients, authentication servers and services server.
For these reasons, our approach is based on tickets, key
management and other functions namely: S2KexS function,
RotDy function. The table (V) gives a comparison between
our approach and other protocols used in distributed archi-
tecture such as Kerberos V 5 [13], SSO [32], two factors
authentication protocols [25] and timely authentication pro-
tocols [25]:

VI. CONCLUSION

With the development of computer systems, the distributed
architectures have proven their functionality to make the
system decentralized to the level of data and services;

while keeping the notion of transparency. Despite to the
development of computers, attacks have become more and
more efficient [16], [36] which requires a secure and faithful
authentication protocol [37], [38]. Several works have dis-
cussed the requirement of authentication such as the use of
SSO [33] or certificates [7], but in this type of complicated
architecture, it is necessary to prove the source of the data ex-
changed between the different entities to reduce the chances
of affecting the confidentiality and integrity of the stored
and exchanged data. In our work, we have implemented
the problem of mutual authentication in distributed systems
with the proposal of a protocol that aims to achieve a
mutual authentication between different entities; the addition
of tickets reduces the chance of breaking the functionality
of the protocol by the expiration time and by the robustness
of the keys used in different phases, which is proven in the
behavioral study and BAN logic.
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