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Abstract—In this paper, a robust controller for hovering
stabilization of a quadrotor is proposed. The proposed con-
troller is based upon the compensation of the position of center
of gravity CoG by a bounded of control torque. To avoid
complexities and ambiguities associated with other attitude
representations such as Euler angles or quaternions, both of the
attitude dynamics and the proposed control system are globally
expressed on the special orthogonal-3 (SO(3)) group. The robust
compensator is introduced to restrain the influence of uncertain
parameters of quadrotor such as the center of gravity. The
stability of the designed controller is verified by the Lyapunov
stability theorem, and the validity of the proposed controller
is demonstrated by simulations under different simulation
scenarios. Simulation results show that the proposed controller
is robust to stabilize hovering condition, given a deviated CoG.
Moreover, this controller gives a better performance compared
to the nominal proportional derivative controller.

Index Terms—Proportional-Derivative, Center of Gravity,
Quadrotor, Stabilization, Special Orthogonal-3.

I. INTRODUCTION

THE unmanned aerial vehicles (UAV) are increasingly
being considered as a means of performing complex

functions or assisting humans in carrying out dangerous
missions within dynamic environments. Quadrotor is one of
many types of UAV which consists of two pairs of counter-
rotating rotors. Quadrotor has been a popular UAV platform,
due to its unique abilities such as hovering, VTOL (Vertical
Take Off and Landing), and maneuvering in tight spaces. The
usage area of a quadrotor can be separated into three major
parts such as: military operations (security, intelligence), pub-
lic applications (SAR), and civil applications (photography).

In practical applications, the position in space of the UAV
is generally controlled by an operator through a remote-
control system using a visual feedback from an on-board
camera, while the attitude is automatically stabilized via an
on-board controller. The attitude controller is an important
feature since it allows the vehicle to maintain a desired ori-
entation [1]. There are lots of developed control algorithms
to control the attitude of a quadrotor [2].
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Attitude of a quadrotor is an orientation of the body fixed
frame with respect to the inertial frame. It depends on the
moment and the thrust of the two pairs of its rotor. By
varying the rotor speed, one can change the lift force to
create motion [3]. Since the quadrotor requires the stable
hovering control to work in many areas, attitude and altitude
control are essentially required [4].

In order to control the attitude of a quadrotor, one needs
to represent the attitude properly. Most of the prior work on
the attitude control is based on minimal representations of
an attitude like euler angles [5] and quaternions [6]. With
euler angles representation, the system will suffer from the
problem of singularities for a large angle rotational maneu-
vers. Some works use a quaternion to represent the attitude
of quadrotor to avoid singularity. Although the quaternions
do not increase to singularities, they have double cover of
the set of attitudes SO(3) (no unique representation called
ambiguities) in the sense that each attitude corresponds to
two different quaternion vectors [7]. One method to avoid
from singularities and ambiguities is to use the geometric
control. The geometric control technique depends on the
rotation matrix representation. This representation is global
and unique. In geometric control method, the rotation matrix
can be developed with an exponential matrix of exponential
coordinate of an attitude which map a vector <3 into a matrix
SO(3) (Special Orthogonal-3). The exponential coordinate is
one of the intrinsic properties of Lie group SO(3) [8].

Quadrotor has wide applications in a wide spectrum of
scenarios and also has a lot of kind of disturbances such
as wind, blade flapping, and unmodeled motor and propeller
dynamics. Robustness of the flight controller performance is
a fundamental feature for any micro aerial vehicle (MAV)
application. In particular, the trajectory control law is made
adaptive with respect to the presence of external forces and
moments (e.g., due to the wind) [9] and the uncertainty
of parameters of the dynamic model [10]. Integral-based
actions can be used to counteract external disturbances,
such as wind and presence of small loads. Nevertheless,
an adaptive or integral action may result in an additional
disturbance when the nonlinearities of the model are not
properly taken into account. This nonlinearities can be caused
by an uncertainties parameter model. Thus, the design of a
flight controller, which is able to maintain attitude and track
a special target accurately and robustly in the presence of
uncertainties parameter model is an important step [11], [12],
[13], [14].

All of the reviewed literature above assumes a balanced
quadrotor model, i.e., the center of gravity (CoG) coincides
with the geometric center (CG) of quadrotor. In this condi-
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tion, the CoG is assumed to be static and known. In fact,
the CoG of a quadrotor may not be located on its geometric
center and can not be easily measured. For example, the
placement of the on-board electronic component, battery
and the payloads, may not be fixed symmetrically with the
geometric center of a quadrotor. This payload can affect the
stability of a quadrotor such as inertia perturbation [15] and
unbalanced gravitational forces of a quadrotor [16], [17],
[18].

Based to the unbalanced gravitational force, due to the
dynamic change in the quadrotor’s center of gravity, Palunko
in [16] uses an input-output feedback linearization to design
an adaptive controller to compensates the dynamic changes
of CoG. Another adaptive control scheme was proposed
in [17] to compensate the presence of unknown dynamic
parameters, e.g., the position of CoG. In these two previous
work, the position of the CoG is directly considered as
an internal part of the rigid body, which causes a totally
remodeling of the quadrotor UAV. This leads to a very
complicated expression of the dynamic and also increases
the difficulty of controller design.

Xian in [18] using another approach to consider the CoG
deviation as an external payload, which reduces the com-
plexity of the dynamic model. In this work, a new nonlinear
adaptive control based on immersion and invariance (I&I)
approach was proposed to address the effect of unknown
CoG deviation of the external payload, which causes the
unbalanced gravitational force.

This paper present a new control scheme to cope with
unbalanced gravitational force, due to the presence of un-
known position of the CoG of a quadrotor. In this paper,
the CoG deviation is considered as an external payload,
just like in [18], where the position of CoG can change.
This can be seen when a quadrotor is used for spraying
agricultural pest using liquid pesticides, where the liquid
pesticides is always move. This fluid movement causes the
CoG position to change, which can disturb the quadrotor
stability. Since an adaptive control is too sophisticated and
consumes relatively high cost for computational, an upper-
bound controller based on Proportional-Derivative method is
proposed to compensate the effect of CoG position. Like in
[19], a designed robust compensator is added to the nominal
control law, to compensate the effect of CoG position. Instead
of the Euler angles or unit quaternions, the attitude of
quadrotor is represented by an exponential coordinate on
SO(3) group.

This paper is organized as follows. The basic mathematics
for operation in SO(3) group is explained in section II. The
modeling of a quadrotor and the effect of the gravitational
force will be addressed in section III. The designed of this
controller and the analysis of the stability will be explained
in section IV. The numerical simulation and discussion of
this paper is presented in section V and the conclusion of
this paper is presented in section VI.

II. MATHEMATICS OF ROTATION IN SO(3)

In this section, the basic mathematics for operation
in SO(3) group is described, mainly based on [20] and
[21]. Some mathematical tools will be given for rotation
parametrization and some basic knowledge of Lie Group and
Lie Algebra.

The position of a point at the rigid body as a function of
time is denoted by q(t). If the body is rotated at constant unit
velocity about the axis ω, the velocity of the point can be
written as

q̇(t) = ω × q(t) = ω̂ q(t). (1)

This equation in (1) can be integrated to give

q(t) = eω̂tq(0), (2)

where q(0) is the initial position of the point (t=0) and eω̂t

is a matrix exponential as

eω̂t = I + ω̂t+
(ω̂t)2

2!
+

(ω̂t)3

3!
+ ... , (3)

where I ∈ <3×3 is an identity matrix.
The hat operator ∧ maps a vector in <3 to a skew-

symmetric matrix, defined as

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (4)

The matrix ω̂ is a skew-symmetric matrix, which satisfies
ω̂T = −ω̂. The vector space of all 3 × 3 skew-symmetric
matrices is denoted so(3). The so(3) group, which contains
a skew-symmetric matrices, is the Lie algebra of SO(3), and
the space of 3× 3 skew-symmetric matrices is

so(3) =
{
S ∈ <3×3 : ST = −S

}
. (5)

According to the euler’s theorem for rotates body, any 3-
dimensional rotation of a rigid body can be represented by
a rotation of a given axis ω ∈ <3 by an angle θ ∈ [0, 2π].
Let ω ∈ <3 is a unit vector which specifies the direction of
a rigid body rotation (rotation axis), and θ ∈ < is an angle
of rotation in radians. If the body is rotated at unit velocity
for θ units of time, then (3) can be re-written as

R(ω, θ) = eω̂θ

= I + ω̂θ +
(ω̂θ)2

2!
+

(ω̂θ)3

3!
+ ...,

(6)

where R ∈ SO(3) is a rotation matrix, ω ∈ <3 is a vector
of rotation axis, and θ ∈ < is an angle of rotation.

Equation (6) is an infinite series and hence not useful
from a computational viewpoint. To obtain a closed-form
expression of eω̂θ, (6) commonly written in a Rodrigues’
formula as

eω̂θ = I +
ω̂

‖ω‖
sin(‖ω‖ θ) +

ω̂2

‖ω‖2
(1− cos(‖ω‖ θ)), (7)

and for‖ω‖ = 1, (7) becomes

eω̂θ = I + ω̂sin(θ) + ω̂2(1− cos(θ)). (8)

An illustration of a rotation with an axis and an angle of
rotation can be seen in Fig. 1, where the object will be rotated
by an angle θ with a rotation axis r. This is the distinctive of
SO(3) representation, while euler angles representation uses
the composition of three consecutive elementary rotations
[22].

Rotation matrix R ∈ SO(3) is a Lie group which has an
algebraic group structure based on a matrix multiplication as
the group operation, which satisfies

SO(3) =
{
R ∈ <3×3, RTR = I3×3, detR = +1

}
. (9)
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Fig. 1. Illustration of a rotation with an axis-angle

The inverse mapping from an orthogonal matrix SO(3) to
a skew-symmetric matrix so(3) is done by a logarithmic map
which is defined as

log(R) =
θ

2 sin θ
(R−RT ) ∈ so(3), (10)

where θ is cos−1 ((tr(R)− 1)/2) with |θ| < π, and tr(R) is
the sum of the elements on the main diagonal of a rotation
matrix R. Moreover, if a rotation matrix R = I , the rotation
axis ω can be chosen arbitrarily.

The result of (10) is still in a skew-symmetric matrix of
so(3) group. This result can be written in terms of a vector
<3 by using the vee operator ∨ as

ζ = log(R)∨ ∈ <3. (11)

where vee operator ∨ is an inverse map from a skew-
symmetric matrix so(3) to a 3-dimension vector <3. This
vector ζ is called an exponential coordinate ζ of rotation
matrix, and can be calculated using MATLAB software. This
exponential coordinate ζ is a minimal representation of the
rotation matrix, and is one of the intrinsic properties of Lie
group SO(3) [8].

III. MODELING OF QUADROTOR

In this section, two main issues will be discussed. First, the
model of quadrotor is presented. And the second subsection,
the model of quadrotor due to the effect of position of CoG
is explained.

A. Quadrotor System Model

Consider a quadrotor UAV model illustrated in Fig. 2. This
is a system of four identical rotors and propellers located at
the vertices of a square, which generate a thrust and torque
normal to the plane of this square. Two coordinate frames
are defined for analyzing the motion of a quadrotor. The
first frame is the moving coordinate frame which denoted
by B = [~xB ~yB ~zB ]T . This coordinate frame is fixed to the
quadrotor’s body, which is called the body fixed frame. The
second coordinate frame is the earth-fixed reference frame,
denoted by E = [~xE ~yE ~zE ]T , called inertial coordinate
frame.

Quadrotor’s system inputs are the squared angular speed of
its four rotor, denoted by w = [w2

1 w
2
2 w

2
3 w

2
4]T . Assumed

that the thrust of each propeller is directly controlled, and
the direction of the thrust of each propeller is normal to the
quadrotor plane. The first and third propellers are assumed to
generate a thrust along the direction of − ~zB when rotating
clockwise. The second and fourth propellers are assumed
to generate a thrust along the same direction of − ~zB when

Fig. 2. Model of a quadrotor

rotating counterclockwise. Thus, the thrust magnitude gen-
erated by the propellers are denoted by F =

∑4
i=1 fi, and it

is positive when the total thrust vector acts along − ~zB , and
negative when the total thrust vector acts along ~zB .

With this assumption, the thrust of each propeller
f1, f2, f3, f4 is directly converted into the thrust F and the
moment τ , or vice versa. The moment τ = [τx τy τz]

T and
thrust F are generated by manipulating the angular speed as

τx = lb(w2
4 − w2

2)

τy = lb(w2
1 − w2

3)

τz = b(w2
1 − w2

2 + w2
3 − w2

4)

F = d(w2
1 + w2

2 + w2
3 + w2

4),

(12)

where l, b, and d are respectively the length of the quadrotor’s
arm from rotor to geometric center of a quadrotor (CG),
propeller thrust coefficient, and drag coefficient. Using this
equation, the thrust magnitude F ∈ < and the moment vector
τ = [τx τy τz]

T ∈ <3 are viewed as control inputs in this
paper.

The configuration of this quadrotor UAV is defined by the
location of the origin and the attitude with respect to the
inertial frame. The body frame orientation in space is given
by a rotation matrix R from body frame B to inertial frame
E (RBE ∈ SO(3)). Based on this model of a quadrotor,
the corresponding equation of motion of quadrotor can be
written as

Ṙ = RΩ̂ (13)

JΩ̇ + Ω× (JΩ) = τ, (14)

where R ∈ SO(3) is a rotation matrix from body frame to
the inertial frame; Ω ∈ <3 is angular velocity in body frame;
J ∈ <3x3 is a moment of inertia; and τ ∈ <3 is a moment
vector;

The inertia matrix of a quadrotor is as follows:

J =

 Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz

 , (15)

where the indices x, y, and z in (15) denote x-, y-, and z-
axis in the body frame, respectively. Since the quadrotor is
symmetric to its x- and y- axis, the axis coupling in quadrotor
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system to be eliminated. Therefore, the off-diagonal elements
of the inertia matrix are zero, and (15) can be written as

J =

 Jxx 0 0
0 Jyy 0
0 0 Jzz

 . (16)

The kinematics equation in (13) is a rotation matrix, which
has nine parameters. Thus it is complex for the real time
application. Based on the [23], the differential equation of
kinematics equation in (13) can be rewritten in terms of angle
ζ as

ζ̇ =

(
I +

1

2
ζ̂ + (1− α (‖ζ‖)) ζ̂2

‖ζ‖2

)
Ω, (17)

where α(ζ) ≡ (ζ/2)cot(ζ/2), Ω ∈ <3 is an angular velocity
in body frame, and ζ ∈ <3 is exponential coordinate of a
rotation matrix.

Finally, with (14) and (17), the second order system of a
quadrotor in SO(3) is defined asζ̇ =

(
I +

1

2
ζ̂ + (1− α (‖ζ‖)) ζ̂2

‖ζ‖2

)
Ω,

JΩ̇ = τ − Ω× (JΩ).

(18)

B. The effect of CoG position

Ideally, the CoG position of a quadrotor coincides with the
quadrotor’s CG. But in practice, even though the origin of a
quadrotor is placed at the quadrotor’s center of geometry
(CG), the center of gravity (CoG) does not guarantee to
coincide with the CG of quadrotor. For example, there is
an additional unbalanced payload placed in the position as
far as rG as shown in Fig. 2. In this situation, the CoG of
a quadrotor will deviate from the quadrotor’s CG. Thus, the
thrust on an axis of quadrotor become unbalance, due to the
gravity force which acting at the center of mass. This gravity
force can be calculated by

gG(R) = rG × (REB mpG), (19)

where rG = [rGx rGy rGz]
T ∈ <3 is the position of CoG

along the axis of a quadrotor, REB ∈ SO(3) is a rotation
matrix from inertial frame to the body frame, mp is the mass
of the equivalent payload, and G = [0 0 g]T ∈ <3 denotes
the acceleration vector of gravity with g = 9.81m/s2.

As shown in (19), it appears that the magnitude of the
gravity force will be even greater when the position of CoG
is further away from the CG of quadrotor. Therefore, when
the CoG position of a quadrotor does not coincide with
the quadrotor’s geometric center, the dynamic equation of
quadrotor in (18) become

JΩ̇ = τ − Ω× (JΩ)− gG(R). (20)

The gravity force term gG(R) in (20) represent the un-
certain parameter of a quadrotor, where the value of the
payload mass mp and CoG position rG is typically unknown.
These effect cannot be compensated in the controller as they
would require the knowledge of payload mass mp and CoG
position rG. Therefore, in the next section, a robust controller
is designed to compensate these uncertain parameters of a
quadrotor.

IV. ROBUST CONTROL FOR QUADROTOR IN SO(3)

In this section, a robust controller based on Proportional-
Derivative (PD) method will be designed. This controller
is designed to compensate the deviated CoG effect. This
section is divided into two parts. In the first part, the PD
control in nominal condition is explained. The second part
will explain the design of robust PD controller, to guarantee
the boundedness of moment (τ ), using the knowledge of
Lyapunov function control and a function bound (∆(x)) of
the unbalanced gravitational force.

A. PD Control in Nominal Condition

Assumption 1. The position of CoG coincides with the CG
of a quadrotor. Therefore the gravitational force on quadrotor
axis is balanced.

Theorem 1: (PD plus feed-forward control on SO(3)).
Consider a quadrotor system in (18) and suppose that As-
sumption 1 holds for the system. This quadrotor system can
be asymptotically stabilized by the following PD control law:

τ = −Kpζ −KdΩ + Ω× JΩ, (21)

where Kp and Kd be a symmetric, positive definite gain
matrices, and ζ = log(R)∨ is an attitude represented by an
exponential coordinate of a rotation matrix.

Proof: By substituting the control law in (21) into (18)
with Assumption 1 holds, then the closed-loop system satis-
fies ζ̇ =

(
I +

1

2
ζ̂ + (1− α (‖ζ‖)) ζ̂2

‖ζ‖2

)
Ω,

Ω̇ = −J−1(Kpζ +KdΩ).

(22)

Consider the following Lyapunov candidate function

W =
1

2
ζTKpζ +

1

2
ΩTJΩ + ε, (23)

where W is a Lyapunov candidate function, and ε is a small
enough value. This Lyapunov function can be rewritten in
matrix form as follow

W =
1

2

〈[
ζ
Ω

]
,

[
Kp εI3×3
εI3×3 J

] [
ζ
Ω

]〉
, (24)

where I3×3 is an identity matrix. This equation can be
simplified to

W =
1

2
ξTSεξ, (25)

with

ξ =

[
ζ
Ω

]
(26)

and

Sε =

[
Kp εI3×3
εI3×3 J

]
, (27)

where the matrix Sε is positive definite for small ε.
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The time derivative of the Lyapunov function W in (24)
along the trajectories system of (22) gives

Ẇ =
〈
ζ̇, Kpζ

〉
+ ε
〈
ζ̇,Ω

〉
+ ε
〈
ζ, Ω̇

〉
+
〈

Ω, JΩ̇
〉

=
〈
ζ̇, Kpζ

〉
+
〈
Ω, J(−J−1Kpζ − J−1KdΩ)

〉
+ ε
〈
ζ̇,Ω

〉
+ ε
〈
ζ,−J−1Kpζ − J−1KdΩ

〉
=
〈
ζ̇, Kpζ

〉
+ 〈Ω,−Kpζ −KdΩ〉+ ε

〈
ζ̇,Ω

〉
+ ε
〈
ζ,−J−1Kpζ − J−1KdΩ

〉
.

(28)

Conduct to [23], the derivative of the exponential coordinate
ζ̇ can be replaced by a body angular velocity Ω, where

ζ̇ ≤ Ω, (29)

then, (28) can be rewritten as

Ẇ ≤ 〈Ω,Kpζ〉+ ε 〈Ω,Ω〉 − ε
〈
ζ, J−1Kpζ

〉
− ε
〈
ζ, J−1KdΩ

〉
− 〈Ω,Kpζ〉 − 〈Ω,KdΩ〉

≤ ε 〈Ω,Ω〉 − ε
〈
ζ, J−1Kpζ

〉
− ε
〈
ζ, J−1KdΩ

〉
− 〈Ω,KdΩ〉 .

(30)

Equation (30) can be rewritten in a quadratic form as

Ẇ = −ξTQεξ, (31)

where
Qε =

[
εJ1Kp

ε
2J
−1Kd

ε
2J
−1Kd Kd − εI3×3

]
, (32)

is positive definite matrix for small ε.
In order to make the closed-loop system being asymptoti-

cally stable, Sε and Qε have to be guaranteed to be positive
definite. Assuming that Kp, Kd and J are diagonal matrix. To
guarantee matrix Sε and Qε are positive definite matrix, the
upper-bound condition for ε can be calculated by calculating
the leading principal minor of Sε and Qε, i.e.,

ε < min
{√

JxxKp1,
√
JyyKp2,

√
JzzKp3,

Kd1λ1
1 +K2

d1

,
Kd2λ2

1 +K2
d2

,
Kd3λ3

1 +K2
d3

,
(33)

where

λ1 = 4JxxKp1

λ2 = 4JyyKp2

λ3 = 4JzzKp3.

(34)

Remark 1. The control law in (21) using Proportional and
Derivative (PD) Feedback plus feed-forward compensation.
The proportional feedback is in term of the exponential co-
ordinate of the relative attitude vector (ζ), and the derivative
feedback is in terms of angular velocity vector (Ω). Usually,
a PD control uses proportional and derivative error term. In
this work, the desired attitude is constant (ζd = 0) since this
work only consider stabilization. Therefore, there is no ζd in
(21).

Remark 2. (Feed-forward compensation) The feed-
forward term is used to enhance the performance by compen-
sating for the plant dynamic. The coriolis term (Ω× JΩ) in
control law (21) is compensated. As a result, the coriolis term
(cross-term) vanishes in the closed-loop systems dynamics in
(22).

B. PD Control with uncertainties parameter

In this section, the uncertainties parameter of the gravity
force gG(R) is added to the dynamic system of a quadrotor.
The value of gravity force gG(R) is depend to the mass
of payload (mp) and the position of payload relative to
the origin (center of geometry) rG, where in most cases is
unknown. Basically, the position of the CoG is not fixed in
one position, it may change with the time (dynamic). For
example, the payload is a container filled with liquid, where
the liquid in the container is always moving. This effect
needs to be properly compensated. Thus, a robust control
is required to compensate this effect, in order to achieve null
error at steady state.

Conduct to the dynamic system in (20), to design a robust
controller, an additional feedback control ur which is a
virtual force have to be designed to counter act the effect
of the uncertain parameter of the gravity force gG(R). So
that, the overall control

τ = τ0 + ur, (35)

stabilizes the actual system in (20) in the presence of the
uncertainties parameter of the gravity force gG(R), where
τ0 is a control law in nominal condition, as shown in (21).
By substituting the control in (35) into (20) leads to the
closed-loop system as

Ω̇ = J−1(τ0 + ur − Ω× (JΩ)− gG(R))

= −J−1(Ω× JΩ) + J−1ur + J−1gG(R)

+ J−1(−Kpζ −KdΩ + Ω× JΩ)

= −J−1Kpζ − J−1KdΩ + J−1ur + J−1gG(R)

= J−1(−Kpζ −KdΩ + ur + gG(R)).

(36)

By using the Lyapunov function in (24), the time derivative
of Lyapunov function W along the trajectory of (36) gives

Ẇ =
〈
ζ̇, Kpζ

〉
+ ε
〈
ζ̇,Ω

〉
+ ε
〈
ζ, Ω̇

〉
+
〈

Ω, JΩ̇
〉

=
〈
ζ̇, Kpζ

〉
+ ε
〈
ζ̇,Ω

〉
− ε
〈
ζ, J−1Kpζ

〉
−

ε
〈
ζ, J−1KdΩ

〉
+ ε 〈ζ, ur〉+ ε 〈ζ, gG(R)〉−

〈Ω,Kpζ〉 − 〈Ω,KdΩ〉+ 〈Ω, ur〉+ 〈Ω, gG(R)〉 .

(37)

By using (29) and (31), equation (37) can be simplified as

Ẇ ≤ −ξTQεξ + (ε
〈
ζ, J−1ur

〉
+ ε
〈
ζ, J−1gG(R)

〉
+

〈Ω, ur〉+ 〈Ω, gG(R)〉)
≤ Ẇn + Ẇr.

(38)

The first term on the right-hand side in (38) is due to
the nominal closed-loop system (31), and the second term
represents the effect of the control ur and the uncertain term
of the gravity force gG(R) on nominal system, where

Ẇn = −ξTQεξ (39)

is the derivative of Lyapunov function in nominal condition,
and

Ẇr = ε
〈
ζ, J−1ur

〉
+ ε
〈
ζ, J−1gG(R)

〉
+ 〈Ω, ur〉

+ 〈Ω, gG(R)〉
(40)

is the derivative of the Lyapunov function with the robust
control ur and the uncertain term of the gravity force gG(R)
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in the system.

Lemma 1. Let Ẇr as
∂W0

∂x
f(x)(ur(x) + δ(x)). (41)

When the uncertainty δ(x) can assume any value or
function with the size of the given bounding function ∆(x),
the robust control

ur(x) = −∆(x) sgn(
∂W0

∂x
g(x)) (42)

guarantees Ẇ ≤ Ẇn and the asymptotic stability of the
closed-loop system.

With Lemma 1 in mind, the robust controller can be
designed from the Lyapunov function in (38). The system
can be said to be stable if the time derivative of the Lyapunov
function is less than or equal to zero (Ẇ ≤ 0). From (38), it
can be seen that the first term is less than zero, or a negative
definite function. For stabilizing the system, the second term
must be a negative semi-definite function.

Due to the matching condition, the uncertain term of the
gravity force gG(R) appears on the right-hand side exactly
at the same point where the control ur appears. It is possible
to redesign the control ur to cancel the effect of the gravity
force gG(R) on nominal system such that,

0 ≥ ε
〈
ζ, J−1ur

〉
+ ε
〈
ζ, J−1gG(R)

〉
+ 〈Ω, ur〉

+ 〈Ω, gG(R)〉 .
(43)

From (42), (43) and with given a bounding function
∆G(R) ≥ |gG(R)|, a robust control ur can be defined as

ur = −∆G(R)
ζTJ−1 + ΩT

‖ζTJ−1 + ΩT ‖+ k
(44)

where ur ∈ <3 is the robust moment vector,
∆G(R) ≥ |gG(R)| ∈ < is a bounding function of the
uncertainties of the gravitational force, ζ ∈ <3 is the
exponential coordinate vector, Ω ∈ <3 is an angular velocity
of body frame, and ε, k ∈ < is constant with enough value.
The constant k is added to the denominator of robust control
ur to avoid discontinuity which can cause the chattering
when the value of angle ζ and angular velocity Ω is zero.

Theorem 2: (Robust Controller). Consider a quadrotor
system in (20), this quadrotor system can be asymptotically
stabilized by the robust control in (44).

Proof: Consider the derivative of Lyapunov Function in
(38), with Ẇn and Ẇr are in (39) and (40). The system
can be said to be stable if the time derivative of Lyapunov
function in (38) is less than or equal to zero. The first term
Ẇn is a negative definite function. Therefore, the second
term Ẇr must be zero or a negative function, and can be
rewritten as follows
Ẇr = ε

〈
ζ, J−1ur

〉
+ ε
〈
ζ, J−1gG(R)

〉
+ 〈Ω, ur〉

+ 〈Ω, gG(R)〉
= ur(εζ

TJ−1 + ΩT ) + gG(R)(εζTJ−1 + ΩT ).

(45)

By substituting the compensator in (44) into (45), then

Ẇr = −∆G(R)
ζTJ−1 + ΩT

‖ζTJ−1 + ΩT ‖+ k
(εζTJ−1 + ΩT )

+ gG(R)(εζTJ−1 + ΩT ).

(46)

The vector (ζTJ−1 + ΩT )/
∥∥ζTJ−1 + ΩT

∥∥ in (44) is the
unit vector that denotes the direction of ζTJ−1 + ΩT . With
constant k in compensator ur is made small (near to zero),
the magnitude of compensator almost equal to the bounding
function (‖ur‖ ≈ −∆G(R)), then (46) becomes

Ẇr = −∆G(R)(εζTJ−1 + ΩT )+

gG(R)(εζTJ−1 + ΩT ),
(47)

and since ∆G(R) ≥ gG(R), Ẇr is always a negative
function. Therefore, the robust control ur in (44) guarantees
the derivative of Lyapunov function in (38) is negative semi-
definite function, i.e. Ẇ ≤ 0. This mean that the system is
stable to compensate the uncertain parameter by adding the
compensator in (44) into the nominal controller in (21).

Finally, to conclude this section, the final form of the
controller with compensation can be written as

τ = −Kpζ −KdΩ + Ω× JΩ−

∆G(R)
ζTJ−1 + ΩT

‖ζTJ−1 + ΩT ‖+ k

(48)

A schematic diagram of the proposed attitude stabiliza-
tion control strategy is shown in Fig. 3. From Fig. 3, the
error of attitude (rotation) can be obtained by multiplying
the transpose of rotation target matrix Rd with a rotation
current matrix Rc. By using an inverse mapping in (11),
the exponential coordinate ζ of this rotation error can be
calculated. A compensator ur (44) is added to the nominal
controller τ0 (21) to obtain a robust controller τ in (48). In
this control strategy, the uncertainty of the position of CoG
is added to the physical model of a quadrotor, and a small
disturbance is added to the dynamic of a quadrotor.

In this work, the quadrotor model parameters are adopted
from [24] to perjoin the simulation. The parameters are
shown in Table I.

TABLE I
QUADROTOR MODEL PARAMETERS

Parameter Description Values Units
m Mass 6.5 × 10−1 kg

Ixx Roll Inertia 7.5 × 10−3 kg m2

Iyy Pitch Inertia 7.5 × 10−3 kg m2

Izz Yaw Inertia 1.3 × 10−2 kg m2

Jr Rotor inertia 6.5 × 10−5 kg/m2

b Thrust Factor 3.3 × 10−5 N

d Drag Factor 7.5 × 10−7 N

l Distance to CG 3 × 10−1 m

V. NUMERICAL SIMULATION AND DISCUSSION

The model of a quadrotor plant and the
controller in this work are simulated in the
MATLAB/SIMULINK. The initial attitude is a rotation
matrix R = [0.9956 0.6545 − 0.06767;−0.06767 0.9972 −
0.03105; 0.06545 0.0355 0.9972], and the controlling
target is to stabilize a quadrotor in hovering condition
R = [1 0 0; 0 1 0; 0 0 1]. This simulation using PD controller
with gain of Kp and Kd are Kp = diag(14, 14, 14) and
Kd = diag(4, 4, 4). And the stability of system in this
work is indicated by the value of error of angle ζ. The
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Fig. 3. The schematic diagram of the proposed control strategy
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Fig. 4. The effect of CoG position to a quadrotor’s stability

smaller of the error of angle ζ, the greater stability of the
system.

Based on (19), the gravity force which acting in the center
of mass depends to the CoG position rG and the mass of
payload mp. To show the stability of the system due to the
change of mass and the CoG position, the simulation is done
as shown in Fig. 4 and 5.

Fig. 4 shows the stability of system with a constant mass
of payload mp = 2 kg and the CoG position is changed on
the x-axes. This shows that the further CoG position from
the quadrotor center of geometry, the greater stability error
of the system becomes. Fig. 4 also shows that when the CoG
position is on the x-axes, the distortion occurs in the pitch
motion ζy , and the errors from the roll ζx and yaw ζz motion
tend to be zero, and vice in versa.

Showing the effect of the mass of payload mp to the
system stability, the simulation is done with a constant CoG
position is placed 0.3 m far from the quadrotor center of
geometry on x-axes as shown in Fig. 5. This shows that
the greater the mass of payload, the greater distortion in the
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Fig. 5. The effect of mass of payload mp to a quadrotor’s stability

system stability.
Compensating the effect of CoG position rG and the mass

of payload mp, a robust controller was designed in (48),
with a bounding function ∆G(R) ≥ |gG(R)|. To show the
effect of a bounding function on the system stability, the first
simulation is done with a small gravity force (mp = 0.5kg
and rG = [0 0.1 0]Tm). With this parameters, the magnitude
of the gravity force can be calculated i.e. |gG(R)| = 0.49,
then the bounding function ∆G(R) = 0.5 can be used to
compensate this gravity force effect as shown in Fig. 6.

Fig. 6 shows that the system’s stability is achieved when
the magnitude of the gravity force on system is less than the
bounding function. On the other hand, the system will be
unstable if the bounding function is less than the magnitude
of the gravity force (gG(R) = 0.98) as shown in Fig. 6.
This can be proved by using the Lyapunov function in (47).
By substitute ∆G(R) = 0.5 and gG(R) = 0.98 into (47),
the derivative of Lyapunov function Ẇr will be a positive
definite function, which mean that the system is unstable.

Actually, the magnitude of the gravity force cannot be
calculated exactly, due to the unknown parameter of mass of
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payload mp and the CoG position rG. As explain before
that if the bounding function is less than the magnitude
of the gravity force, the system will be unstable. On the
other hand, the greater bounding function, more computation
cost is required. Therefore, to choose a suitable bounding
function ∆G(R), the maximum magnitude of gravity force
that might be occured have to be calculated first. In this
work, the maximum allowable of mass of payload mp and
CoG position rG are 2 kg and 30 cm respectively. By using
equation in (19), the maximum magnitude of gravity force is
|gG(R)| = 8.32. Therefore, the bounding function ∆G(R)
must be greater than 8.32. To show the effect of the choice
of a bounding function to the stability of system with this
maximum parameter, simulation is done as shown in Fig. 7.

As shown in Fig. 7, the system stability is not achieved
when the bounding function ∆G(R) is smaller then the
magnitude of the gravity force maximum |gG(R)|, which
indicated by the error of angle in y-axis (ζθ). Based to the
simulation as shown in Fig. 7, ∆G(R) = 8.4 will be used
as the bounding function in the designed compensator ur.
And to show the robustness of this designed controller, the
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simulation is done in four different cases as shown in Table
II.

TABLE II
CASES OF SIMULATION

Case Simulation
1 Attitude stabilization in nominal condition
2 Attitude stabilization with presence of unknown

CoG position
3 Attitude stabilization with presence of disturbances
4 Attitude stabilization with presence of disturbances

and unknown CoG position

A. Case 1

In this simulation test, attitude stabilization only using
a PD-Feedforward controller where proposed by Bullo in
[23]. This first simulation is done in nominal condition,
where there is no disturbance and the CoG position coincides
with the CG of quadrotor. The performance of the closed-
loop system with the nominal controller in (21) is shown
in Fig. 8. This controller is able to stabilize the attitude of
a quadrotor, to make the system is asymptotically stable,
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which is represented by an error of angle ζ in zero value.
By adding a designed compensator to the controller, the
stabilization looks better, as shown in Fig. 9. Compared to
the result before in Fig. 8, faster settling time is obtained
when using a compensator in the controller. By using this
compensator, settling time is reached within 0.13 sec, while
in the controller without a compensator, the settling time is
reached in 1.62 sec.

B. Case 2

This section simulates the effect of gravitational force
to the stabilization of a quadrotor. The magnitude of the
gravitational force is unknown, due to the unknown position
of CoG and the mass of payload. First simulation is about
stabilization with nominal PD controller in (21), with a
constant uncertain parameter. The uncertain parameters that
used in this first simulation are: g = 9.81 m/s2, mp = 1 kg,
and rG = [0.3 0.3 0]T m.

Conducted to this parameter, the stabilization without
compensation is shown in Fig. 10, and the result stabilization
with compensation is shown in Fig. 11. From Fig. 10, it
seems that a nominal controller fails to stabilize the system,
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because they would require the knowledge of this parameter
to compensate the gravitational force in the dynamic of
system. Therefore, a compensator is needed to be added to
the nominal PD controller, so the stabilization is obtained as
seen in Fig. 11.

To demonstrate the robustness of this compensator, the
simulation is done with a random uncertainties parameter.
The random position of CoG is given as shown in Fig. 12,
while the mass of payload and acceleration of gravitation is
constant. This random CoG is use to indicate the dynamic
CoG position of quadrotor.

The nominal control was fails to compensate this dy-
namic change of the CoG position. So, the stabilization is
not achieved as shown in Fig. 13. By using the designed
compensator, the stability was achieved as shown in Fig. 14.

Based this simulation, it can be concluded that, the de-
signed compensator is robust to compensate the gravitational
force of moment, due to the deviated CoG, where the
position of CoG is typically unknown. This confirms that
a PD controller is unable to compensate the effect of
the uncertainty parameter, because they would require the
knowledge of this parameter. Therefore, a compensator is
needed to be added to the nominal PD controller.
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C. Case 3

In the third case, the stabilization is tested with the
presence of a small disturbance in the system. In this case,
the CoG position of quadrotor is assumed coincides with
the CG of quadrotor. First simulation is done to test the
performance of the nominal control in (21) to handle a
constant disturbance in the system as shown in Fig. 15.

Fig. 15 shows that the nominal control able to compensate
the constant disturbance in the system, so that the stability
can be achieved. Furthermore, simulation is conducted to
find out how reliable a compensator is when dealing with a
constant disturbance. From Fig. 16, it appears that by using
a compensator in a nominal control law, the better stability
was achieved. Faster settling time is reached in 0.16 sec,
while the nominal control needs 1.5 sec to reach the steady
state.

Another scenario is tested, where a random disturbance
is given into the system. First, the simulation is done using
nominal PD- Feedforward controller in (21) without designed
compensator. This controller fails to stabilize the quadrotor’s
attitude, when a random disturbance is presence, as shown
in Fig. 17, where the error of angle ζ value is about −0.35
to 0.2 rad. A better result is given by adding a compensator
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to the controller. By using this designed compensator, the
system become more stable as seen in Fig. 18. The error
of angle ζ can be reduced to around ±0.06 rad. It shows
that the compensation reduce the bound of state variable and
improve the system stability.

D. Case 4

In this section, the stability of a quadrotor will be tested,
due to the presence of a disturbance and the deviated position
of CoG. A constant disturbance signal

[
0.3 0.2 0.1]T is given

when the system stability with deviated CoG is achieved.
The result is shown in Fig. 19. It appears that the system’s
stability is disturbed when a disturbance is given. The error
of angle ζ is rising up for a while, and the controller attracts
the state of error back to the zero value within 0.2 sec. The
stability of the system is maintained during the disturbance
is added to the system.

Based on the simulation in this work, comparing to the
nominal controller based on Bullo in [23], this controller
has better performance in stabilization as shown in Table III.
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TABLE III
THE COMPARISON OF NOMINAL CONTROLLER AND ROBUST

CONTROLLER

Case Nominal Robust
Controller Controller

1. Nominal Condition
Stabilization Stable Stable
Settling Time ± 1.62 sec ± 0.13 sec

2. With Disturbance
Constant disturbance Stable Stable
Recovery Time ± 1.4 sec ± 0.1 sec
Random disturbance Not Stable Stable

3. With uncertain parameters
Constant uncertain parameter Not Stable Stable
Random uncertain parameter Not Stable Stable

4. Deviated CoG and disturbance Not Stable Stable

VI. CONCLUSION

In this paper, a robust attitude stabilization controller was
proposed consisting a nominal Proportional-Derivative feed-
forward and a robust compensator for quadrotor systems
under the effect of the unknown position of the center of
gravity. The robust compensator was introduced to achieve

the robust stability against the effect of the uncertainties
parameter, which is caused by unknown position of center of
gravity. It is proven that the stability of quadrotor’s attitude
can be achieved without the knowledge of the position of
CoG. This robust compensator also increases the perfor-
mance of nominal controller by increasing the settling time
of the system.

Future effort, this controller will be expanded to compen-
sate the moment of inertia due to the unbalance thrust, and
tested in real quadrotor.
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