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Abstract—During the process of decision making with in-
tuitionistic fuzzy preference relation (IFPR), the underlying
normalized intuitionistic fuzzy priority weight vector can be
obtained by a mathematical programming model. In the multi-
criteria group decision making (GDM) problem, it is reasonable
to assume that different decision makers have different criteria
weights, this is because that each decision maker has his/her
own opinions and preferences, and the importance of criteria
should not be the same for different decision makers. The aim
of this paper is to develop two techniques for multi-criteria
GDM with IFPRs based on the multiplicative consistency.
In the first case where the decision maker acts as separate
individual, the individual priority weight vector can be derived
from the IFPR established by each decision maker with respect
to each criterion, after that an overall priority weight vector
can be obtained by synthesizing these priority weight vectors
together. When the decision makers are taken as a group, the
normalized overall intuitionistic fuzzy priority weight vector
can be generated directly by building a fractional programming
model without using the aggregation operator. An example is
given to illustrate the validity and applicability of the proposed
methods.

Index Terms—multi-criteria, group decision making, multi-
plicative consistency, intuitionistic fuzzy preference relation.

I. INTRODUCTION

Group decision making (GDM), where some decision
makers are involved to select the best alternative, takes
place widely in various fields of operations research and
management science. For a GDM problem, decision makers
may express their preferences by comparing each pair of
alternatives and establish some preference relations. It is
known that pairwise comparison methods are more accurate
than non-pairwise comparison methods [1]. Many preference
relations have been studied by scholars, such as multiplica-
tive preference relation [2], fuzzy preference relation (FPR)
[3], interval-valued fuzzy preference relation [4] and triangu-
lar fuzzy preference relation [5]. Although these preference
relations have some advantages, each element of them only u-
tilizes a membership to describe the degree of one alternative
preferred to the other, which means the experts’ hesitations
or indeterminacies are neglected. To circumvent this issue,
Szmidt and Kacprzyk [6] introduced the intuitionistic fuzzy
preference relation (IFPR) whose elements are intuitionistic
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fuzzy values, which can express the membership degree, non-
membership degree and hesitant degree jointly. As a result,
it is more natural to use the IFPR to describe the uncer-
tainties of pairwise comparisons between the alternatives.
Inspired by the interval-valued fuzzy preference relation, the
interval-valued IFPRs [7], [8] were also considered by some
researchers.

In recent years, GDM with IFPRs has become a hot
research topic. Since the lack of consistency of preference
relations in a decision making problem may lead to unrea-
sonable conclusions, the consistency of IFPRs has attract-
ed many scholars’ attentions. From the existing research
achievements, there are two main types of consistency:
additive consistency and multiplicative consistency. Wang
[9] developed a method for GDM with IFPRs based on the
additive consistency, and some mathematical programming
models were constructed to obtain the priority weights of
alternatives. Liao and Xu [10] pointed out that the additive
consistency has some disadvantages, because it is conflic-
t with the [0,1] scale used for providing the preference
values, but the multiplicative consistency does not have
this limitation. Thus, the multiplicative consistency is more
appropriate than the additive consistency in expressing the
decision maker’s preferences. Inspired by the definition of
additive consistency [9], Liao and Xu [10] introduced the
concept of multiplicative consistent IFPR. Then, based on
this multiplicative consistency, Liao and Xu [11] provided
three algorithms for intuitionistic fuzzy GDM from two
aspects: aggregating individual intuitionistic fuzzy priorities
and aggregating individual intuitionistic fuzzy judgments.
The framework of intuitionistic fuzzy GDM was proposed
by Liao et al. [12], and this complex GDM can be divided
into three subproblems, which are the consistency checking
and inconsistency repairing process, the consensus checking
and reaching process and the selection process. More studies
about IFPRs with multiplicative consistency can also be
found in [13]-[16].

In our daily life, some decision making problems are
involving various criteria, and multi-criteria decision making
(MCDM) is pertaining to structure and solve these problems
[17], [18]. A lot of intuitionistic fuzzy MCDM methods
have been developed, readers can refer to [19]-[21]. In these
literature, the weights of the criteria are assumed to be the
same for all decision makers. Nevertheless, since each expert
has his/her own opinions and preferences, it is reasonable to
suppose that different decision makers should have different
criteria weights in a real decision making problem. Thus,
in this paper, based on the multiplicative consistency of
IFPR given by Liao and Xu [10], we consider a multi-
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criteria GDM problem, where the weights of criteria for
different decision makers can be different. By comparing
each pair of alternatives, a decision maker can construct an
IFPR with respect to each criterion. Inspired by the trans-
formation formula in [10], we first give a similar formula
to convert the normalized intuitionistic fuzzy weights into
a multiplicative consistent IFPR. Then, by minimizing the
absolute deviation between the original judgment and the
converted multiplicative consistent IFPR, the priority weight
vector can be derived by a fractional programming model.
When the decision maker acts as separate individual, an
aggregation operator is used to synthesize all individual
priority weight vectors together, then an overall priority
vector is obtained. When the experts act as one individual,
the overall intuitionistic fuzzy priority weight vector can
be generated directly by building a fractional programming
model without using the aggregation method.

By considering the hierarchal structure of a decision
making problem, Xu and Liao [22] proposed the intuitionistic
fuzzy analytic hierarchy process, where a decision maker also
constructs an IFPR by comparing each pair of alternatives
with respect to each criterion. Compared with Xu and Liao’s
approach [22], our method still have some advantages.

(1) The multiplicative consistency condition used by Xu
and Liao [22] is based on the concept given by Xu et al.
[23]. However, Liao and Xu [10] have pointed out that the
multiplicative consistency condition in [22], [23] may be
too strict for an IFPR, and it loses the original foundation
of multiplicative consistency. The multiplicative consistency
used in this paper is based on the membership and nonmem-
bership degrees of the intuitionistic fuzzy judgments directly
[10], it can reflect the original information of the decision
maker. Moreover, we also prove that the definition we used
is robust to the permutations of decision maker’s judgments
and independent of alternative labels. Thus, based on this
multiplicative consistency, our priority weights will be more
reasonable than that obtained by Xu and Liao’s approach
[22].

(2) Xu and Liao [22] generated the interval priority weight-
s by transforming an IFPR into an interval-valued preference
relation, sometimes the original information losing may take
place if the number of alternatives is too large. Although
the derived interval priority weight [wi, vi] in [22] can be
equivalently considered as an intuitionistic fuzzy number
(IFN) (wi, 1− vi), we can not guarantee that the converted
intuitionistic fuzzy priority weight vector is still normalized.
In our method, based on the original IFPR, we use a fraction-
al programming model to obtain the normalized intuitionistic
fuzzy priority weights.

(3) Compared with Xu and Liao’s approach [22], where
only one decision maker is involved to construct IFPRs, our
proposed method is for a GDM problem, which will be more
useful and powerful. And two cases are studied, the decision
makers act as separate individuals or one individual. More-
over, since each decision maker has his/her own opinions
and preferences, we also assume that the weights of criteria
can be different for different decision makers, which is more
appropriate for a real decision making problem.

The rest of the paper is organized as follows. Section
II presents some basic knowledge about IFPRs and IFNs.
Based on the multiplicative consistency condition, Section

III gives a transformation formula to convert the normalized
intuitionistic fuzzy weights into a multiplicative consistent
IFPR. Using the fractional programming model, Section
IV proposes a method for multi-criteria intuitionistic fuzzy
GDM which takes the decision makers as separate individu-
als, the method for the second case where the group acts as
one individual is provided in Section V. Finally, Section VI
makes a comparative analysis and Section VII gives some
conclusions.

II. PRELIMINARIES

For a decision making problem, let X = {x1, x2, · · · , xn}
be the set of alternatives, and a decision maker is asked
to provide his/her preferences by comparing each pair of
alternatives. A FPR on the set X is represented by a com-
plementary matrix R =

(
rij

)
n×n

with rij ≥ 0, rij+rji = 1,
rii = 0.5, where rij indicates the degree to which the
alternative xi is preferred to xj .

Definition 1: ([24]) A FPR R = (rij)n×n is called multi-
plicative consistent if the following multiplicative transitivity
is satisfied:

rij · rjk · rki = rik · rkj · rji, i, j, k = 1, 2, · · · , n. (1)

Let ωi (i = 1, 2, · · · , n) be the underlying priority weights
of the alternatives and satisfies 0 ≤ ωi ≤ 1,

∑n
i=1 ωi, then

a multiplicative consistent FPR R = (rij)n×n can be shown
as [25]:

rij =
ωi

ωi + ωj
, i, j = 1, 2, · · · , n. (2)

Since the elements in FPRs only describe the intensities of
preferences but cannot depict the degrees of non-preferences,
it is effective and suitable to describe the decision maker’s
judgments in the intuitionistic fuzzy set, then an IFPR on
the set of alternatives X can be constructed. The concept of
IFPR is given as follows:

Definition 2: ([26]) An IFPR on the set X =
{x1, x2, · · · , xn} is defined as a matrix R =

(
rij

)
n×n

with
rij = (µij , νij), where µij , νij ∈ [0, 1], µij + νij ≤ 1,
µij = νji, νij = µji and µii = νii = 0.5. µij indicates the
degree to which the object xi is preferred to the object xj ,
νij means the degree to which the object xi is not preferred
to the object xj , and πij = 1− µij − νij is explained as an
indeterminacy degree or a hesitancy degree.

For any two IFNs rij = (µij , νij) and rkl = (µkl, νkl),
Xu [26] introduced the following operations:

rij ⊕ rkl = (µij + µkl − µijµkl, νijνkl); (3)
rij ⊗ rkl = (µijµkl, νij + νkl − νijνkl); (4)

λrij =
(
1− (1− µij)

λ, νλij
)
, λ > 0; (5)

rλij =
(
µλ
ij , 1− (1− νij)

λ
)
, λ > 0. (6)

In order to rank IFNs, some methods have been proposed.
For an IFN αi = (µi, νi), Xu [26] defined an accuracy
function H(αi) = µi + νi, Zhang and Xu [27] introduced a
similarity function L(αi) =

1−νi

1+πi
. Then, a total order method

for ranking any two IFNs αi = (µi, νi) and αj = (µj , νj)
can be given as follows [27]:

If L(αi) > L(αj), then αi > αj .
If L(αi) = L(αj), and

if H(αi) > H(αj), then αi > αj ;
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if H(αi) = H(αj), then αi = αj .
Liao and Xu [10] have pointed out that the ranking method

in [27] is reasonable, since it not only obtain a consistent
result when little changes of the parameters of IFNs take
place, but also generate a total order of IFNs. Thus, in this
paper, we will use Zhang and Xu’s ranking method [27] to
compare IFNs.

Let αi = (µi, νi) (i = 1, 2, · · · , n) be a collection of IFNs,
(σ(1), σ(2), · · · , σ(n)) be a permutation of (1, 2, · · · , n),
such that ασ(i−1) ≥ ασ(i) for any i, w = (w1, w2, · · · , wn)

T

be the aggregation-associated vector with wi ∈ [0, 1] and∑n
i=1 wi = 1. Based on the above operational laws (3)-(6),

some important aggregation operators have been introduced
[28], [29].

An intuitionistic fuzzy weighted averaging (IFWA) oper-
ator is a mapping such that

IFWAw(α1, α2, · · · , αn) =
n⊕

i=1

(wiαi)

=
(
1−

n∏
i=1

(1− µi)
wi ,

n∏
i=1

νwi
i

)
.

An intuitionistic fuzzy weighted geometric (IFWG) oper-
ator is a mapping such that

IFWGw(α1, α2, · · · , αn) =
n⊗

i=1

(wiαi)

=
( n∏

i=1

µwi
i , 1−

n∏
i=1

(1− νi)
wi

)
.

An intuitionistic fuzzy ordered weighted averaging (I-
FOWA) operator is a mapping such that

IFOWAw(α1, α2, · · · , αn) =
n⊕

i=1

(wiασ(i))

=
(
1−

n∏
i=1

(1− µσ(i))
wi ,

n∏
i=1

νwi

σ(i)

)
.

An intuitionistic fuzzy ordered weighted geometric (I-
FOWG) operator is a mapping such that

IFOWGw(α1, α2, · · · , αn) =

n⊗
i=1

(wiασ(i))

=
( n∏

i=1

µwi

σ(i), 1−
n∏

i=1

(1− νσ(i))
wi

)
.

Clearly, when w = (1/n, 1/n, · · · , 1/n)T , the IFWA
operator and IFOWA operator both reduce to an intuition-
istic fuzzy averaging (IFA) operator, the IFWG operator
and IFOWG operator both become an intuitionistic fuzzy
geometric (IFG) operator.

III. RELATIONSHIP BETWEEN THE MULTIPLICATIVE
CONSISTENT IFPR AND A NORMALIZED INTUITIONISTIC

FUZZY WEIGHT VECTOR

In the course of decision making with IFPRs, how to
generate the underlying priority weights is a significant issue.
Moreover, when the preference relation is an IFPR, it is rea-
sonable to use the intuitionistic fuzzy priority weight vector
to reflect the importance of alternatives. Recently, many ap-
proaches have been proposed to derive the intuitionistic fuzzy

priority weights, such as additive consistency based method
and multiplicative consistency based method. Consistency
is the basic property for any preference relation and the
lack of consistency may lead to unreasonable conclusions.
Since additive consistency is in conflict with the [0,1] scale
used for providing the preference values [10], more and
more researchers have paid attentions to the multiplicative
consistency. Liao and Xu [10] gave a general definition of
multiplicative consistent IFPR, shown as follows:

Definition 3: ([10]) An IFPR R = (rij)n×n with rij =
(µij , νij) is called multiplicative consistent if the following
multiplicative transitivity is satisfied:

µij · µjk · µki = νij · νjk · νki, i, j, k = 1, 2, · · · , n. (7)

If IFNs rij = (µij , νij) satisfy µij + νij = 1 for all i, j =
1, 2, · · · , n, then the IFPR R is equivalent to a FPR R =
(µij)n×n and Eq. (7) is degraded to Eq. (1).

Theorem 4: ([14]) Let R = (rij)n×n be an IFPR with
rij = (µij , νij), the following statements are equivalent:

i) µij · µjk · µki = νij · νjk · νki, i, j, k = 1, 2, · · · , n,
ii) µij · µjk · µki = νij · νjk · νki, i < j < k.

Based on the above Theorem, the following corollary can
be obtained.

Corollary 1: Given an IFPR R = (rij)n×n with rij =
(µij , νij), the following statements are equivalent:

1) R is multiplicative consistent,

2) µij · µjk · µki = νij · νjk · νki, i, j, k = 1, 2, · · · , n,
3) µij · µjk · µki = µik · µkj · µji, i, j, k = 1, 2, · · · , n,
4) νij · νjk · νki = νik · νkj · νji, i, j, k = 1, 2, · · · , n,
5) µij · µjk · µki = νij · νjk · νki, i < j < k,

6) µij · µjk · µki = µik · µkj · µji, i < j < k,

7) νij · νjk · νki = νik · νkj · νji, i < j < k.

Let Rδ = (rδij)n×n be an IFPR with rδij =
(µδ

ij , ν
δ
ij) = (µδ(i)δ(j), νδ(i)δ(j)), where δ is a permutation

of {1, 2, · · · , n}.
Theorem 5: Given an IFPR R = (rij)n×n with rij =

(µij , νij), then R is multiplicative consistent if and only if
Rδ is multiplicative consistent for any permutation δ.

Proof: Necessity. Assume IFPR R = (rij)n×n is
multiplicative consistent, then from the Definition 3, we have
µij · µjk · µki = νij · νjk · νki for all i, j, k = 1, 2, · · · , n.
Thus, we can get µδ

ij · µδ
jk · µδ

ki = µδ(i)δ(j) · µδ(j)δ(k) ·
µδ(k)δ(i) = νδ(i)δ(j) · νδ(j)δ(k) · νδ(k)δ(i) = νδij · νδjk · νδki
for all i, j, k = 1, 2, · · · , n. By means of the Definition 3,
IFPR Rδ = (rδij)n×n is multiplicative consistent.

Sufficiency. If Rδ is multiplicative consistent, we have µδ
ij ·

µδ
jk ·µδ

ki = νδij · νδjk · νδki, i.e., µδ(i)δ(j) ·µδ(j)δ(k) ·µδ(k)δ(i) =
νδ(i)δ(j) ·νδ(j)δ(k) ·νδ(k)δ(i) for all i, j, k = 1, 2, · · · , n. Since
δ is a permutation of {1, 2, · · · , n}, if we denote δ(i) = i′,
δ(j) = j′ and δ(k) = k′, one can obtain µi′j′ ·µj′k′ ·µk′i′ =
νi′j′ · νj′k′ · νk′i′ for all i′, j′, k′ = 1, 2, · · · , n. According to
the Definition 3, IFPR R is multiplicative consistent.

For a decision making problem with n decision al-
ternatives, the decision maker’s pairwise comparison can
yield n! IFPRs by differently labeling the n alter-
natives, and these IFPRs can be denoted by a set{
Rδ|δ is a permutation of {1, 2, · · · , n}

}
. Theorem 5
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reveals that the multiplicative consistency given in Definition
3 is robust to the permutations of decision maker’s judg-
ments and independent of alternative labels. Therefore, the
Definition 3 gives a good measurement for the multiplicative
consistency of IFPR.

In the process of decision making with IFPRs, an
important thing is to obtain the underlying intuitionistic
fuzzy priority weights. Let ω = (ω1, ω2, · · · , ωn)

T =(
(ωµ

1 , ω
ν
1 ), (ω

µ
2 , ω

ν
2 ), · · · , (ωµ

n, ω
ν
n)
)T

be the intuitionistic
fuzzy priority weight vector of the IFPR R = (rij)n×n,
where ωi = (ωµ

i , ω
ν
i ) (i = 1, 2, · · · , n) is an IFN, which

satisfies ωµ
i , ω

ν
i ∈ [0, 1] and ωµ

i + ων
i ≤ 1. The intuitionistic

fuzzy weight vector ω is said to be normalized if it also
satisfies the following conditions [9]:

n∑
j=1,j ̸=i

ωµ
j ≤ ων

i , ωµ
i +n−2 ≥

n∑
j=1,j ̸=i

ων
j , i = 1, 2, · · · , n.

With the normalized intuitionistic fuzzy weight vector
ω = (ω1, ω2, · · · , ωn)

T , some transformation formulas have
been given to construct a multiplicative consistent IFPR
P = (pij)n×n.

(I) Liao and Xu [10] proposed the following formula to
establish a multiplicative consistent IFPR P = (pij)n×n,
where

pij = (pµij , p
ν
ij)

=



(0.5, 0.5), i = j,( 2ωµ
i

ωµ
i − ων

i + ωµ
j − ων

j + 2
,

2ωµ
j

ωµ
i − ων

i + ωµ
j − ων

j + 2

)
, i ̸= j.

(8)

(II) Jin et al. [15] and Lin and Wang [16] both introduced
the following formula to build a multiplicative consistent
IFPR P = (pij)n×n, where

pij = (pµij , p
ν
ij)

=

{
(0.5, 0.5), i = j,(√

ωµ
i ω

ν
j ,
√
ων
i ω

µ
j

)
, i ̸= j.

(9)

Although the IFPR P = (pij)n×n constructed by Eq. (9)
satisfies the multiplicative consistency condition Eq. (7), it
still has some drawbacks. If the intuitionistic fuzzy weights
reduce to the traditional fuzzy weights, i.e., ωµ

i +ων
i = 1 for

all i = 1, 2, · · · , n, then IFPR P = (pij)n×n constructed by
Eq. (8) degenerates to a FPR P = (pµij)n×n, this is because
that pµij + pνij = 1. And in this case, pµij = ωµ

i /(ω
µ
i + ωµ

j ),
which is equivalent to the multiplicative consistency con-
dition for a FPR given in Eq. (2). However, the IFPR
P = (pij)n×n constructed by Eq. (9) does not have this
property.

Motivated be the transformation formula provided by Liao
and Xu [10], we present the following formula to generate
a multiplicative consistent IFPR P = (pij)n×n, where

pij = (pµij , p
ν
ij)

=


(0.5, 0.5), i = j,( ωµ

i

2− ων
i − ων

j

,
ωµ
j

2− ων
i − ων

j

)
, i ̸= j,

(10)

and ωµ
i , ω

ν
i ∈ [0, 1], ωµ

i +ων
i ≤ 1,

∑n
j=1,j ̸=i ω

µ
j ≤ ων

i , ω
µ
i +

n− 2 ≥
∑n

j=1,j ̸=i ω
ν
j , for all i = 1, 2, · · · , n.

Theorem 6: The preference relation P = (pij)n×n is a
multiplicative consistent IFPR, where pij = (pµij , p

ν
ij) is

defined in Eq. (10).
Proof: It is obvious that pµij = pνji for all i, j =

1, 2, · · · , n. Since ωµ
i , ω

ν
i ∈ [0, 1] and ωµ

i + ων
i ≤ 1, we

can easily get

0 ≤ ωµ
i

2− ων
i − ων

j

≤ ωµ
i

ωµ
i + ωµ

j

≤ 1,

0 ≤
ωµ
j

2− ων
i − ων

j

≤
ωµ
j

ωµ
i + ωµ

j

≤ 1,

ωµ
i

2− ων
i − ων

j

+
ωµ
j

2− ων
i − ων

j

≤ ωµ
i

ωµ
i + ωµ

j

+
ωµ
j

ωµ
i + ωµ

j

= 1,

which means P = (pij)n×n is an IFPR. Moreover, when
i < j < k, we have

µij · µjk · µki =
ωµ
i

2− ων
i − ων

j

ωµ
j

2− ων
j − ων

k

ωµ
k

2− ων
k − ων

i

,

νij · νjk · νki =
ωµ
j

2− ων
i − ων

j

ωµ
k

2− ων
j − ων

k

ωµ
i

2− ων
k − ων

i

.

Clearly, µij · µjk · µki = νij · νjk · νki. Then, according to
the Definition 3 and the Theorem 4, IFPR P = (pij)n×n is
multiplicative consistent.

IV. MULTI-CRITERIA INTUITIONISTIC FUZZY GROUP
DECISION MAKING WITH INDIVIDUAL PRIORITIES

Consider a GDM in which X = {x1, x2, · · · , xn} is
the set of alternatives, D = {d1, d2, · · · , dm} is the set
of decision makers and C = {c1, c2, · · · , cp} is the set of
criteria. Let λ = {λ1, λ2, · · · , λm}T be the weight vector of
the decision makers, such that λk ≥ 0 for k = 1, 2, · · · ,m,
and

∑m
k=1 λk = 1. Since each decision maker has his/her

own opinions, he/she may believe that the importance of
these criteria is not the same, and it is reasonable to assume
that different experts should have different criteria weights.
For the decision maker dk, let δk = {δk1, δk2, · · · , δkp}T
be the weight vector of the criteria, such that δkt ≥ 0
for t = 1, 2, · · · , p, and

∑p
t=1 δkt = 1. Make pairwise

comparisons for all alternatives, the expert dk can
establish an IFPR R(kt) = (r

(kt)
ij )n×n with respect to

each criterion ct, where r
(kt)
ij = (µ

(kt)
ij , ν

(kt)
ij ) is the

preference information in IFN. However, in a practical
decision making problem, it is almost impossible for
decision makers to give multiplicative consistent IFPRs.
And in this case, we turn to find a normalized intuitionistic
fuzzy priority weight ω(kt) = (ω

(kt)
1 , ω

(kt)
2 , · · · , ω(kt)

n )T =(
(ω

(kt)µ
1 , ω

(kt)ν
1 ), (ω

(kt)µ
2 , ω

(kt)ν
2 ), · · · , (ω(kt)µ

n , ω
(kt)ν
n )

)T
,

such that
(

ω
(kt)µ
i

2−ω
(kt)ν
i −ω

(kt)ν
j

,
ω

(kt)µ
j

2−ω
(kt)ν
i −ω

(kt)ν
j

)
is close to

(µ
(kt)
ij , ν

(kt)
ij ), which means the deviation between each IFPR

R(kt) = (r
(kt)
ij )n×n and the corresponding multiplicative

consistent IFPR P (kt) = (p
(kt)
ij )n×n established by Eq. (10)

should be as small as possible. Then, we can introduce the
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following deviation variables:

ε
(kt)
ij =

ω
(kt)µ
i

2− ω
(kt)ν
i − ω

(kt)ν
j

− µ
(kt)
ij ,

ξ
(kt)
ij =

ω
(kt)µ
j

2− ω
(kt)ν
i − ω

(kt)ν
j

− ν
(kt)
ij ,

i ̸= j, i, j = 1, · · · , n, k = 1, · · · ,m, t = 1, · · · , p.

We can easily check that ε(kt)ij = ξ
(kt)
ji and ξ

(kt)
ij = ε

(kt)
ji .

Moreover, the smaller the absolute deviation, the more exact
results will be obtained. Thus, we can give the following
objective function for the decision maker dk with respect to
the criterion ct:

Min f =

n−1∑
i=1

n∑
j=i+1

(|ε(kt)ij |+ |ξ(kt)ij |), (11)

k = 1, 2, · · · ,m, t = 1, 2, · · · , p.

Let ε
+(kt)
ij =

|ε(kt)
ij |+ε

(kt)
ij

2 , ε
−(kt)
ij =

|ε(kt)
ij |−ε

(kt)
ij

2 , ξ
+(kt)
ij =

|ξ(kt)
ij |+ξ

(kt)
ij

2 , ξ
−(kt)
ij =

|ξ(kt)
ij |−ξ

(kt)
ij

2 , then ε
(kt)
ij = ε

+(kt)
ij −

ε
−(kt)
ij , |ε(kt)ij | = ε

+(kt)
ij + ε

−(kt)
ij , ξ

(kt)
ij = ξ

+(kt)
ij − ξ

−(kt)
ij ,

|ξ(kt)ij | = ξ
+(kt)
ij + ξ

−(kt)
ij , where ε

+(kt)
ij ≥0, ε

−(kt)
ij ≥0,

ξ
+(kt)
ij ≥0, ξ−(kt)

ij ≥0, ε+(kt)
ij ·ε−(kt)

ij =0 and ξ
+(kt)
ij ·ξ−(kt)

ij =0.
Therefore, a fractional programming Model 1 can be con-
structed to derive the normalized intuitionistic fuzzy priority
weight vector ω(kt).

Using some optimization computer packages, such
as Lingo or Matlab, to solve the Model 1, we
can get the optimal objective function value f and
the optimal normalized intuitionistic fuzzy priority
weight vector ω(kt) = (ω

(kt)
1 , ω

(kt)
2 , · · · , ω(kt)

n )T =(
(ω

(kt)µ
1 , ω

(kt)ν
1 ), (ω

(kt)µ
2 , ω

(kt)ν
2 ), · · · , (ω(kt)µ

n , ω
(kt)ν
n )

)T
.

Suppose all the normalized intuitionistic fuzzy pri-
ority weight vectors ω(kt) (k = 1, 2, · · · ,m, t =
1, 2, · · · , p) are obtained, using the aggregation operators
in Section II (take the IFWG operator as an example),
we first derive the individual intuitionistic fuzzy prior-
ity weight vectors ω(k) = (ω

(k)
1 , ω

(k)
2 , · · · , ω(k)

n )T =(
(ω

(k)µ
1 , ω

(k)ν
1 ), (ω

(k)µ
2 , ω

(k)ν
2 ), · · · , (ω(k)µ

n , ω
(k)ν
n )

)T
(k =

1, 2, · · · ,m), where

ω
(k)
i = IFWGδk(ω

(k1)
i , ω

(k2)
i , · · · , ω(kp)

i )

=
( p∏

t=1

(ω
(kt)µ
i )δkt , 1−

p∏
t=1

(1− ω
(kt)ν
i )δkt

)
. (12)

Then, fuse these individual intuitionistic fuzzy pri-
ority weight vectors ω(k) = (ω

(k)
1 , ω

(k)
2 , · · · , ω(k)

n )T

(k = 1, 2, · · · ,m) into an overall intuitionistic fuzzy
priority weight vector ω = (ω1, ω2, · · · , ωn)

T =(
(ωµ

1 , ω
ν
1 ), (ω

µ
2 , ω

ν
2 ), · · · , (ωµ

n, ω
ν
n)
)T

, using the IFWG op-
erator, we have

ωi = IFWGλ(ω
(1)
i , ω

(2)
i , · · · , ω(m)

i )

=
( m∏

k=1

(ω
(k)µ
i )λk , 1−

m∏
k=1

(1− ω
(k)ν
i )λk

)
. (13)

Calculate the similarity values (or accuracy values if the
similarity values are equal) of the overall intuitionistic fuzzy

priority weights ω1, ω2, · · · , ωn, the ranking order of the
alternatives can be given via the comparison law for IFNs.

In the following, an algorithm is proposed to handle this
multi-criteria GDM problem with IFPRs, where the decision
makers are taken as separate individuals.

Algorithm I:
Step 1. Make pairwise comparisons for all alternatives,

decision makers construct some IFPRs R(kt) = (r
(kt)
ij )n×n

(k = 1, 2, · · · ,m; t = 1, 2, · · · , p), where r
(kt)
ij (i, j =

1, 2, · · · , n) is the preference information in IFN given by
the expert dk with respect to the criterion ct. Go to the next
step.

Step 2. For each IFPR R(kt) = (r
(kt)
ij )n×n, establish a

fractional programming model according to the Model 1. Go
to the next step.

Step 3. Solve these fractional programming models to
derive the normalized intuitionistic fuzzy priority weight
vectors ω(kt) = (ω

(kt)
1 , ω

(kt)
2 , · · · , ω(kt)

n )T from the IFPRs
R(kt) = (r

(kt)
ij )n×n. Go to the next step.

Step 4. Synthesize the priority weight vectors ω(kt)

(k = 1, 2, · · · ,m; t = 1, 2, · · · , p) to get the indi-
vidual intuitionistic fuzzy priority weight vectors ω(k) =

(ω
(k)
1 , ω

(k)
2 , · · · , ω(k)

n )T by using the operators in Section II.
Go to the next step.

Step 5. Fuse the individual intuitionistic fuzzy prior-
ity weight vectors ω(k) (k = 1, 2, · · · ,m) into an
overall intuitionistic fuzzy priority weight vector ω =
(ω1, ω2, · · · , ωn)

T . Go to the next step.
Step 6. Compare the overall intuitionistic fuzzy priority

weights ω1, ω2, · · · , ωn to obtain the ranking order of the
alternatives. Go to the next step.

Step 7. End.
Here we give a simple example concerning the selection

of cars to illustrate the procedure for this multi-criteria
intuitionistic fuzzy GDM problem.

Example 1. Suppose that there is a family with three
members (decision makers), the father (d1), the mother (d2)
and the son (d3), they want to select a new car from four
candidate alternatives xi (i = 1, 2, 3, 4). Four criteria are
determined to complete this process including price (c1),
driving comfortability (c2), hundred kilometers acceleration
(c3) and color (c4). The weights of the decision makers
are assumed to be λ1=0.4, λ2=0.4 and λ3=0.2, respectively,
because the money is provided by parents. Furthermore,
since the father usually drives the car, he believes that the
criteria c1 and c2 are more important than the other criteria
c3 and c4, and he gives his weight vector of the criteria
δ1 = {0.4, 0.3, 0.1, 0.2}T . The mother’s weight vector of
the criteria is supposed to be δ2 = {0.7, 0.1, 0.1, 0.1}T ,
because she can not drive a car and she mainly cares
the price of the car. For the son, he pays attention to a
car’s speed, which means the weight of the criterion c3 is
the biggest, and he gives his weight vector of the criteria
δ3 = {0.1, 0.2, 0.5, 0.2}T . Make pairwise comparisons for
these four alternatives, decision maker dk (k = 1, 2, 3) can
establish an IFPR R(kt) = (r

(kt)
ij )4×4 with respect to each

criterion ct (t = 1, 2, 3, 4), which is given as follows:

R
(11)

=

 (0.50, 0.50) (0.45, 0.15) (0.55, 0.10) (0.50, 0.05)
(0.15, 0.45) (0.50, 0.50) (0.70, 0.10) (0.75, 0.05)
(0.10, 0.55) (0.10, 0.70) (0.50, 0.50) (0.30, 0.30)
(0.05, 0.50) (0.05, 0.75) (0.30, 0.30) (0.50, 0.50)

 ,
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Model 1 Min f =

n−1∑
i=1

n∑
j=i+1

(ε
+(kt)
ij + ε

−(kt)
ij + ξ

+(kt)
ij + ξ

−(kt)
ij )

s.t.



ω
(kt)µ
i

2−ω
(kt)ν
i −ω

(kt)ν
j

− µ
(kt)
ij − ε

+(kt)
ij + ε

−(kt)
ij = 0, i = 1, 2, · · · , n− 1, j = i+ 1, · · · , n

ω
(kt)µ
j

2−ω
(kt)ν
i −ω

(kt)ν
j

− ν
(kt)
ij − ξ

+(kt)
ij + ξ

−(kt)
ij = 0, i = 1, 2, · · · , n− 1, j = i+ 1, · · · , n

ω
(kt)µ
i , ω

(kt)ν
i ∈ [0, 1], ω

(kt)µ
i + ω

(kt)ν
i ≤ 1, i = 1, 2, · · · , n∑n

j=1,j ̸=i ω
(kt)µ
j ≤ ω

(kt)ν
i , ω

(kt)µ
i + n− 2 ≥

∑n
j=1,j ̸=i ω

(kt)ν
j , i = 1, 2, · · · , n

ε
+(kt)
ij ≥ 0, ε

−(kt)
ij ≥ 0, ξ

+(kt)
ij ≥ 0, ξ

−(kt)
ij ≥ 0, i = 1, 2, · · · , n− 1, j = i+ 1, · · · , n

ε
+(kt)
ij · ε−(kt)

ij = 0, ξ
+(kt)
ij · ξ−(kt)

ij = 0, i = 1, 2, · · · , n− 1, j = i+ 1, · · · , n

R
(12)

=

 (0.50, 0.50) (0.40, 0.30) (0.55, 0.15) (0.60, 0.10)
(0.30, 0.40) (0.50, 0.50) (0.60, 0.15) (0.70, 0.05)
(0.15, 0.55) (0.15, 0.60) (0.50, 0.50) (0.60, 0.10)
(0.10, 0.60) (0.05, 0.70) (0.10, 0.60) (0.50, 0.50)

 ,

R
(13)

=

 (0.50, 0.50) (0.45, 0.20) (0.40, 0.30) (0.65, 0.10)
(0.20, 0.45) (0.50, 0.50) (0.40, 0.25) (0.60, 0.10)
(0.30, 0.40) (0.25, 0.40) (0.50, 0.50) (0.40, 0.30)
(0.10, 0.65) (0.10, 0.60) (0.30, 0.40) (0.50, 0.50)

 ,

R
(14)

=

 (0.50, 0.50) (0.20, 0.70) (0.40, 0.40) (0.70, 0.10)
(0.70, 0.20) (0.50, 0.50) (0.20, 0.55) (0.70, 0.20)
(0.40, 0.40) (0.55, 0.20) (0.50, 0.50) (0.60, 0.10)
(0.10, 0.70) (0.20, 0.70) (0.10, 0.60) (0.50, 0.50)

 ,

R
(21)

=

 (0.50, 0.50) (0.40, 0.30) (0.35, 0.25) (0.45, 0.35)
(0.30, 0.40) (0.50, 0.50) (0.55, 0.10) (0.60, 0.20)
(0.25, 0.35) (0.10, 0.55) (0.50, 0.50) (0.50, 0.20)
(0.35, 0.45) (0.20, 0.60) (0.20, 0.50) (0.50, 0.50)

 ,

R
(22)

=

 (0.50, 0.50) (0.40, 0.45) (0.55, 0.10) (0.50, 0.15)
(0.45, 0.40) (0.50, 0.50) (0.60, 0.10) (0.55, 0.15)
(0.10, 0.55) (0.10, 0.60) (0.50, 0.50) (0.45, 0.30)
(0.15, 0.50) (0.15, 0.55) (0.30, 0.45) (0.50, 0.50)

 ,

R
(23)

=

 (0.50, 0.50) (0.40, 0.20) (0.30, 0.45) (0.60, 0.15)
(0.20, 0.40) (0.50, 0.50) (0.55, 0.25) (0.65, 0.10)
(0.45, 0.30) (0.25, 0.55) (0.50, 0.50) (0.60, 0.05)
(0.15, 0.60) (0.10, 0.65) (0.05, 0.60) (0.50, 0.50)

 ,

R
(24)

=

 (0.50, 0.50) (0.30, 0.60) (0.60, 0.15) (0.45, 0.35)
(0.60, 0.30) (0.50, 0.50) (0.70, 0.10) (0.60, 0.20)
(0.15, 0.60) (0.10, 0.70) (0.50, 0.50) (0.60, 0.15)
(0.35, 0.45) (0.20, 0.60) (0.15, 0.60) (0.50, 0.50)

 ,

R
(31)

=

 (0.50, 0.50) (0.30, 0.55) (0.40, 0.30) (0.55, 0.15)
(0.55, 0.30) (0.50, 0.50) (0.70, 0.15) (0.75, 0.05)
(0.30, 0.40) (0.15, 0.70) (0.50, 0.50) (0.55, 0.10)
(0.15, 0.55) (0.05, 0.75) (0.10, 0.55) (0.50, 0.50)

 ,

R
(32)

=

 (0.50, 0.50) (0.40, 0.35) (0.30, 0.45) (0.50, 0.25)
(0.35, 0.40) (0.50, 0.50) (0.40, 0.20) (0.55, 0.10)
(0.45, 0.30) (0.20, 0.40) (0.50, 0.50) (0.60, 0.10)
(0.25, 0.50) (0.10, 0.55) (0.10, 0.60) (0.50, 0.50)

 ,

R
(33)

=

 (0.50, 0.50) (0.40, 0.20) (0.55, 0.15) (0.45, 0.30)
(0.20, 0.40) (0.50, 0.50) (0.50, 0.25) (0.45, 0.35)
(0.15, 0.55) (0.25, 0.50) (0.50, 0.50) (0.40, 0.40)
(0.30, 0.45) (0.35, 0.45) (0.40, 0.40) (0.50, 0.50)

 ,

R
(34)

=

 (0.50, 0.50) (0.40, 0.40) (0.60, 0.20) (0.35, 0.45)
(0.40, 0.40) (0.50, 0.50) (0.45, 0.20) (0.55, 0.15)
(0.20, 0.60) (0.20, 0.45) (0.50, 0.50) (0.40, 0.30)
(0.45, 0.35) (0.15, 0.55) (0.30, 0.40) (0.50, 0.50)

 .

According to the Model 1, using Lingo software, we can
generate the normalized intuitionistic fuzzy priority weight
vector ω(kt) from the IFPR R(kt) constructed by decision
maker dk (k = 1, 2, 3) with respect to each criterion ct (t =

1, 2, 3, 4). Taking R(11) as an example, we first establish a
fractional programming Model 2.

Solving the Model 2 with Lingo software, we can get

ω(11) = (ω
(11)
1 , ω

(11)
2 , ω

(11)
3 , ω

(11)
4 )T

=
(
(0.3511, 0.4867), (0.3928, 0.5639),

(0.0638, 0.8749), (0.0300, 0.9123)
)T

.

Similarly, from R(12) −R(34), we can obtain

ω(12) =
(
(0.3559, 0.4772), (0.3640, 0.5176),

(0.0971, 0.8758), (0.0162, 0.9624)
)T

,

ω(13) =
(
(0.3627, 0.5384), (0.2646, 0.6555),

(0.1653, 0.6831), (0.0558, 0.9035)
)T

,

ω(14) =
(
(0.2873, 0.6750), (0.2714, 0.6978),

(0.2873, 0.6066), (0.0479, 0.9145)
)T

,

ω(21) =
(
(0.2675, 0.5364), (0.2590, 0.6992),

(0.1911, 0.6992), (0.0863, 0.8691)
)T

,

ω(22) =
(
(0.3247, 0.6033), (0.3653, 0.5849),

(0.0609, 0.8063), (0.0996, 0.7509)
)T

,

ω(23) =
(
(0.2017, 0.7479), (0.3277, 0.5798),

(0.3025, 0.5798), (0.0504, 0.9160)
)T

,

ω(24) =
(
(0.2270, 0.7568), (0.4540, 0.4865),

(0.0649, 0.8649), (0.1535, 0.7459)
)T

,

ω(31) =
(
(0.2115, 0.6875), (0.4958, 0.4111),

(0.1587, 0.7837), (0.0331, 0.9279)
)T

,

ω(32) =
(
(0.1716, 0.7569), (0.3356, 0.4900),

(0.2574, 0.6711), (0.0610, 0.8999)
)T

,

ω(33) =
(
(0.3066, 0.5388), (0.2366, 0.6946),

(0.1183, 0.8323), (0.1840, 0.7798)
)T

,

ω(34) =
(
(0.3234, 0.6418), (0.3250, 0.5458),

(0.1270, 0.8192), (0.0952, 0.8633)
)T

.

Next, using Eq. (12), we can derive the individual intu-
itionistic fuzzy priority weight vector for each decision maker
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Model 2 Min f = (ε
+(11)
12 + ε

−(11)
12 + ξ

+(11)
12 + ξ

−(11)
12 ) + (ε

+(11)
13 + ε

−(11)
13 + ξ

+(11)
13 + ξ

−(11)
13 )

+ (ε
+(11)
14 + ε

−(11)
14 + ξ

+(11)
14 + ξ

−(11)
14 ) + (ε

+(11)
23 + ε

−(11)
23 + ξ

+(11)
23 + ξ

−(11)
23 )

+ (ε
+(11)
24 + ε

−(11)
24 + ξ

+(11)
24 + ξ

−(11)
24 ) + (ε

+(11)
34 + ε

−(11)
34 + ξ

+(11)
34 + ξ

−(11)
34 )

s.t.



ω
(11)µ
1

2−ω
(11)ν
1 −ω

(11)ν
2

− 0.45− ε
+(11)
12 + ε

−(11)
12 = 0,

ω
(11)µ
2

2−ω
(11)ν
1 −ω

(11)ν
2

− 0.15− ξ
+(11)
12 + ξ

−(11)
12 = 0,

ω
(11)µ
1

2−ω
(11)ν
1 −ω

(11)ν
3

− 0.55− ε
+(11)
13 + ε

−(11)
13 = 0,

ω
(11)µ
3

2−ω
(11)ν
1 −ω

(11)ν
3

− 0.10− ξ
+(11)
13 + ξ

−(11)
13 = 0,

ω
(11)µ
1

2−ω
(11)ν
1 −ω

(11)ν
4

− 0.50− ε
+(11)
14 + ε

−(11)
14 = 0,

ω
(11)µ
4

2−ω
(11)ν
1 −ω

(11)ν
4

− 0.05− ξ
+(11)
14 + ξ

−(11)
14 = 0,

ω
(11)µ
2

2−ω
(11)ν
2 −ω

(11)ν
3

− 0.70− ε
+(11)
23 + ε

−(11)
23 = 0,

ω
(11)µ
3

2−ω
(11)ν
2 −ω

(11)ν
3

− 0.10− ξ
+(11)
23 + ξ

−(11)
23 = 0,

ω
(11)µ
2

2−ω
(11)ν
2 −ω

(11)ν
4

− 0.75− ε
+(11)
24 + ε

−(11)
24 = 0,

ω
(11)µ
4

2−ω
(11)ν
2 −ω

(11)ν
4

− 0.05− ξ
+(11)
24 + ξ

−(11)
24 = 0,

ω
(11)µ
3

2−ω
(11)ν
3 −ω

(11)ν
4

− 0.30− ε
+(11)
34 + ε

−(11)
34 = 0,

ω
(11)µ
4

2−ω
(11)ν
3 −ω

(11)ν
4

− 0.30− ξ
+(11)
34 + ξ

−(11)
34 = 0,

0 ≤ ω
(11)µ
1 ≤ 1, 0 ≤ ω

(11)ν
1 ≤ 1, ω

(11)µ
1 + ω

(11)ν
1 ≤ 1, 0 ≤ ω

(11)µ
2 ≤ 1, 0 ≤ ω

(11)ν
2 ≤ 1, ω

(11)µ
2 + ω

(11)ν
2 ≤ 1,

0 ≤ ω
(11)µ
3 ≤ 1, 0 ≤ ω

(11)ν
3 ≤ 1, ω

(11)µ
3 + ω

(11)ν
3 ≤ 1, 0 ≤ ω

(11)µ
4 ≤ 1, 0 ≤ ω

(11)ν
4 ≤ 1, ω

(11)µ
4 + ω

(11)ν
4 ≤ 1,

ω
(11)µ
2 + ω

(11)µ
3 + ω

(11)µ
4 ≤ ω

(11)ν
1 , ω

(11)µ
1 + ω

(11)µ
3 + ω

(11)µ
4 ≤ ω

(11)ν
2 ,

ω
(11)µ
1 + ω

(11)µ
2 + ω

(11)µ
4 ≤ ω

(11)ν
3 , ω

(11)µ
1 + ω

(11)µ
2 + ω

(11)µ
3 ≤ ω

(11)ν
4 ,

ω
(11)µ
1 + 2 ≥ ω

(11)ν
2 + ω

(11)ν
3 + ω

(11)ν
4 , ω

(11)µ
2 + 2 ≥ ω

(11)ν
1 + ω

(11)ν
3 + ω

(11)ν
4 ,

ω
(11)µ
3 + 2 ≥ ω

(11)ν
1 + ω

(11)ν
2 + ω

(11)ν
4 , ω

(11)µ
4 + 2 ≥ ω

(11)ν
1 + ω

(11)ν
2 + ω

(11)ν
3 ,

ε
+(11)
12 ≥ 0, ε

−(11)
12 ≥ 0, ξ

+(11)
12 ≥ 0, ξ

−(11)
12 ≥ 0, ε

+(11)
13 ≥ 0, ε

−(11)
13 ≥ 0, ξ

+(11)
13 ≥ 0, ξ

−(11)
13 ≥ 0,

ε
+(11)
14 ≥ 0, ε

−(11)
14 ≥ 0, ξ

+(11)
14 ≥ 0, ξ

−(11)
14 ≥ 0, ε

+(11)
23 ≥ 0, ε

−(11)
23 ≥ 0, ξ

+(11)
23 ≥ 0, ξ

−(11)
23 ≥ 0,

ε
+(11)
24 ≥ 0, ε

−(11)
24 ≥ 0, ξ

+(11)
24 ≥ 0, ξ

−(11)
24 ≥ 0, ε

+(11)
34 ≥ 0, ε

−(11)
34 ≥ 0, ξ

+(11)
34 ≥ 0, ξ

−(11)
34 ≥ 0,

ε
+(11)
12 ε

−(11)
12 = 0, ξ

+(11)
12 ξ

−(11)
12 = 0, ε

+(11)
13 ε

−(11)
13 = 0, ξ

+(11)
13 ξ

−(11)
13 = 0, ε

+(11)
14 ε

−(11)
14 = 0, ξ

+(11)
14 ξ

−(11)
14 = 0,

ε
+(11)
23 ε

−(11)
23 = 0, ξ

+(11)
23 ξ

−(11)
23 = 0, ε

+(11)
24 ε

−(11)
24 = 0, ξ

+(11)
24 ξ

−(11)
24 = 0, ε

+(11)
34 ε

−(11)
34 = 0, ξ

+(11)
34 ξ

−(11)
34 = 0.

dk (k = 1, 2, 3), which is given by

ω(1) =
(
(0.3398, 0.5339), (0.3428, 0.5920),

(0.1075, 0.8277), (0.0291, 0.9317)
)T

,

ω(2) =
(
(0.2608, 0.5974), (0.2903, 0.6611),

(0.1602, 0.7253), (0.0879, 0.8573)
)T

,

ω(3) =
(
(0.2659, 0.6290), (0.2911, 0.6088),

(0.1444, 0.8002), (0.1089, 0.8471)
)T

.

Finally, from Eq. (13), the overall intuitionistic fuzzy
priority weight vector is derived as

ω = (ω1, ω2, ω3, ω4)
T

=
(
(0.2910, 0.5800), (0.3104, 0.6244),

(0.1338, 0.7861), (0.0590, 0.8922)
)T

.

Since L(ω1)=0.3720, L(ω2)=0.3526, L(ω3)=0.1980,
L(ω4)=0.1028, which means L(ω1) > L(ω2) > L(ω3) >
L(ω4), then from Zhang and Xu’s ranking method [27], we
have ω1 > ω2 > ω3 > ω4. Thus, the family’s best choice is
the first car x1.

V. MULTI-CRITERIA INTUITIONISTIC FUZZY GROUP
DECISION MAKING WITH OVERALL PRIORITY

In the above section, we have studied a multi-criteria
GDM problem, where the decision maker acts as separate
individual. In this section, we continue to consider the
same GDM in which X = {x1, x2, · · · , xn} is the set of
alternatives, D = {d1, d2, · · · , dm} is the set of decision

makers and C = {c1, c2, · · · , cp} is the set of criteria. In
this case, the decision makers are taken as a group, and
the overall intuitionistic fuzzy priority weight vector ω =

(ω1, ω2, · · · , ωn)
T =

(
(ωµ

1 , ω
ν
1 ), (ω

µ
2 , ω

ν
2 ), · · · , (ωµ

n, ω
ν
n)
)T

can be obtained directly from a building fractional program-
ming model.

In a practical decision making problem, it is hard for
decision makers to give absolutely identical IFPRs. However,
if the intuitionistic fuzzy decision making has a solution, i.e.,
the underlying overall intuitionistic fuzzy priority weights
ω1, ω2, · · · , ωn exist, then a multiplicative consistent IFPR
P = (pij)n×n can always be established from Eq. (10).
It is natural and expected that the deviation between each
IFPR R(kt) = (r

(kt)
ij )n×n given by the decision maker dk

(k = 1, 2, · · · ,m) with respect to the criterion ct (t =
1, 2, · · · , p) and the corresponding multiplicative consistent
IFPR P = (pij)n×n should be as small as possible. Since
the weight of the decision maker dk is λk and the weight
of the criterion ct is δkt with respect to dk, the overall
deviation between the group’s intuitionistic fuzzy preference
values and the constructed multiplicative consistent IFPR
P = (pij)n×n can be given as

f =
m∑

k=1

λk

p∑
t=1

δkt

n−1∑
i=1

n∑
j=i+1

(|ε̂(kt)ij |+ |ξ̂(kt)ij |), (14)

where

ε̂
(kt)
ij =

ωµ
i

2− ων
i − ων

j

− µ
(kt)
ij , ξ̂

(kt)
ij =

ωµ
j

2− ων
i − ων

j

− ν
(kt)
ij .
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It can be checked that Eq. (14) is equivalent to

f =

m∑
k=1

λk

p∑
t=1

δkt

n−1∑
i=1

n∑
j=i+1

(ε̂
+(kt)
ij +ε̂

−(kt)
ij +ξ̂

+(kt)
ij +ξ̂

−(kt)
ij ),

where ε̂
+(kt)
ij =

|ε̂(kt)
ij |+ε̂

(kt)
ij

2 , ε̂
−(kt)
ij =

|ε̂(kt)
ij |−ε̂

(kt)
ij

2 ,

ξ̂
+(kt)
ij =

|ξ̂(kt)
ij |+ξ̂

(kt)
ij

2 , ξ̂
−(kt)
ij =

|ξ̂(kt)
ij |−ξ̂

(kt)
ij

2 . Therefore, a
fractional programming Model 3 can be established for this
multi-criteria intuitionistic fuzzy GDM problem.

Since ωµ
i

2−ων
i −ων

j
− µ

(kt)
ij − ε̂

+(kt)
ij + ε̂

−(kt)
ij = 0 (i =

1, 2, · · · , n − 1, j = i + 1 · · · , n, t = 1, 2, · · · , p, k =
1, 2, · · · ,m), and

∑p
t=1 δkt = 1,

∑m
k=1 λk = 1, we can get

ωµ
i

2− ων
i − ων

j

−
m∑

k=1

λk

p∑
t=1

δktµ
(kt)
ij −

m∑
k=1

λk

p∑
t=1

δktε̂
+(kt)
ij

+
m∑

k=1

λk

p∑
t=1

δktε̂
−(kt)
ij = 0.

Similarly, we can also have

ωµ
j

2− ων
i − ων

j

−
m∑

k=1

λk

p∑
t=1

δktν
(kt)
ij −

m∑
k=1

λk

p∑
t=1

δktξ̂
+(kt)
ij

+

m∑
k=1

λk

p∑
t=1

δktξ̂
−(kt)
ij = 0.

Let ε̂+ij =
∑m

k=1 λk

∑p
t=1 δktε̂

+(kt)
ij , ε̂−ij =∑m

k=1 λk

∑p
t=1 δktε̂

−(kt)
ij , ξ̂+ij =

∑m
k=1 λk

∑p
t=1 δktξ̂

+(kt)
ij

and ξ̂−ij =
∑m

k=1 λk

∑p
t=1 δktξ̂

−(kt)
ij , then the Model 3 can

be transformed into a fractional programming Model 4.
Using Lingo or Matlab to solve Model 4, the normal-

ized overall intuitionistic fuzzy priority weight vector ω =

(ω1, ω2, · · · , ωn)
T =

(
(ωµ

1 , ω
ν
1 ), (ω

µ
2 , ω

ν
2 ), · · · , (ωµ

n, ω
ν
n)
)T

can be generated without using the aggregation operator.
Then the ranking order of the alternatives can be given via
the comparison law for IFNs.

For the convenience of application, the procedure of this
method can be clarified as the following algorithm.

Algorithm II:
Step 1. See step 1 in Algorithm I.
Step 2. Establish a fractional programming model accord-

ing to the Model 4. Go to the next step.
Step 3. Solve the constructed fractional programming

model to derive the normalized overall intuitionistic fuzzy
priority weight vector ω = (ω1, ω2, · · · , ωn)

T . Go to the
next step.

Step 4. Compare the overall intuitionistic fuzzy priority
weights ω1, ω2, · · · , ωn to obtain the ranking order of the
alternatives. Go to the next step.

Step 5. End.
Example 2. Below we use Algorithm II to solve the

Example 1 again, and a fractional programming Model 5
can be generated from the Model 4.

Solving Model 5 with Lingo software, the normalized
overall intuitionistic fuzzy priority weight vector is given by

ω = (ω1, ω2, ω3, ω4)
T

=
(
(0.3125, 0.5261), (0.3000, 0.6563),

(0.1525, 0.7902), (0.0736, 0.8660)
)T

.

Since L(ω1) = 0.4080 > L(ω2) = 0.3293 > L(ω3) =
0.1984 > L(ω4) = 0.1264, then from Zhang and Xu’s
ranking method [27], we have ω1 > ω2 > ω3 > ω4, which
means the family’s best choice is still the first car x1.

VI. COMPARATIVE ANALYSIS

To verify the validity of the developed GDM approach
with IFPRs, we use different transformation formulas to
solve the same example again, the overall priority weight
vectors and the ranking orders are presented as shown in
Table I, where the decision makers are taken as a group.

From Table I, we can see that the same ranking order
x1 > x2 > x3 > x4 can be obtained by our transformation
formula and Liao and Xu’s formula [10], which validate the
effectiveness of the proposed Algorithm II, because these two
formulas are similar. However, if we use the transformation
formula Eq. (9), different ranking order x2 > x1 > x3 > x4

is derived, and the family’s best choice becomes the second
car x2. In the Section III, we have showed that the Eq.
(9) used to construct a multiplicative consistent IFPR is
unreasonable, which means the theory established by Eq. (9)
will be inappropriate and the final result x2 > x1 > x3 > x4

is not convincing.
In this paper, we assume that different experts have d-

ifferent criteria weights. In order to illustrate the effect of
criteria weights, we suppose the weights of criteria to be
δ1 = δ2 = δ3 = {0.7, 0.1, 0.1, 0.1}T in the Example 1, and
the overall priority weight vectors and ranking orders are
obtained as shown in Table II.

From Table II, we can see that the final ranking order
becomes x2 > x1 > x3 > x4 for δi = {0.7, 0.1, 0.1, 0.1}T
(i = 1, 2, 3), which is different from the ranking order
x1 > x2 > x3 > x4 derived in our previous two examples.
Thus, in a real decision making problem, one can not always
suppose that the experts have same criteria weights, and it
is reasonable and useful to assume that different decision
makers should have different criteria weights. If we compare
the priority weights obtained by the two methods, we can
find that the results of them are similar. However, since
the operators may loss some information in the process of
aggregation, the Algorithm II will produce a more convincing
result than the Algorithm I. Moreover, we can not guarantee
the final overall intuitionistic fuzzy priority weight vector
synthesized in Algorithm I is still normalized, while the
Model 4 always generate a normalized intuitionistic fuzzy
priority weight vector. The drawback of Algorithm II is that
it can only handle the case where the decision makers are
taken as a group and it can not deal with the first situation
when the experts are seen as separate individuals.

VII. CONCLUSION

In this paper, decision makers establish some IFPRs to
express their preferences by comparing each pair of alter-
natives with respect to each criterion, and the weights of
criteria can be different for different experts, then we propose
two algorithms for multi-criteria GDM based on the multi-
plicative consistency of IFPR. In the first scenario, decision
makers’ individual intuitionistic fuzzy priority weights with
respect to each criterion are obtained from some fractional
programming models, and using the aggregation operator, the
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Model 3 Min f =
m∑

k=1

λk

p∑
t=1

δkt

n−1∑
i=1

n∑
j=i+1

(ε̂
+(kt)
ij + ε̂

−(kt)
ij + ξ̂

+(kt)
ij + ξ̂

−(kt)
ij )

s.t.



ωµ
i

2−ων
i −ων

j
− µ

(kt)
ij − ε̂

+(kt)
ij + ε̂

−(kt)
ij = 0, i = 1, 2, · · · , n− 1, j = i+ 1, · · · , n, t = 1, 2, · · · , p, k = 1, 2, · · · ,m

ωµ
j

2−ων
i −ων

j
− ν

(kt)
ij − ξ̂

+(kt)
ij + ξ̂

−(kt)
ij = 0, i = 1, 2, · · · , n− 1, j = i+ 1, · · · , n, t = 1, 2, · · · , p, k = 1, 2, · · · ,m

ωµ
i , ω

ν
i ∈ [0, 1], ωµ

i + ων
i ≤ 1, i = 1, 2, · · · , n∑n

j=1,j ̸=i ω
µ
j ≤ ων

i , ωµ
i + n− 2 ≥

∑n
j=1,j ̸=i ω

ν
j , i = 1, 2, · · · , n

ε̂
+(kt)
ij ≥ 0, ε̂

−(kt)
ij ≥ 0, ξ̂

+(kt)
ij ≥ 0, ξ̂

−(kt)
ij ≥ 0, i = 1, · · · , n− 1, j = i+ 1, · · · , n, t = 1, · · · , p, k = 1, · · · ,m

ε̂
+(kt)
ij · ε̂−(kt)

ij = 0, ξ̂
+(kt)
ij · ξ̂−(kt)

ij = 0, i = 1, 2, · · · , n− 1, j = i+ 1, · · · , n, t = 1, 2, · · · , p, k = 1, 2, · · · ,m

Model 4 Min f =
n−1∑
i=1

n∑
j=i+1

(ε̂+ij + ε̂−ij + ξ̂+ij + ξ̂−ij)

s.t.



ωµ
i

2−ων
i −ων

j
−
∑m

k=1 λk

∑p
t=1 δktµ

(kt)
ij − ε̂+ij + ε̂−ij = 0, i = 1, 2, · · · , n− 1, j = i+ 1, · · · , n

ωµ
j

2−ων
i −ων

j
−
∑m

k=1 λk

∑p
t=1 δktν

(kt)
ij − ξ̂+ij + ξ̂−ij = 0, i = 1, 2, · · · , n− 1, j = i+ 1, · · · , n

ωµ
i , ω

ν
i ∈ [0, 1], ωµ

i + ων
i ≤ 1, i = 1, 2, · · · , n∑n

j=1,j ̸=i ω
µ
j ≤ ων

i , ωµ
i + n− 2 ≥

∑n
j=1,j ̸=i ω

ν
j , i = 1, 2, · · · , n

ε̂+ij ≥ 0, ε̂−ij ≥ 0, ξ̂+ij ≥ 0, ξ̂−ij ≥ 0, i = 1, 2, · · · , n− 1, j = i+ 1, · · · , n

Model 5 Min f = (ε̂+12 + ε̂−12 + ξ̂+12 + ξ̂−12) + (ε̂+13 + ε̂−13 + ξ̂+13 + ξ̂−13) + (ε̂+14 + ε̂−14 + ξ̂+14 + ξ̂−14)

+ (ε̂+23 + ε̂−23 + ξ̂+23 + ξ̂−23) + (ε̂+24 + ε̂−24 + ξ̂+24 + ξ̂−24) + (ε̂+34 + ε̂−34 + ξ̂+34 + ξ̂−34)

s.t.



ωµ
1

2−ων
1−ων

2
− 0.388− ε̂+12 + ε̂−12 = 0,

ωµ
2

2−ων
1−ων

2
− 0.319− ξ̂+12 + ξ̂−12 = 0,

ωµ
1

2−ων
1−ων

3
− 0.457− ε̂+13 + ε̂−13 = 0,

ωµ
3

2−ων
1−ων

3
− 0.223− ξ̂+13 + ξ̂−13 = 0,

ωµ
1

2−ων
1−ων

4
− 0.512− ε̂+14 + ε̂−14 = 0,

ωµ
4

2−ων
1−ων

4
− 0.217− ξ̂+14 + ξ̂−14 = 0,

ωµ
2

2−ων
2−ων

3
− 0.542− ε̂+23 + ε̂−23 = 0,

ωµ
3

2−ων
2−ων

3
− 0.178− ξ̂+23 + ξ̂−23 = 0,

ωµ
2

2−ων
2−ων

4
− 0.628− ε̂+24 + ε̂−24 = 0,

ωµ
4

2−ων
2−ων

4
− 0.154− ξ̂+24 + ξ̂−24 = 0,

ωµ
3

2−ων
3−ων

4
− 0.481− ε̂+34 + ε̂−34 = 0,

ωµ
4

2−ων
3−ων

4
− 0.214− ξ̂+34 + ξ̂−34 = 0,

0 ≤ ωµ
1 ≤ 1, 0 ≤ ων

1 ≤ 1, 0 ≤ ωµ
2 ≤ 1, 0 ≤ ων

2 ≤ 1, 0 ≤ ωµ
3 ≤ 1, 0 ≤ ων

3 ≤ 1, 0 ≤ ωµ
4 ≤ 1, 0 ≤ ων

4 ≤ 1,

ωµ
1 + ων

1 ≤ 1, ωµ
2 + ων

2 ≤ 1, ωµ
3 + ων

3 ≤ 1, ωµ
4 + ων

4 ≤ 1,

ωµ
1 + ωµ

2 + ωµ
3 ≤ ων

4 , ω
µ
1 + ωµ

2 + ωµ
4 ≤ ων

3 , ω
µ
1 + ωµ

3 + ωµ
4 ≤ ων

2 , ω
µ
2 + ωµ

3 + ωµ
4 ≤ ων

1 ,

ωµ
1 + 2 ≥ ων

2 + ων
3 + ων

4 , ω
µ
2 + 2 ≥ ων

1 + ων
3 + ων

4 , ω
µ
3 + 2 ≥ ων

1 + ων
2 + ων

4 , ω
µ
4 + 2 ≥ ων

1 + ων
2 + ων

3 ,

ε̂+12 ≥ 0, ε̂−12 ≥ 0, ξ̂+12 ≥ 0, ξ̂−12 ≥ 0, ε̂+13 ≥ 0, ε̂−13 ≥ 0, ξ̂+13 ≥ 0, ξ̂−13 ≥ 0, ε̂+14 ≥ 0, ε̂−14 ≥ 0, ξ̂+14 ≥ 0, ξ̂−14 ≥ 0,

ε̂+23 ≥ 0, ε̂−23 ≥ 0, ξ̂+23 ≥ 0, ξ̂−23 ≥ 0, ε̂+24 ≥ 0, ε̂−24 ≥ 0, ξ̂+24 ≥ 0, ξ̂−24 ≥ 0, ε̂+34 ≥ 0, ε̂−34 ≥ 0, ξ̂+34 ≥ 0, ξ̂−34 ≥ 0.

TABLE I
OVERALL PRIORITY WEIGHT VECTORS AND RANKING ORDERS WITH DIFFERENT TRANSFORMATION FORMULAS.

Transformation formula Method Overall priority weight vector (ω1, ω2, ω3, ω4)T Ranking order
Formula Eq. (8) in [10] Algorithm II

(
(0.2690, 0.4529), (0.2583, 0.6664), (0.1313, 0.7700), (0.0633, 0.8326)

)T
x1 > x2 > x3 > x4

Formula Eq. (9) in [15], [16] Algorithm II
(
(0.2792, 0.5452), (0.3928, 0.4317), (0.0912, 0.7479), (0.0612, 0.9388)

)T
x2 > x1 > x3 > x4

Formula Eq. (10) in this paper Algorithm II
(
(0.3125, 0.5261), (0.3000, 0.6563), (0.1525, 0.7902), (0.0736, 0.8660)

)T
x1 > x2 > x3 > x4

TABLE II
OVERALL PRIORITY WEIGHT VECTORS AND RANKING ORDERS WITH DIFFERENT CRITERIA WEIGHT VECTORS.

Method Weight vector δi (i =1, 2, 3) Overall priority weight vector (ω1, ω2, ω3, ω4)T Ranking order
Algorithm I δ1, δ2, δ3 in Example 1

(
(0.2910, 0.5800), (0.3104, 0.6244), (0.1338, 0.7861), (0.0590, 0.8922)

)T
x1 > x2 > x3 > x4

Algorithm II δ1, δ2, δ3 in Example 1
(
(0.3125, 0.5261), (0.3000, 0.6563), (0.1525, 0.7902), (0.0736, 0.8660)

)T
x1 > x2 > x3 > x4

Algorithm I δi = {0.7, 0.1, 0.1, 0.1}T
(
(0.2833, 0.5850), (0.3418, 0.5983), (0.1240, 0.7924), (0.0513, 0.8964)

)T
x2 > x1 > x3 > x4

Algorithm II δi = {0.7, 0.1, 0.1, 0.1}T
(
(0.2859, 0.5522), (0.3498, 0.5885), (0.1388, 0.8111), (0.0636, 0.8862)

)T
x2 > x1 > x3 > x4
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overall priority weight vector can be synthesized. While for
the second case, the decision makers are taken as a group,
and the normalized overall intuitionistic fuzzy priority weight
vector can be derived directly from one building fractional
programming model. Finally, we have applied the proposed
two methods to select an optimal car for a family.

Although this paper develops two techniques for multi-
criteria GDM with IFPRs, there are still some problems that
need further study. In a real decision making problem, it is
almost impossible for decision makers to give multiplicative
consistent IFPRs. Thus, how to repair the inconsistent IFPRs
to be of acceptable consistency becomes a critical problem.
For a GDM problem, how to measure the consensus degree
and how to reach the consensus are also important. Moreover,
in our model, the weights of decision makers and the
weights of criteria are determined beforehand, how to get
the corresponding objective weights can also be analyzed in
the future.
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