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Abstract—In this paper, a novel method for parallel

dynamic state estimation of large scale systems is presented.

Since this task requires a high amount of computational

resources, a novel solution is presented based on a

minimization problem, including spatial and temporal

constraints solved with a parallel proximal dual approach. In

order to evaluate the performance of the proposed method,

experiments are carried out to dynamically estimate sparse

brain activity resulting from a large scale real brain model.

To this end, simulated and real signals are used in the state

estimation process. Results show that the temporal and spatial

constraints consider the dynamic state evolution in time and

the sparseness inherent to the estimated activity, respectively.

Besides, the parallel solution significantly reduces the

computational burden required to perform the task. It is

worth noting that, for real electroencephalographic signals of

each subject, the estimated activity into the brain is located in

the areas removed during the successful surgery.

Index Terms—Dynamic inverse problem, Sparse,

Spatio-Temporal Constraints, State Estimation.

I. INTRODUCTION

O
VER the last years, reconstruction of neural activity
from non-invasive electroencephalographic (EEG)

recordings has allowed reaching a better understanding of
the brain functions and neural dynamics [1]. Accordingly,
the spatial distribution and time courses of brain current
sources estimated from scalp EEG data have been used in
many applications, like analyzing the functional cognitive
state of the brain [2], developing human-machine
interactions [3], and even for diagnosing several disorders
[4], [5].

It is well known that the above-mentioned reconstruction
problem is ill-conditioned and mathematically
undetermined [6], [7], [8]. Hence, both spatial and temporal
prior information about brain activity is required to obtain
a unique solution [9], [10]. As a result, the last attempts to
solve this problem consider two main issues, i) sparsity:
based on the premise that source generators of EEG are
sparse compared to the large number of potential sources
[11]; ii) temporal dynamics: several methods have
improved source reconstruction estimating brain activity as
a dynamics state space model [7], [12].
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However, dynamic state estimation of large sparse
systems is a task that requires a high amount of
computational resources [13]. Accordingly, the
computational complexity can be reduced by using spatial
operators that reduced the spatial dimension and therefore
the number of states to be estimated [8]. Nevertheless,
those spatial projectors tend to harm the source
reconstruction quality. Another approach to reduce the
amount of computational resources is to use alternative
solutions to the minimization problems as described
in [14], where parallel and distributed estimation methods
are proposed, or in [15], where a unified framework for
block structured optimization is proposed.

In this paper is presented a novel method for parallel
dynamic state estimation of large sparse systems. The
proposed method is based on a parallel proximal dual
approach, in order to reduce the amount of computational
resources and also to include simultaneously spatial and
temporal constraints. The temporal constraint considers the
dynamic state evolution in time while the spatial constraint
considers the sparseness inherent to the estimated activity.
This paper is organized as follows: In section II the
theoretical framework for state estimation of sparse systems
is presented. In section III the experimental setup and the
performance evaluation and discussion is analyzed and
in IV the conclusion and final remarks are presented.

II. THEORETICAL FRAMEWORK

A. Dynamic estimation framework
Consider a discrete state space system described by using

an output equation:

yk =Mxk + µk, (1)

and the state space equation defined by

xk =f(xk�1, xk�2) + ⌘k, (2)

being xk 2 Rn⇥1 the neural activity, M 2 Rm⇥n the
lead-field matrix with m ⌧ n, and yk 2 Rm⇥1 the
electroencephalographic activity, where f(·) can be a
nonlinear function as defined in [16], [17].

By considering the dynamic evolution in time of xk, the
following cost function can be defined:

x̂k =argmin
xk

(kyk �Mxkk22 + �2
k

��xk � x�
k

��2
2
), (3)

being x�
k the prior estimation computed by (2), which can

be solved as:

x̂k =(MTM + �2
kIn)

�1(MT yk + �2
kx

�
k ), (4)

where x�
k = f(x̂k�1, x̂k�2). However, since the term

(MTM + �2
kIn)

�1 is an n ⇥ n inverse, the computational
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resources for solving (4) increases as long as n
increases [18]. Furthermore, the estimation of (4) can be
modified to obtain an m ⇥ m inverse by using the matrix
inversion lemma, resulting in the following solution:

x̂k = x�
k +MT (MMT + �2

kIm)�1(yk �Mx�
k ). (5)

When considering sparse constraints, as in [12], an
additional term in the cost function (3) can be included:

x̂k =argmin
xk

(kyk �Mxkk22 + �2
k

��xk � x�
k

��2
2
+ �2

k kxkk1),

(6)

and according to [8], the solution of (6) can be obtained as
follows:

x̂k =(WMTM + �2
kW + �2

kIn)
�1W (MT yk + �2

kx
�
k ),

(7)

being W = diag(|x̂k�1|), 2 Rn⇥n. It is noticeable that (7)
also requires high computational resources specially for
high n values, since the term (WMTM + �2

kW + �2
kIn)

�1

is an n ⇥ n inverse. Additionally, the inclusion of the l1
term hinders the reduction of (7) using the matrix inversion
lemma. However, the computational resources needed for
solving this optimization problem can be reduced by
including a projection matrix in the state form which
reduces the number of states n into a projection of
dimension s being s << n, as stated in [8]. However, the
inclusion of this projection matrix requires detailed
knowledge of the spatial behavior of the forward model
and its corresponding spatial features since the resulting
weighted average in the state vector might produce
innaccurate estimation results.

B. Parallel estimation framework

In this work, an alternative approach for reducing the
computational time of dynamic sparse estimation of brain
activity is proposed. Here, we use proximal splitting
operators for solving the cost functions in (3) and (7). Our
approach is based on previous efforts of proximal splitting
operators to obtain parallel solutions of minimization
problems, as discussed in [19], [14].

Consequently, in order to apply parallel proximal
operators, a column block distribution of the lead-field
matrix is considered as follows:

Mxk =
⇥
M1 . . . MN

⇤
2

64
x1
k
...

xN
k

3

75 , (8)

being N the total number of blocks, and M j and xj
k the

corresponding j� th lead-field block and state vector block,
respectively. Therefore, (1) can be rewritten as:

yk =
NX

i=1

M ixi
k + µk. (9)

By considering (8), the following parallel proximal algorithm
based on a Beck-Teboulle proximal gradient algorithm can

be proposed for (3), where at each j�th block the following
equations are computed [19]:

x̄j
k = xj,p

k +
k � 2

k + 1

⇣
xj,p
k � xj,p�1

k

⌘
(10)

gj = (M j)T

0

@
NX

j=1

M j x̄j
k � yk

1

A+ �2
k(x

j,p
k � x̂j

k)

(11)

xj,p+1
k = prox�p,kk̇2

2

⇣
x̄j
k � �pg

j
⌘
, (12)

being p the iteration number, proxkk̇2
2

the proximal operator
of l2 norm, and x̂j

k the j � th block of x�
k .

By considering the Parallel Dykstra-like splitting and the
Beck-Teboulle proximal gradient algorithm discussed in [19],
the following parallel proximal algorithm can be proposed
for (6), where at each j � th block the following equations
are computed:

x̄j
k = xj,p

k +
k � 2

k + 1

⇣
xj,p
k � xj,p�1

k

⌘
(13)

gj1 = (M j)T

0

@
NX

j=1

M j x̄j
k � yk

1

A+ �2
k(x

j,p
k � x̂j

k)

(14)

zj,pk = proxkk̇2
2

⇣
x̄j
k � �pg

j
1

⌘
(15)

z̄jk = zj,pk +
k � 2

k + 1

⇣
zj,pk � zj,p�1

k

⌘
(16)

gj2 = (M j)T

0

@
NX

j=1

M j z̄jk � yk

1

A (17)

xj,p+1
k = prox�k,kk̇1

⇣
z̄jk � �pg

j
2

⌘
, (18)

being prox�k,kk̇1
the proximal operator of l1 norm.

III. RESULTS AND DISCUSSION

A large scale model is considered for evaluating sparse
dynamic state estimation. The model considers simulated
dynamic sparse state activity, and an output equation
corresponding to a real head model obtained from a high
resolution structural Magnetic Resonance Imaging. The
model is called the New York head model and considers
m = 230 outputs and n = 75000 states [20]. The structure
of the model is shown in Fig. 1.

Two windowed sinusoidal time series are selected to
simulate the state activity into the brain, as described in
[21] and [22]. The source activity at the i � th dipole
describing the dynamic of the state evolution in time,
represented by (2), is defined as follows:

xk =e�
(ci�tk)2

2�2 sin(2⇡fitk). (19)

Thus, by using (1), the resulting EEG yk is obtained.
Moreover, considering a sampling rate of 200Hz, one
second of simulated EEG activity is obtained. The
parameters of (19) are defined as c1 = 0.3 s, c2 = 0.8 s,
f1 = 4 Hz and f2 = 4 Hz, � = 0.1. The simulated activity
for the two active sources is shown in Fig. 2.

Figure 3 shows the spatial and temporal patterns
corresponding to the simulated activity. Framed patches in
gray scale show the squared amplitude of the simulated
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Fig. 1. Brain structure of the New York head model with n = 75000
states

Fig. 2. Simulated activity of two sources

activity xk, being white the zero activity and black the
maximum activity of the sources. It can be seen that the
activity peaks are located at times 0.3 an 0.8 respectively,
corresponding to the central time of each simulated source.

Figure 4 presents the reconstructed brain activity by
using the parallel l2 norm estimator described in the cost
function (3) and proposed in equations (10) to (12). It can
be seen that the highest activity peaks appear around the
spatial and temporal locations of the estimated sources, but
surrounded by some spurious activity. This spurious
activity appears due to the lack of a term in the cost
function able to constraint the number of active sources.

Further, Fig. 5 shows the estimated activity by using the
parallel estimator with l1 an l2 norms described in the cost
function (6) and proposed in equations (13) to (18). It is
noticeable that including the l1 penalty term, intended to
restrict the number of active sources, the spurious activity
in Fig. 5 is significantly reduced in comparison with the
estimated activity of Fig. 4.

Furthermore, Fig. 6 allows comparing the computational
time required to estimate the dynamic solution with temporal
(l2 norm) and spatio-temporal (l1 and l2 norms) constraints.
In this figure, the averaged time and the corresponding

Fig. 3. Simulated activity and its corresponding spatial and temporal pattern

Fig. 4. Estimated activity by using the parallel estimator with l2 norm and
its corresponding spatial and temporal pattern

standard deviation required for reconstructing each time sam-
ple of a 200 samples recording is shown. The reconstruction
is performed for j = 1, 2, 4, 6, 8, 10 blocks using an Intel
Xeon Silver 4116 Processor with 12 cores, and 2.10GHZ
operational frequency for each core, and 64GB of RAM
Memory.

It can be seen that a reduction in the computational time is
achieved when the number of parallel processes is increased.
Moreover, when the number of parallel processes is low,
there is a noticeable difference between using temporal and
spatio-temporal constraints. However, as long as the number
of parallel processes is increased, the difference between the
computational time required for both methods is significantly
reduced.

Additional results are evaluated for a real subject by using
the proposed estimation method. The database used to this
end has 30 subjects with focal epilepsy including structural
magnetic resonances before and after the surgery and
their corresponding electroencephalographic signals recorded
before surgery. The database was recorded at the center for
epilepsy treatment named “Instituto de Epilepsia y Parkinson
del eje cafetero - Neurocentro”. It is worth noting that all the
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Fig. 5. Estimated activity by using the parallel estimator with l2 and l1
norm and its corresponding spatial and temporal pattern

Fig. 6. Computational time of the methods with l2 constraints (temporal)
and l1 and l2 constraints (spatio-temporal)

subjects in the database have signed the informed consent.
In this case, one subject is analyzed. The subject is labeled
in the database as subject 109: male, 26 years. In Fig. 7 is
shown the structural magnetic resonance of the subject before
surgery. The subject is diagnosed with Focal Epilepsy with
seizures starting in the parietal right lobe with rapid diffusion
to the frontotemporal region.

In Fig. 8 is shown the head model of the subject which
is obtained directly from a structural magnetic resonance
imaging depicted in Fig. 7.

The estimated activity is presented in Fig. 9 and Fig. 10
and is overlapped with the structural magnetic resonance
obtained after surgery. It can be seen that the estimated
activity is shown over the magnetic resonance obtained after
surgery and is located in the zone that is removed during
surgery.

IV. CONCLUSION

In this paper a novel method for parallel dynamic state
estimation of large scale systems is presented. The parallel
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Fig. 7. Structural magnetic resonance imaging

Fig. 8. Real head model of a subject

proximal dual approach method, which is based on the
solution of a minimization problem with spatial and temporal
constraints, is evaluated in a framework holding sparse
brain activity resulting from a large scale real brain model.
Obtained results shows that the proposed method allows
to obtain the dynamic state estimation by including into
the solution the l1 and l2 norms. It can be seen that a
significant improvement in the dynamic inverse problem
solution is obtained when the l1 and l2 norms are considered
simultaneously in comparison with the l2 solution.

In addition, the inclusion of proximal operators in order
to solve the minimization problems related to the dynamic
inverse problem solution with spatial or spatio-temporal
constraints allows to obtain a feasible solution for a high
resolution model without the inclusion of a spatial projection
operator. In this sense, the increase of the computational time
produced when the sparse l1 spatial constraint is included, is
mitigated by using an higher number of parallel processes.

As future work, we propose to include a nonlinear
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Fig. 9. Estimated activity Axial view

Fig. 10. Estimated activity Sagital view

dynamical model to describe the temporal evolution of the
brain activity. Thus, besides the estimated source activity, we
expect to obtain large scale brain networks that could be used
as biomarkers of some neurological disorders. Furthermore,
we would like to analyse the influence both in space and
time of using a reduced set of electrodes.
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