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Abstract—In this paper, a global optimization algorithm
for solving generalized linear fractional programming problem
(GLFP) is presented. Firstly, a new linear relaxation technique
is proposed; then, by a sequence of linear programming
problems, the initial problem GLFP is solved. Furthermore,
two pruning techniques are presented to improve the conver-
gence speed of the proposed algorithm. The convergence of
the proposed algorithm is proved, and some experiments are
provided to show its feasibility and efficiency.

Index Terms—Linear relaxation; Global optimization; Gen-
eralized linear fractional programming; Pruning technique;
Branch and bound.

I. INTRODUCTION

THE following generalized linear fractional program-
ming problem (GLFP) is considered in this paper :

GLFP

 v = min Φ(x) =
p∑

i=1

δi
ni(x)
di(x)

s.t. Ax ≤ b,

where p ≥ 2, A = (aij)m×n, b = (bi)m×1, δi are arbitrary

real numbers, ni(x) =
n∑

j=1

cijxj+di, di(x) =
n∑

j=1

eijxj+fi

are affine functions, D = {x ∈ Rn | Ax ≤ b} is bounded
with intD ̸= ∅, and for ∀x ∈ D, ni(x) ≥ 0, di(x) > 0, i =
1, · · · , p.

The problem GLFP is a special class of fractional pro-
gramming, and it frequently appears in a wide variety of
applications, including financial optimization [1], portfolio
optimization [2], microeconomics [3], plant layout design
[4], and so on. However, as pointed out in [5,6], the problem
GLFP is NP-hard, that is, it generally posses multiple local
optima that are not globally optima. So it is necessary to put
forward good methods to solve problem GLFP.

For solving problem GLFP, many algorithms have been
developed in the past few decades. For example, under
the assumption that ni(x) ≥ 0, di(x) > 0 and p = 1,
by using variable transformation, an efficient elementary
simplex method was put forward[8]. When p = 2, based
on [7], a similar parametric elementary simplex method was
proposed, which can be used to solve large scale problem
[8]. When p = 3, a heuristic algorithm was developed [9].
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When p ≥ 3, a twice linearization technique was presented
by using the characteristics of exponential and logarithmic
functions [10]. By using an equivalent transformation and a
linearization technique, a branch and bound algorithm for
solving a sum of linear ratios problem with coefficients
was proposed [11]. Through solving an equivalent concave
minimum problem of the original problem, a new branch and
bound algorithm was proposed [12]. For the case that p is
fixed, a fully polynomial time approximate scheme (FPTAS)
was put forward[13]. Through using suitable transformation,
a method was proposed , which has a potential to solve GLFP
by some well known techniques [14]. By introducing a vector
parameter, this problem is reduced to a general fractional
programming with d.c. functions firstly, and then it is solved
by using the generalized Dinkelbach’s approach [15]. For
the case that ni(x) ≥ 0, di(x) ̸= 0, a branch and bound
algorithm was developed by [16]. Under the assumption
that di(x) > 0, for solving the sum-of-linear-ratios problem
with lower dimension, a linear relaxation algorithm was
proposed [17]. Under the assumption that di(x) ̸= 0, three
global optimization algorithms were developed [18,19,20].
Recently, by using range division and linearization technique,
a global optimization algorithm was designed [21].

For solving problem GLFP, this paper proposed a reliable
and effective method. In this method (1) by utilizing the
characteristics of the problem GLFP, we present a new
linearization technique, which can be embedded within a
branch and bound algorithm without increasing new variables
and constraints; (2) two pruning techniques are presented,
which can be used to improve the convergence speed of
the proposed algorithm; (3) compared with [10,12,16], the
model considered by this paper has a more general form; (4)
numerical experiments show that the proposed algorithm is
feasible, and the computational advantages are indicated.

This remainder of this study is organized as follows. In
Section 2, the new linear relaxation technique is presented,
which can be used to obtain the linear relaxation program-
ming problem LRP for problem GLFP. In Section 3, two
pruning techniques are presented to improve the convergence
speed of the proposed algorithm. The global optimization
algorithm is described, and its convergence is established
in Section 4. To show the feasibility and efficiency of the
proposed algorithm, numerical results are reported in Section
5.

II. LINEAR RELAXATION PROGRAMMING (LRP)
PROBLEM

Through solving 2n linear programming problems: l0j =
min
x∈D

xj , u0
j = max

x∈D
xj , j = 1, · · · , n, and construct a

rectangle H0 = {x ∈ Rn | l0j ≤ xj ≤ u0
j , j = 1, · · · , n},
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the problem GLFP can be rewritten as the following form:

GLFP


v = min Φ(x) =

p∑
i=1

δi
ni(x)
di(x)

s.t. Ax ≤ b,
x ∈ H0.

To solve problem GLFP, the principal task of our algorithm
is to construct lower bounds for this problem and its parti-
tioned subproblems. Next, we explain how to obtain these
two lower bounds are.

Let H = {x | l ≤ x ≤ u} be the initial
box H0 or modified box as defined for some
partitioned subproblem in a branch and bound scheme.

Compute ξ
i

=
n∑

j=1

min{cij lj , cijuj} + di, ξi =

n∑
j=1

max{cij lj , cijuj} + di, η
i
=

n∑
j=1

min{eij lj , eijuj} +

fi, ηi =
n∑

j=1

max{eij lj , eijuj} + fi, we have

ξ
i

≤ ni(x) ≤ ξi, η
i

≤ di(x) ≤ ηi, ζi = 1
ηi

≤
1

di(x)
≤ 1

η
i

= ζi i = 1, · · · , p.

Consider the term ni(x)
di(x)

, i = 1, · · · , p. Since ni(x)−ξ
i
≥

0, 1
di(x)

− ζ
i
≥ 0, we have

(ni(x)− ξ
i
)(

1

di(x)
− ζ

i
) ≥ 0,

that is

ni(x)

di(x)
− ni(x)ζi − ξ

i

1

di(x)
+ ξ

i
ζ
i
≥ 0.

Furthermore, we have

ni(x)

di(x)
≥ ni(x)ζi + ξ

i

1

di(x)
− ξ

i
ζ
i
. (1)

In addition, ni(x)− ξ
i
≥ 0, 1

di(x)
− ζi ≤ 0, we have

(ni(x)− ξ
i
)(

1

di(x)
− ζi) ≤ 0,

that is

ni(x)

di(x)
− ni(x)ζi − ξ

i

1

di(x)
+ ξ

i
ζi ≤ 0.

Furthermore, we have

ni(x)

di(x)
≤ ni(x)ζi + ξ

i

1

di(x)
− ξ

i
ζi. (2)

Now, we consider that 1
di(x)

over the interval [ζ
i
, ζi]. Since

the function 1
di(x)

is a convex function over the interval
[ζ

i
, ζi], we have

1

di(x)
≥ − 1

η
i
ηi
di(x) +

2√
η
i
ηi
, (3)

1

di(x)
≤ − 1

η
i
ηi
di(x) +

η
i
+ ηi

η
i
ηi

. (4)

Since ξ
i
≥ 0, from (1) and (3), we have

ni(x)

di(x)
≥ ni(x)ζi −

ξ
i

η
i
ηi
di(x) +

2ξ
i√

η
i
ηi

− ξ
i
ζ
i
. (5)

From (2) and (4), we can obtain

ni(x)

di(x)
≤ ni(x)ζi −

ξ
i

η
i
ηi
di(x) +

(η
i
+ ηi)ξi
η
i
ηi

− ξ
i
ζi. (6)

From (5) and (6), we have the following relations:

Φ(x) =
p∑

i=1

δi
ni(x)
di(x)

=
∑
δi>0

δi
ni(x)
di(x)

+
∑
δi<0

δi
ni(x)
di(x)

≥
∑
δi>0

δi[ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

2ξ
i√

η
i
ηi

− ξ
i
ζ
i
]

+
∑
δi<0

δi[ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

(η
i
+ηi)ξi
η
i
ηi

−ξ
i
ζi] = Φl(x),

Φ(x) =
p∑

i=1

δi
ni(x)
di(x)

=
∑
δi>0

δi
ni(x)
di(x)

+
∑
δi<0

δi
ni(x)
di(x)

≤
∑
δi>0

δi[ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

(η
i
+ηi)ξi
η
i
ηi

− ξ
i
ζi]

+
∑
δi<0

δi[ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

2ξ
i√

η
i
ηi

− ξ
i
ζ
i
]

= Φu(x).

Based on the above discussion, the linear relaxation pro-
gramming problem LRP can be established as follows, which
provides a lower bound for the optimal value of problem
GLFP over H:

LRP

 min Φl(x)
s.t. Ax ≤ b,

x ∈ H.

Theorem 1. Consider the functions Φl(x), Φ(x) and
Φu(x). For all x ∈ H , let ∆x = u − l, then, we have
lim

∆x→0
(Φ(x)− Φl(x)) = lim

∆x→0
(Φu(x)− Φ(x)) → 0.

Proof. We first prove lim
∆x→0

(Φ(x)−Φl(x)) → 0. By the

definitions Φ(x) and Φl(x), we have

| Φ(x)− Φl(x) |
=|

∑
δi>0

δi(
ni(x)
di(x)

− (ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

2ξ
i√

η
i
ηi

− ξ
i
ζ
i
))

+
∑
δi<0

−δi((ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

(η
i
+ηi)ξi
η
i
ηi

− ξ
i
ζi)−

ni(x)
di(x)

) |

≤
∑
δi>0

δi | ni(x)
di(x)

− (ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

2ξ
i√

η
i
ηi

− ξ
i
ζ
i
) |

+
∑
δi<0

| δi || (ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

(η
i
+ηi)ξi
η
i
ηi

− ξ
i
ζi)−

ni(x)
di(x)

|

=
∑
δi>0

δi∆i,1 +
∑
δi<0

| δi | ∆i,2,

(7)

where ∆i,1 =| ni(x)
di(x)

−(ni(x)ζi−
ξ
i

η
i
ηi
di(x)+

2ξ
i√

η
i
ηi

−ξ
i
ζ
i
) |,

∆i,2 =| (ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

(η
i
+ηi)ξi
η
i
ηi

− ξ
i
ζi)−

ni(x)
di(x)

|.
To prove lim

∆x→0
(Φ(x)−Φl(x)) → 0, we only need to prove

∆i,1 → 0 and ∆i,2 → 0 as ∆x → 0.
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Now, consider ∆i,1, we have

∆i,1 =| ni(x)
di(x)

− (ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

2ξ
i√

η
i
ηi

− ξ
i
ζ
i
) |

=| ni(x)
di(x)

− (ni(x)ζi + ξ
i

1
di(x)

− ξ
i
ζ
i
) + (ni(x)ζi + ξ

i
1

di(x)

−ξ
i
ζ
i
)− (ni(x)ζi −

ξ
i

η
i
ηi
di(x) +

2ξ
i√

η
i
ηi

− ξ
i
ζ
i
) |

≤| ni(x)
di(x)

− (ni(x)ζi + ξ
i

1
di(x)

− ξ
i
ζ
i
) |

+ | (ni(x)ζi + ξ
i

1
di(x)

− ξ
i
ζ
i
)− (ni(x)ζi −

ξ
i

η
i
ηi
di(x)

+
2ξ

i√
η
i
ηi

− ξ
i
ζ
i
) |

=| (ni(x)− ξ
i
)( 1

di(x)
− ζ

i
) | + | ξ

i
|| 1

di(x)
+ 1

η
i
ηi
di(x)

− 2√
η
i
ηi

| .
(8)

Since 1
di(x)

+ 1
η
i
ηi
di(x) − 2√

η
i
ηi

is convex function about

di(x) over [η
i
, ηi], it can obtain the maximum

(
√

ηi−
√

η
i
)2

η
i
ηi

at the point η
i

or ηi. From (8), we have

∆i,1 ≤| ξi − ξ
i
|| ζi − ζ

i
| + | ξ

i
||
(
√
ηi −

√η
i
)2

η
i
ηi

| . (9)

By the definitions of η
i
, ηi, ξi, ξi, ζi and ζi, we know

that, ηi − η
i
→ 0, ξi − ξ

i
→ 0 and ζi − ζ

i
→ 0 as ∆x → 0.

From (9), we have ∆i,1 → 0 as ∆x → 0.
Next, consider ∆i,2, we have

∆i,2 =| (ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

(η
i
+ηi)ξi
η
i
ηi

− ξ
i
ζi)−

ni(x)
di(x)

|

=| (ni(x)ζi −
ξ
i

η
i
ηi
di(x) +

(η
i
+ηi)ξi
η
i
ηi

− ξ
i
ζi)

−(ni(x)ζi + ξ
i

1
di(x)

− ξ
i
ζi) + (ni(x)ζi + ξ

i
1

di(x)
− ξ

i
ζi)

−ni(x)
di(x)

|

≤| ξ
i
|| − 1

η
i
ηi
di(x) +

η
i
+ηi

η
i
ηi

− ξ
i

1
di(x)

|
+ | (ni(x)− ξ

i
)(ζi − 1

di(x)
) | .

(10)

Since − 1
η
i
ηi
di(x) +

η
i
+ηi

η
i
ηi

− ξ
i

1
di(x)

is a concave function

about di(x) over [η
i
, ηi], it has the maximum

(
√

ηi−
√

η
i
)2

η
i
ηi

at the point
√
η
i
ηi. By (8), we have

∆i,2 ≤| ξi − ξ
i
|| ζi − ζ

i
| + | ξ

i
||
(
√
ηi −

√η
i
)2

η
i
ηi

| . (11)

By the definitions of η
i
, ηi, ξi, ξi, ζi and ζi, we know

that, ηi − η
i
→ 0, ξ − ξ

i
→ 0 and ζi − ζ

i
→ 0 as ∆x → 0.

From (1), we have ∆i,2 → 0 as ∆x → 0.
From (7), it follows that lim

∆x→0
(Φ(x)− Φl(x)) → 0.

Similarly, we can prove lim
∆x→0

(Φu(x) − Φ(x)) = 0, and
the proof is complete.

Theorem 1 implies that Φl(x) and Φu(x) will approximate
the function Φ(x) as ∆x → 0.

III. PRUNING TECHNIQUE

To improve the convergence speed of the proposed algo-
rithm, two pruning techniques is proposed in this section.
By using these techniques, the region in which the global
optimal solution of problem GLFP does not exist can be
pruned.

For i = 1, 2, · · · , n, j = 1, 2, · · · , n, k = 1, · · · , n,
introduce the following notations:

αj =
∑
δi>0

δi(ζicij −
ξ
i

η
i
ηi
eij) +

∑
δi<0

δi(ζicij −
ξ
i

η
i
ηi
eij),

Λ1 =
∑
δi>0

δi(ζidi −
ξ
i

η
i
ηi
fi +

2ξ
i√

η
i
ηi

− ξ
i
ζ
i
)

+
∑
δi<0

δi(ζidi −
ξ
i

η
i
ηi
fi +

(η
i
+ηi)ξi
η
i
ηi

− ξ
i
ζi),

γk = UB −
n∑

j=1,j ̸=k

min{αj lj , αjuj} − Λ1,

βj =
∑
δi>0

δi(ζicij −
ξ
i

η
i
ηi
eij) +

∑
δi<0

δi(ζicij −
ξ
i

η
i
ηi
eij),

Λ2 =
∑
δi>0

δi(ζidi −
ξ
i

η
i
ηi
fi +

(η
i
+ηi)ξi
η
i
ηi

− ξ
i
ζi)

+
∑
δi<0

δi(ζidi −
ξ
i

η
i
ηi
fi +

2ξ
i√

η
i
ηi

− ξ
i
ζ
i
),

ρk = LB −
n∑

j=1,j ̸=k

max{βj lj , βjuj} − Λ2,

and assume that UB and LB are the current known upper
bound and lower bound of the optimal value v of the problem
GLFP, respectively.

Theorem 2. For any subrectangle H ⊆ H0 with Hj =
[lj , uj ], if there exists some index k ∈ {1, 2, · · · , n} such that
αk > 0 and γk < αkuk, then there is no globally optimal
solution of problem GLFP over H1; if αk < 0 and γk <
αklk, for some k, then there is no globally optimal solution
of problem GLFP over H2, where

H1 = (H1
j )n×1 ⊆ H, with H1

j =

{
Hj , j ̸= k,
( γk

αk
, uk]

∩
Hk, j = k,

H2 = (H2
j )n×1 ⊆ H, with H2

j =

{
Hj , j ̸= k,
[lk, γk

αk
)
∩

Hk, j = k.

Proof. For the kth component xk of x, since xk ∈
( γk

αk
, uk], we have

γk
αk

< xk ≤ uk.

Furthermore, since αk > 0, we have γk < αkxk. For all
x ∈ H1, by the above inequality and the definition of γk, it
implies that

UB −
n∑

j=1,j ̸=k

min{αj lj , αjuj} − Λ1 < αkxk,

i.e.

UB <
n∑

j=1,j ̸=k

min{αj lj , αjuj}+ αkxk + Λ1

≤
n∑

j=1

αjxj + Λ1 = Φl(x).

Thus, for all x ∈ H1, we have Φ(x) ≥ Φl(x) > UB ≥ v,
that is, for all x ∈ H1, Φ(x) is always greater than the
optimal value v of the problem GLFP. Therefore, there can
not exist globally optimal solution of problem GLFP over
H1.

Similarly, for all x ∈ H2, if there exists some k such that
αk < 0 and γk < αklk, it can be derived that there is no
globally optimal solution of problem GLFP over H2.

Theorem 3. For any subrectangle H ⊆ H0 with Hj =
[lj , uj ], if there exists some index k ∈ {1, 2, · · · , n} such that
βk > 0 and ρk > βklk, then there is no globally optimal
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solution of problem GLFP over H3; if βk < 0 and ρk >
βkuk, for some k, then there is no globally optimal solution
of problem GLFP over H4, where

H3 = (H3
j )n×1 ⊆ H, with H3

j =

{
Hj , j ̸= k,
[lk, ρk

βk
)
∩

Hk, j = k,

H4 = (H4
j )n×1 ⊆ H, with H4

j =

{
Hj , j ̸= k,
( ρk

βk
, uk]

∩
Hk, j = k.

Proof. We first show that for all x ∈ H3, Φ(x) < LB.
Consider the kth component xk of x. By the assumption and
the definitions of βk and ρk, we have

lk ≤ xk <
ρk
βk

.

Note that βk > 0, we have ρk > βkxk. For all x ∈ H3, by
the above inequality and the definition of ρk, it implies that

LB >
n∑

j=1,j ̸=k

max{βj lj , βjuj}+ βkxk + Λ2

≥
n∑

j=1

βjxj + Λ2 = Φu(x) ≥ Φ(x).

Thus, for all x ∈ H3, we have v ≥ LB > Φ(x). Therefore,
there can not exist globally optimal solution of problem
GLFP over H3.

Similarly, for all x ∈ H4, if there exists some k such that
βk < 0 and ρk > βkuk, it can be derived that there is no
globally optimal solution of problem GLFP over H4.

IV. ALGORITHM AND ITS CONVERGENCE

In this section, based on the former results, we present the
branch and bound algorithm, and prove its convergence.

A. Branching rule

In a branch and bound algorithm, the branching process
plays an important role, which can create a more refined par-
tition that cannot yet be excluded from further consideration
in searching for a global optimal solution for problem GLFP.
In this paper, a simple and standard bisection rule is chosen to
partition rectangle, which is sufficient to ensure convergence
since it drives the intervals shrinking to a singleton for all the
variables along any infinite branch of the branch and bound
tree.

For a rectangle H = {x ∈ Rn | lj ≤ xj ≤ uj , j =
1, · · · , n} ⊆ H0 to be partitioned, the branching rule is as
follows:

(i) let k = argmax{uj − lj | j = 1, · · · , n};
(ii) let πk = (lk + uk)/2;
(iii) let

H1 = {x ∈ Rn | lj ≤ xj ≤ uj , j ̸= k, lk ≤ xk ≤ πk},
H2 = {x ∈ Rn | lj ≤ xj ≤ uj , j ̸= k, πk ≤ xk ≤ uk}.

Through using this branching rule, the rectangle H is
partitioned into two subrectangles H1 and H2. Obviously,
we have H = H1

∪
H2 and intH1

∩
intH2 = ∅.

B. Branch and bound algorithm

Let LB(Hk) be the optimal function value of LRP over
the subrectangle H = Hk, and xk = x(Hk) be an element
of the corresponding argmin. The basic steps of the proposed
algorithm are summarized as follows.

Algorithm statement
Step 1. Choose ϵ ≥ 0. Find an optimal solution x0 =

x(H0) and the optimal value LB(H0) for problem LRP with
H = H0. Set LB0 = LB(H0), and UB0 = Φ(x0). If
UB0 − LB0 ≤ ϵ, then stop: x0 is an ϵ-optimal solution of
problem GLFP. Otherwise, set Q0 = {H0}, k = 1, and go
to Step 2.

Step 2. Set UBk = UBk−1. Subdivide Hk−1 into two
subrectangles via the branching rule, and denote the set of
new partition rectangles as H

k
.

Step 3. For each new rectangle H ∈ H
k
, utilizing the

pruning techniques of Theorems 2 and 3 to prune rectangle
H . For i = 1, · · · ,m, if there exists some i such that
n∑

j=1

min{aij lj , aijuj} ≥ bi over rectangle H , then remove

the rectangle H from H
k
, i.e. H

k
= H

k \H .
Step 4. If H

k ̸= ∅, solve LRP to obtain LB(H) and
x(H) for each H ∈ H

k
. If LB(H) > UBk, set H

k
=

H
k \ H . Otherwise, let UBk = min{UBk,Φ(x(H))}. If

UBk = Φ(x(H)), set xk = x(H).
Step 5. Set

Qk = {Qk−1 \Hk−1}
∪

H
k
.

Step 6. Set LBk = min{LB(H) | H ∈ Qk}. Let Hk

be the subrectangle which satisfies that LBk = LB(Hk). If
UBk−LBk ≤ ϵ, then stop: xk is a global ϵ-optimal solution
of problem GLFP. Otherwise, set k = k+ 1, and go to Step
2.

C. Convergence analysis

In this subsection, we give the global convergence prop-
erties of the above algorithm.

Theorem 4. The above algorithm either terminates
finitely with a globally ϵ-optimal solution, or generates an
infinite sequence {xk} of iteration such that along any
infinite branch of the branch and bound tree, which any
accumulation point is a globally optimal solution of problem
GLFP.

Proof. When the algorithm terminates finitely, that is, it
terminates at some step k ≥ 0. Upon termination, it follows
that

UBk − LBk ≤ ϵ.

From Step 1 and Step 6 in the algorithm, a feasible solution
xk for the problem GLFP can be found, and the following
relation holds

Φ(xk)− LBk ≤ ϵ.

By Section 2, we have

LBk ≤ v.

Since xk is a feasible solution of problem GLFP, Φ(xk) ≥ v.
Taken together above, it implies that

v ≤ Φ(xk) ≤ LBk + ϵ ≤ v + ϵ,
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and so xk is a global ϵ-optimal solution to the problem GLFP
over H0 in the sense that

v ≤ Φ(xk) ≤ v + ϵ.

When the algorithm terminates infinitely, then an infinite
sequence {xk} will be generated. Since the feasible region
of GLFP is bounded, the sequence {xk} must be has a
convergence subsequence. Without loss of generality, set
lim
k→∞

xk = x∗. By the algorithm, we have

lim
k→∞

LBk ≤ v.

Since x∗ is a feasible solution of problem GLFP, v ≤ Φ(x∗).
Taken together, we have

lim
k→∞

LBk ≤ v ≤ Φ(x∗).

On the other hand, by the algorithm and the continuity of
Φl(x), we have

lim
k→∞

LBk = lim
k→∞

Φl(xk) = Φl(x∗).

From Theorem 1, it follows that

Φ(x∗) = Φl(x∗).

Therefore, we have v = Φ(x∗), that is x∗ is a global optimal
solution of problem GLFP.

V. NUMERICAL EXPERIMENTS

In this section, to verify the performance of the pro-
posed algorithm, some numerical experiments are reported,
and compared with several latest algorithms[17,10,11,22,23].
The algorithm is implemented by Matlab 7.1, and all test
problems are carried out on a Pentium IV (3.06 GHZ)
microcomputer. The simplex method is applied to solve the
linear relaxation programming problems.

In Table I, the results of problems 1-6 are summarized,
where the following notations have been used in row headers:
ϵ: convergence error; Iter: number of algorithm iterations.

For Examples 1-6, we also used two algorithms to solve
them, which are the algorithm (named Algorithm 1) proposed
by this paper and the algorithm proposed by this paper
but without using pruning techniques(named Algorithm 2),
respectively. For this test, ϵ is set to 1e− 6. The comparison
results are given in Table II. In Table II, Time denotes
execution time in seconds.

Table III summarizes our computational results of Exam-
ple 7. For this test problem, ϵ is set to 1e − 2. In Table
2, Ave.Iter represents the average number of iterations;
Ave.Time stands for the average CPU time of the algorithm
in seconds, which are obtained by randomly running our
algorithm for 10 test problems.

Example 1[18]

max 0.9× −x1 + 2x2 + 2

3x1 − 4x2 + 5
+ (−0.1)× 4x1 − 3x2 + 4

−2x1 + x2 + 3
s.t. x1 + x2 ≤ 1.5,

x1 − x2 ≤ 0,
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 2[18,10,23]

max 4x1+3x2+3x3+50
3x2+3x3+50 + 3x1+4x3+50

4x1+4x2+5x3+50 + x1+2x2+5x3+50
x1+5x2+5x3+50

+x1+2x2+4x3+50
5x2+4x3+50

s.t. 2x1 + x2 + 5x3 ≤ 10,
x1 + 6x2 + 3x3 ≤ 10,
5x1 + 9x2 + 2x3 ≤ 10,
9x1 + 7x2 + 3x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Example 3[23]

min
−x1 + 2x2 + 2

3x1 − 4x2 + 5
+

4x1 − 3x2 + 4

−2x1 + x2 + 3
s.t. x1 + x2 ≤ 1.5,

x1 − x2 ≤ 0,
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

Example 4[22,23]

max
3x1 + 5x2 + 3x3 + 50

3x1 + 4x2 + 5x3 + 50
+

3x1 + 4x2 + 50

4x1 + 3x2 + 2x3 + 50

+
4x1 + 2x2 + 4x3 + 50

5x1 + 4x2 + 3x3 + 50
s.t. 6x1 + 3x2 + 3x3 ≤ 10,

10x1 + 3x2 + 8x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Example 5[11]

max
63x1 − 18x2 + 39

13x1 + 26x2 + 13
+

13x1 + 26x2 + 13

37x1 + 73x2 + 13

+
37x1 + 73x2 + 13

13x1 + 13x2 + 13
+

13x1 + 13x2 + 13

63x1 − 18x2 + 39
s.t. 5x1 − 3x2 = 3,

1.5 ≤ x1 ≤ 3.

Example 6[11]

max 3x1+4x2+50
3x1+5x2+4x3+50 − 3x1+5x2+3x3+50

5x1+5x2+4x3+50 − x1+2x2+4x3+50
5x2+4x3+50

− 4x1+3x2+3x3+50
3x2+3x3+50

s.t. 6x1 + 3x2 + 3x3 ≤ 10,
10x1 + 3x2 + 8x3 ≤ 10,
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

From Table I, it can be seen that, except for Examples
5 and 6, our algorithm can determine the global optimal
solution effectively than that of the corresponding references.

The comparison results of Table II show that the pruning
techniques are very good at improving the convergence speed
of our algorithm.

Example 7

min
p∑

i=1

δi

n∑
j=1

cijxj+di

n∑
j=1

eijxj+fi

s.t. x ∈ D = {x ∈ Rn | Ax ≤ b},

where the elements of the matrix A ∈ Rm×n, b ∈
Rm×1 cij , eij , di, fi ∈ R are randomly generated in the
interval [0,1], δi(i = 1, · · · , p) are randomly generated in the
interval [-1,1].

From Table III, the computational results show that our
algorithm performs well on the test problems, and can solve
them in a reasonable amount of time.

The results in Tables I-III show that our algorithm is both
feasible and efficient.
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TABLE I
COMPUTATIONAL RESULTS OF EXAMPLES 1-6

Example ϵ Methods Optimal solution Optimal value Iter
1 1e-9 [1] (0.0, 1.0) 3.575 1

1e-9 ours (0.0, 1.0) 3.575 1
2 1e-9 [1] (1.1111, 0.0, 0.0) 4.0907 1289

1e-6 [11] (1.1111, 1.365e-5, 1.351e-5) 4.081481 39
1e-5 [22] (0.0013, 0.0, 0.0) 4.087412 1640
1e-9 ours (1.1111, 0.0, 0.0) 4.0907 6

3 1e-8 [22] (0.0, 0.283935547) 1.623183358 71
1e-8 ours (0.0, 0.283935547) 1.623183358 19

4 1e-5 [21] (0.0, 1.6725, 0.0) 3.0009 1033
1e-8 [22] (0.0, 3.3333, 0.0) 3.00292 119
1e-8 ours (0.0, 3.3333, 0.0) 3.00292 21

5 1e-6 [12] (3.0, 4.0) 3.2917 9
1e-6 ours (3.0, 4.0) 3.2917 16

6 1e-6 [12] (-1.838e-16, 3.3333, 0.0) 1.9 8
1e-6 ours (0.0, 3.3333, 0.0) 1.9 16

TABLE II
COMPUTATIONAL RESULTS OF ALGORITHM 1 AND ALGORITHM 2 FOR EXAMPLES 1-6

Example Methods Optimal solution Optimal value Iter Time
1 Algorithm 1 (0.0, 1.0) 3.575 1 0.016

Algorithm 2 (0.0, 1.0) 3.575 13 0.344
2 Algorithm 1 (1.1111, 0.0, 0.0) 4.0907 6 0.187

Algorithm 2 (1.1111, 0.0, 0.0) 4.0907 25 0.875
3 Algorithm 1 (0.0, 0.283935547) 1.623183358 16 1.0

Algorithm 2 (0.0, 0.283935547) 1.623183358 50 1.719
4 Algorithm 1 (0.0, 3.3333, 0.0) 3.00092 20 0.625

Algorithm 2 (0.0, 3.3333, 0.0) 3.00292 83 2.797
5 Algorithm 1 (3.0, 4.0) 3.2917 16 0.375

Algorithm 2 (3.0, 4.0) 3.2917 41 1.118
6 Algorithm 1 (0, 3.3333, 0.0) 1.9 16 0.375

Algorithm 2 (0.0, 3.3333, 0.0) 1.9 28 0.984

TABLE III
COMPUTATIONAL RESULTS OF EXAMPLE 7

(p,m, n) Ave.Time Ave.Iter
(2,20,20) 0.0264 1
(2,20,30) 0.029 1
(5,20,20) 0.6154 9.7
(5,30,20) 0.6389 10.22
(7,20,20) 2.2765 14.5
(7,30,20) 4.3327 18.8
(10,20,20) 31.1031 61.8
(10,30,20) 38.4108 95.3
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