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Abstract—The problem of saturated output feedback stabi-
lization for a class of nonlinear systems with upper-triangular
structure is addressed in this paper. By constructing a reduced
order observer to estimates the unmeasurable states and by
skillfully using the homogeneous domination approach and
the nested saturation technique, a saturated output feedback
control scheme is successfully developed. It is prove that the
proposed controller with appropriate design parameters can
render the states of the closed-loop system globally asymp-
totically to zero without violation of the input constraint. A
simulation example is provided to demonstrate the effectiveness
of the proposed method.

Index Terms—Feedforward nonlinear systems, Input sat-
uration, Homogeneous domination approach, Reduced-order
observer

I. INTRODUCTION

During the past few decades, feedforward systems have
received widely attention because they can be used to model
many practical systems, such as the ball and beam system,
the cart-pendulum system, the TORA system, and so forth.
However, the design of globally stabilizing controller for a
feedforward system has proven to constitute a challenging
task due to the fact that such system is neither feedback
linearizable nor stabilized by applying the frequently-used
backstepping approach. To give this difficulty a solution, a
number of intelligent approaches have been developed such
as the nested-saturation method [1-6] and the forwarding
technique [7, 8]. Thanks to these effective approaches, the
state feedback stabilization problem has been well-studied
recently. Nevertheless, when only part of state variables are
measurable, the problem of global stabilization by output
feedback is more challenging and has received little attention.
As a matter of fact, the upper-triangular structure leads to an
intrinsic obstacle that makes it difficult to achieve even semi-
global output feedback stabilization of general feedforward
systems [9].

In the existing literature, there are numerous valuable re-
sults in coping with the output feedback stabilization problem
of feedforward systems under different growth conditions.
For example, by imposed the restriction that the nonlinear ter-
m is a linear growth, the global output feedback stabilization
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for uncertain feedforward systems was first studied in [10].
Later, by employing the homogeneous domination approach
introduced in [11], the linear growth condition was lifted in
[9] where global output feedback stabilization was achieved
for more general nonlinearities under a homogeneous growth
condition, and stimulated a series of subsequent works [12-
17]. However, the effect of the input constraint is omitted in
the above-mentioned results.

As we all know, the actuator saturation is a common
phenomenon in practical systems due to the inherent physical
limitations of devices. Its existence often severely limits
system performance, giving rise to undesirable inaccuracy or
leading to instability [18]. Thus, it is of great significance to
study the problem of saturated output feedback stabilization
of feedforward nonlinear systems. Nevertheless, to the best
of our knowledge, this issue has not been well-addressed in
the literature.

Based on the above observations, in this paper we focus
our attention to solve the problem of global stabilization for
a class feedforward nonlinear systems by saturated output
feedback. The major obstacle to tackle this problem lies
in that, the presence of input constraint may lead to a
system uncontrollable even if it is indeed controllable for
the unconstrained case, that is, the common assumptions and
output feedback control techniques mainly for unsaturated
feedforward systems are infeasible here. Until now it still
remains unanswered that under what conditions the feedfor-
ward nonlinear systems may exist saturated output feedback
controller. To overcome the aforementioned difficulty, we
first place a general homogeneous growth condition and
design an unsaturated state feedback controller for the con-
sidered system by employing the homogeneous domination
approach. Then, we impose a series of nested saturations
to the developed controller and obtain a saturated state
feedback controller. Moreover, different from the full order
observers proposed in [19,20], in this paper we construct a
reduced-order observer to estimate unmeasurable states, and
obtain a saturated output feedback controller that renders that
the states of the closed-loop system globally asymptotically
convergence to zero.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, we consider a class of feedforward nonlinear
systems represented by

ẋi = xi+1 + fi(t, xi+2, · · · , xn, u), i = 1, · · · , n− 2
ẋn−1 = xn + fn−1(t, u)
ẋn = u
y = x1

(1)
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where x = (x1, · · · , xn)
T ∈ Rn, u ∈ R, y ∈ R are the

system state, control input and system output, respectively,
and x2, · · · , xn are unmeasurable. The continuous functions
fi : R × Rn−i → R, i = 1, · · · , n − 1 represent unknown
nonlinear perturbations.

The objective of this paper is to present an output feedback
control design strategy which globally stabilizes the system
(1) under the following saturation constraint:

−umax ≤ u ≤ umax (2)

where umax is a priori known positive real number.
To this end, the following assumption regarding system

(1) is imposed.
Assumption 1. For i = 1, · · · , n − 1, there are constants

b > 0 and τ ∈ (−1/n,+∞) such that

|fi(·)| ≤ b
n+1∑

j=i+2

|xj |(ri+τ)/rj

where xn+1 = u, r1 = 1, ri+1 = ri + τ > 0, i = 1, · · · , n.
For simplicity, it is assumed that τ = −p

q with p being any
even integer and q being any odd integer. Based on this, we
know that ri ∈ (0, 1) is a ratio of two positive odd integers.

In what follows, we review some useful definitions and
lemmas which will serve as the basis of the coming control
design and performance analysis.

Definition 1[21]. Consider a system

ẋ = f(x) with f(0) = 0, x ∈ Rn (3)

where f : U0 → Rn is continuous with respect to x on an
open neighborhood U0 of the origin x = 0. The equilibrium
x = 0 of the system is (locally) finite-time stable if it is
Lyapunov stable and finite-time convergent in a neighbor-
hood U ∈ U0 of the origin. By ”finite-time convergence,” we
mean: If, for any initial condition x(0) ∈ U , there is a settling
time T > 0 , such that every solution x(t) with x(0) as its
initial condition of (3) is well defined with x(0) ∈ U \ {0}
for t ∈ [0, T ) and satisfies limt→T x(t) = 0 and x(t) = 0
for any t ≥ T . If U = U0 = Rn, the origin is a globally
finite-time stable equilibrium.

Lemma 1[21]. Consider the nonlinear system (3). Suppose
there is a C1 function V (x) defined in a neighborhood Û ∈
Rn of the origin, real numbers c > 0 and 0 < α < 1, such
that

(i) V (x) is positive definite on Û ;
(ii) V̇ (x) + cV α(x) ≤ 0, ∀x ∈ Û .

Then, the origin of system (3) is locally finite-time stable
with T ≤ V 1−α(x(0))

c(1−α) for initial condition x(0) in some open
neighborhood U ∈ Û of the origin. If U = Rn and V (x) is
also radially unbounded (i.e., V (x) → +∞ as x → +∞),
the origin of system (3) is globally finite-time stable.

Definition 2[9]. Weighted Homogeneity: For fixed coor-
dinates (x1, · · · , xn) ∈ Rn and real numbers ri > 0,
i = 1, · · · , n,
• the dilation ∆ε(x) is defined by ∆ε(x) =

(εr1x1, · · · , εrnxn) for any ε > 0, where ri is called the
weights of the coordinates. For simplicity, we define dilation
weight ∆ = (r1, · · · , rn).
• a function V ∈ (Rn, R) is said to be homogeneous

of degree τ if there is a real number τ ∈ R such that
V (∆ε(x)) = ετV (x1, · · · , xn) for any x ∈ Rn \ {0}, ε > 0.

• a vector field f ∈ (Rn, Rn) is said to be homogeneous
of degree τ if there is a real number τ ∈ R such that
fi(∆ε(x)) = ετ+rifi(x), for any x ∈ Rn \ {0}, ε > 0,
i = 1, · · · , n.
• a homogeneous p-norm is defined as ∥x∥△,p =

(
∑n

i=1 |xi|p/ri)1/p for all x ∈ Rn, for a constant p ≥ 1.
For simplicity, in this paper, we choose p = 2 and write
∥x∥△ for ∥x∥△,2.

Lemma 2[9]. Suppose V : Rn → R is a homogeneous
function of degree τ with respect to the dilation weight ∆.
Then the following holds:

(i) ∂V/∂xi is homogeneous of degree τ−ri with ri being
the homogeneous weight of xi.

(ii) There is a constant c such that V (x) ≤ c∥x∥τ△.
Moreover, if V (x) is positive definite, then c∥x∥τ△ ≤ V (x),
where c is a constant.

Lemma 3 [9]. For x ∈ R, y ∈ R, and p ≥ 1 is a constant,
the following inequalities hold: (i) |x+y|p ≤ 2p−1|xp+yp|,
(ii)(|x|+ |y|)1/p ≤ |x|1/p + |y|1/p ≤ 2(p−1)/p(|x|+ |y|)1/p.
Furthermore, if p ≥ 1 is odd, then (iii) |x−y|p ≤ 2p−1|xp−
yp|, (iv)|x1/p−y1/p| ≤ 2(p−1)/p(|x−y|)1/p, (v) |xp−yp| ≤
p|x− y||xp−1 + yp−1| ≤ c|x− y||(x− y)p−1 + yp−1| for a
constant c > 0.

Lemma 4[22,23].For any positive real numbers c, d and any
real-valued function π(x, y) > 0, the following inequality
holds: |x|c|y|d ≤ c

c+dπ(x, y)|x|
c+d + d

c+dπ
−c/d(x, y)|y|c+d.

III. THE DESIGN OF SATURATED OUTPUT FEEDBACK
CONTROLLER

In this section, we give a constructive procedure for
the globally stabilizer of system (1) by saturated output
feedback. Before designing the controller, we first introduce
the following coordinate transformation:

z1 = x1, zi =
xi

Lκi
, i = 2, · · · , n, υpn =

upn

Lκn+1
(4)

where κi = n− 1, i = 1, · · · , n and 0 < L < 1 is a constant
to be determined later.

Then, under the new coordinates zi’s, system (1) is trans-
formed into:

żi = Lzi+1 +
fi
Lκi

, i = 1, · · · , n− 1

żn = Lv
y = z1

(5)

Noting that the transformation (4) is invertible, thus in
the next, we turn to designing a saturated output feedback
controller for system (5).

A. Unsaturated state feedback controller design

Step 1. Let ρ ≥ max1≤i≤n+1{ri} is a positive number
and choose the Lyapunov function V1 = W1 =

∫ z1
0

(sρ/r1 −
0)(2ρ−τ−r1)/ρds. Clearly, the first virtual controller

z∗2 = −β∗
1ξ

r2/ρ
1

(6)

with ξ1 = z1 and β∗
1 ≥ n being a constant, renders

V̇1 ≤ −nLξ21 + Lξ
(2ρ−τ−r1)/ρ
1 (z2 − z∗2) +

∂V1

∂z1
f1 (7)

Step i (i = 2, · · · , n). In this step, we can obtain the
following property, whose similar proof can be found in [9]
and hence is omitted here.

Engineering Letters, 28:2, EL_28_2_09

Volume 28, Issue 2: June 2020

 
______________________________________________________________________________________ 



Proposition 1. Assume that at step i − 1, there is a C1,
proper and positive definite Lyapunov function Vi−1, and a
set of virtual controllers z∗1 , · · · , z∗i defined by

z∗1 = 0, ξ1 = z
ρ/r1
1 − z

∗ρ/r1
1

z∗2 = −β∗
1ξ

r2/ρ
1 , ξ2 = z

ρ/r2
2 − z

∗ρ/r2
2

...
...

z∗i = −β∗
i−1ξ

ri/ρ
i−1 ξi = z

ρ/ri
i − z

∗ρ/ri
i

(8)

with β∗
j > 0, j = 1, · · · , i− 1, being constants, such that

V̇i−1 ≤ −(n− i+ 2)L
i−1∑
j=1

ξ2j +
i−1∑
j=1

∂Vi

∂zj

fj
Lκj

+Lξ
(2ρ−τ−ri−1)/ρ
i (zi − z∗i )

(9)

Then the ith Lyapunov function defined by

Vi = Vi−1 +

∫ zi

z∗
i

(sρ/ri − z
∗ρ/ri
i )(2ρ−τ−ri)/ρds (10)

is C1, proper and positive definite, and there exists the C0

virtual controller z∗i+1 = −β∗
i ξ

ri+1/ρ
i such that

V̇i ≤ −(n− i+ 1)L
i∑

j=1

ξ2j +
i∑

j=1

∂Vi

∂zj

fj
Lkj

+Lξ
(2ρ−τ−ri)/ρ
i (zi+1 − z∗i+1)

(11)

where βi > 0 is a constant.
Hence at step n, choosing

Vn =
n∑

i=1

∫ zi

z∗
i

(
sρ/ri − z

∗ρ/ri
i

)(2ρ−τ−ri)/ρ

ds (12)

and

z∗n+1 = −β∗
nξ

rn+1/ρ
n

= −β∗
n

(
z
ρ/rn
n + β

∗ρ/rn
n−1

(
z
ρ/rn−1

n−1 + · · ·

+β
∗ρ/r3
2

(
z
ρ/r2
2 + β

∗ρ/r2
1 z1

)))rn+1/ρ

= −β∗
n

(
β̄∗
nz

ρ/rn
n + β̄∗

n−1z
ρ/rn−1

n−1

+ · · ·+ β̄∗
1z

ρ/r1
1

)rn+1/ρ

(13)
where

β̄∗
i =

{
β̄
∗ρ/rn
n−1 · · · β̄∗ρ/ri+1

i , i = 1, · · · , n− 1
1, i = n

(14)

from Proposition 1, we arrive at

V̇n ≤ −L
n∑

j=1

ξ2j +
n−1∑
j=1

∂Vn

∂zj

fj
Lκj

+Lξ
(2ρ−τ−rn)/ρ
n (v − z∗n+1)

(15)

Consequently, the following result is obtained.
Lemma 5. For the nonlinear system (5) under Assumption

1, the unsaturated state feedback controller v = z∗n+1 in
(13) renders the origin of the closed-loop system is globally
asymptotically stable.

B. Saturated state feedback controller design

In this subsection, a saturated state feedback controller is
designed to solve the global stabilization problem for system
(5). By the combined saturation technique, we impose a
series of nested saturations to the controller v = z∗n+1 in
(13) and obtain a saturated controller as following form

vssf = vn(Zn) = −βnσ
rn+1/ρ

(
zρ/rnn − v

ρ/rn
n−1 (Zn−1)

)
(16)

where v0 = 0, vi(Zi) = −βiσ
ri+1/ρ(z

ρ/ri
i − v

ρ/ri
i−1 (Zi−1)),

Zi = (z1, · · · , zi), i = 1, · · · , n,

σ(x) =

{
εsign(x), |x| > ε
x, |x| ≤ ε

for a small constant ε > 0 to be determined later, and the
gains βi’s are selected as

β1 > max
{
β∗
1 , 2

1+r2
}

βi > max
{
β∗
i , 2

ri+1/ρ
(
4(1 + βi−1)αi−1(·) + 2

)}
i = 2, · · · , n

(17)

with

α1(β1) = ρβ
ρ/r2
1 (1 + β1)

αj(β1, · · · , βj) =
ρβ

ρ/rj+1
j

rj
(1 + βj−1)

ρ/rj−1(1 + βj)

+β
ρ/rj+1

j αj−1(·), j = 2, · · · , n− 1
(18)

Remark 1. From (16) and the definition of saturation
function σ(·), it can clearly be seen that the controller
vssf = vn(Zn) is bounded by a constant βnε

rn+1 , which
means that the bound of controller (16) can be arbitrarily
small by choosing appropriate design constant ε.

We begin our the main result of this subsection by in-
troducing an important lemma, whose similar proof can be
found in [2].

Lemma 6. Consider the system (5) with saturated con-
troller (16). For i = 1, · · · , n − 1, under the condition
|zj | ≤ εrj/ρ(1 + βj−1), j = i + 1, · · ·n + 1, there exist
a series of functions αi(β1, · · · , βi) defined as (18) and a
constant 0 < ε1 < 1 such that for any 0 < ε ≤ ε1, t ≥ t,
the following inequalities hold:∣∣∣ fi

Lκi

∣∣∣ ≤ Lεri+1/ρ (19)∣∣∣vρ/ri+1

i (Zi(t))− v
ρ/ri+1

i (Zi(t))
∣∣∣ ≤ Lαi(·)ε(ρ+τ)/ρ(t− t)

(20)
With the help of Lemmas 5 and 6, we are ready to state

the main result of this subsection.
Theorem 1. For the nonlinear system (5) under Assump-

tion 1, the saturated state feedback controller (16) renders
that the origin of the closed-loop system is globally asymp-
totically stable.

C. Reduced order observer and main result

Since z2, · · · , zn are not available for feedback, the con-
troller (16) is not implementable. To estimate the unmeasur-
able states, we construct a homogeneous observer

η̇i = −Lli−1ẑi
ẑi = (ηi + li−1ẑi−1)

ri/ri−1 , i = 2, · · · , n (21)
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where ẑ1 = z1. Based on (16), we design a saturated output
feedback controller

vsof (ẑ) = vn(Ẑn) = −βnσ
rn+1/ρ

(
ẑρ/rnn − v

ρ/rn
n−1 (Ẑn−1)

)
(22)

where v0 = 0, vi(Ẑi) = −βiσ
ri+1/ρ(ẑ

ρ/ri
i − v

ρ/ri
i−1 (Ẑi−1)),

Ẑi = (ẑ1, · · · , ẑi), i = 1, · · · , n and βi’s are determined by
(17).

Remark 2. From (22) and the definition of saturation
function σ(·), one can easily verify the following inequality
holds:

|vsof (ẑ)| ≤ v̄(ẑ) , βn

(
β̄n|ẑn|ρ/rn + β̄n−1|ẑn−1|ρ/rn−1

+ · · ·+ β̄1|ẑ1|
)rn+1/ρ

(23)
Remark 3. Similarly to [17], using the certainty equiva-

lence principle together with (13), one can also obtain an
implementable unsaturated output feedback controller for
system (5) as follows

vuof (ẑ)

= −βn

(
β̄nẑ

ρ/rn
n + β̄n−1ẑ

ρ/rn−1

n−1 + · · ·+ β̄1ẑ
ρ/r1
1

)rn+1/ρ

(24)
Define the estimate errors ei = (z

pi−1

i − ẑ
pi−1

i )ρ/(ripi−1),
i = 2, · · · , n, and choose the Lyapunov function

Ui =

∫ z
(2ρ−τ−ri−1)/ri
i

γ
(2ρ−τ−ri−1)/ri−1
i

(sri−1/(2ρ−τ−ri−1) − γi)ds (25)

where γi = ηi + li−1zi−1. Then, for i = 2, · · · , n, it follows
from (21) and (25) that

U̇i =
∂Ui

∂zi

(
Lzi+1 +

fi
Lκi

)
+

∂Ui

∂zi−1

(
Lzi +

fi−1

Lκi−1

)
− L

∂Ui

∂ηi
li−1ẑi

=
2ρ− τ − ri−1

ri
Lz

(2ρ−τ−ri−1−ri)/ri
i (z

ri−1/ri
i − γi)zi+1

−Lli−1e
ri
i

(
z
(2ρ−τ−ri−1)/ri
i − ẑ

(2ρ−τ−ri−1)/ri
i

)
−Lli−1e

ri
i

(
ẑ
(2ρ−τ−ri−1)/ri
i − γ

(2ρ−τ−ri−1)/ri−1

i

)
+
∂Ui

∂zi

fi
Lκi

+
∂Ui

∂zi−1

fi−1

Lκi−1

(26)
where zn+1 = vsof (ẑ). The following propositions give the
proper estimations of some terms of the right-hand side of
(26) whose proofs can be achieved by lemmas 3 and 4.

Proposition 2. There exists a positive constant λi such
that

−li−1e
ri
i

(
z
(2ρ−τ−ri−1)/ri
i − ẑ

(2ρ−τ−ri−1)/ri
i

)
≤ −li−1λie

2
i

(27)

Proposition 3. For i = 2, · · · , n− 1, there holds

2ρ− τ − ri−1

ri
z
(2ρ−τ−ri−1−ri)/ri
i (z

ri−1/ri
i − γi)zi+1

≤ 1

12

i+1∑
j=i−1

ξ2j +mie
2
i + gi(li−1)e

2
i−1

(28)
where gi is a continuous function of li−1 and mi > 0 is a
constant.

Proposition 4. For the saturated output feedback controller
vsof (ẑ), we obtain
2ρ− τ − rn−1

rn
z(2ρ−τ−rn−1−rn)/rn
n (zrn−1/rn

n − γn)vsof

≤ 1

8

n∑
j=1

ξ2j + c

n∑
i=2

e2i + gn(ln−1)e
2
n−1

(29)
where gn is a continuous function of ln−1 and c > 0 is a
constant.

Proposition 5. For i = 3, · · · , n, there holds

−li−1e
ri
i

(
ẑ
(2ρ−τ−ri−1)/ri
i − γ

(2ρ−τ−ri−1)/ri−1

i

)
≤ 1

16
(ξ2i−1 + ξ2i ) + e2i + hi(li−1)e

2
i−1

(30)

where hi is a continuous function of li−1.
Let U =

∑n
i=2 Ui. Using the estimates (27), (28), (29)

and (30), the time derivative of U satisfies

U̇ =
1

2

n∑
i=1

ξ2i +
(
− l1λ2 +m2 + c+ g3(l2) + h3(l2)

)
e22

+
n−1∑
i=3

(
− li−1λi +mi + 1 + c+ gi+1(li) + hi+1(li)

)
e2i

+(−ln−1λn + 1 + c)e2n
(31)

By (13), (22), (23) and (24), we can estimate
ξ2ρ−τ−rn
i (vpn

sof − z∗pn

n+1) by the following proposition.
Proposition 6. There exists a positive constant µ such that

ξ2ρ−τ−rn
i (vsof − z∗n+1) ≤

1

4

n∑
i=1

ξ2i + µ

n∑
i=2

e2i (32)

With the help of Proposition 6, defining Γ = Vn + U ,
combining (15) and (31), and recursively choosing

ln−1 ≥ λ−1
n

(1
4
+ 1 + c+ µ

)
li−1 ≥ λ−1

i

(1
4
+mi + 1 + c+ µ+ gi+1(li) + hi+1(li)

)
i = n− 1, · · · , 3

l1 ≥ λ−1
2

(1
4
+m2 + c+ µ+ g3(l2) + h3(l2)

)
(33)

we obtain

Γ̇ ≤ −L

4

n∑
i=1

ξ2i − L

4

n∑
i=2

e2i +

n−1∑
j=1

∣∣∣ ∂Γ
∂zj

∣∣∣∣∣∣ fj
Lκj

∣∣∣ (34)

The main result of the paper can be summarized into the
following theorem:

Theorem 2. For the high-order feedforward nonlinear
systems (1) under Assumption 1, the saturated output feed-
back controller u = Lκn+1vsof in (4), (21) and (22),
renders that the origin of the closed-loop system is globally
asymptotically stable.

Proof. From the construction of Γ, it can be verified
that Γ is positive definite and proper with respect to Z =
(z1, · · · , zn, η2, · · · , ηn)T . Denoting the dilation weight

∆ = (r1, · · · , rn︸ ︷︷ ︸
for z1,···,zn

, r1, · · · , rn−1︸ ︷︷ ︸
for η2···,ηn

)
(35)

from Definition 2, it can be shown that Γ is homogeneous
of degree 2ρ− τ with respect to ∆. Furthermore, by Lemma
2, there is a constant m1, such that

Γ ≤ m1∥Z∥2ρ−τ
∆ (36)
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where m1 > 0 and ∥Z∥∆ =√
(
∑n

i=1 |zi|2/ri) + (
∑n

i=2 |ηi|2/ri). Similarly, since∑n
i=1 ξ

2
i +

∑n
i=2 e

2
i is homogeneous of degree 2ρ, by

Lemma 2.2, there is a constant m2 such that

Γ̇ ≤ −m2L∥Z∥2ρ∆ +
n−1∑
j=1

∣∣∣ ∂Γ
∂zj

∣∣∣∣∣∣ fj
Lκj

∣∣∣ (37)

Noting (23), we can find a constant k such that

Γ̇ ≤ −kΓ2ρ/(2ρ−τ) (38)

Therefore, the closed-loop system (5)with (21) and (22) is
globally asymptotically stable. Furthermore, by noting that
(4) is an equivalent transformation, the closed-loop system
consisting of (1), upn = Lκn+1υpn in (4), (21) and (22), has
the same properties as the system (5) with (21) and (22).
Thus, the proof is completed.

Remark 4. By noting the fact that 0 < L < 1 and κn+1 >
0, it is easily observed from Remark 1 that the control law
u(t) is bounded by a constant βnε

rn+1 , that is, by choosing
design parameters ε and βn as βnε

rn+1 < umax, |u(t)| ≤
umax can be guaranteed.

IV. SIMULATION EXAMPLE

Consider the following feedforward system

ẋ1 = x2 + u3

ẋ2 = u
y = x1

(39)

with the requirement of |u| ≤ umax = 1. Choosing τ =
−2

5 ∈ (−1, 0), we have r1 = 1, r2 = 3
5 and r3 = 1

5 . It
is obvious that Assumption 1 holds with b = 1. Therefore,
by Theorem 2, we can explicitly construct a saturated output
feedback controller for this example. Specifically, we can
choose

η̇2 = −Ll1ẑ2, ẑ2 = (η2 + l1y)
3/5

u = −L3β2σ
1/5

(
ẑ
5/3
2 + β

5/3
1 σ(y)

) (40)

with appropriate positive constants l1, β1, β2, ε and a small
enough gain L such that the output feedback controller (40)
renders the system (39) globally asymptotically (finite-time)
stable.

In the simulation, by choosing the design parameters as
β1 = 1.2, β2 = 1.4, l1 = 3, ε = 0.6, L = 0.85 and the
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Fig. 2. Observer state.
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Fig. 3. Control input.

initial condition as (x1(0), x2(0), η2(0))= (1,−2, 1), Figs.
1-3 are obtained to exhibit the responses of the closed-loop
system, from which the validity of the proposed method is
demonstrated.

V. CONCLUSION

This paper has solved the problem of saturated stabiliza-
tion by output feedback for a class of feedforward nonlinear
systems. With the help of the homogeneous domination
approach and the nested saturation technique, a constructive
design procedure for reduced order observer-based output
feedback control is given, which can guarantee that the
closed-loop system states are globally asymptotically regulat-
ed to zero and the amplitude of the control signal is bounded.
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