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Abstract—We study A two species discrete competitive system
with Beddington-DeAngelis functional response in this paper.
Sufficient conditions which guarantee the extinction of a species
and the global attractivity of the other one are obtained. Our
results supplement some existing ones.
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I. INTRODUCTION

THROUGHOUT this paper, for any bounded sequence
{h(n)}, we define hl = infn∈N{h(n)},hu =

supn∈N{h(n)}.
Motivated by Gopalsamy [1], Wang et al. [2] proposed the

following Lotka-Volterra competitive system:

ẋ1(t) = x1(t)
(
r1(t)− a1(t)x1(t)−

b1(t)x2(t)

1 + x2(t)

)
,

ẋ2(t) = x2(t)
(
r2(t)− a2(t)x2(t)−

b2(t)x1(t)

1 + x1(t)

)
.

(1)

By using a differential inequality, the authors obtained suf-
ficient conditions which ensure the existence and global
asymptotic stability of positive almost periodic solutions. For
more works, one could refer to [3-21] and the references cited
therein.

Corresponding to system (1), several scholars [3-6] investi-
gated the dynamic behaviors of the discrete type two species
competitive system with nonlinear inter-inhibition terms,

x1(n+ 1) = x1(n) exp{r1(n)− a1(n)x1(n)

−b1(n)x2(n)
1 + x2(n)

},

x2(n+ 1) = x2(n) exp{r2(n)− a2(n)x2(n)

−b2(n)x1(n)
1 + x1(n)

}.

(2)

For the ecological meaning of model(2), see [3]. Qin et al. [3]
and Wang et al. [4] obtained the permanence, stability, and
almost periodic solutions of system (2). Yue [7] considered
the partial extinction of system (2) with one toxin producing
species.

Manuscript received Aug 1, 2019, revised Feb 6, 2020.
Jiehua Zhang, Shengbin Yu, Qingjuan Wang are with the Department of

Basic Teaching and Research, Yango University, Fuzhou, Fujian 350015,
China. (47756357@qq.com).

In [8], Ma et al. investigated the following discrete two-
species competitive system:

x1(n+ 1) = x1(n) exp{r1(n)− a1(n)x1(n)

− b1(n)x2(n)

1 + β1(n)x1(n)
},

x2(n+ 1) = x2(n) exp{r2(n)− a2(n)x2(n)

− b2(n)x1(n)

1 + β2(n)x2(n)
},

(3)

and obtained the almost periodic solutions of the system.
Based on the above papers, Chen, Chen and Huang [9]

proposed the following two species non-autonomous compet-
itive system with Beddington-DeAngelis functional response
and the effect of toxic substances

ẋ1(t) = x1(t){r1(t)− a1(t)x1(t)

− b1(t)x2(t)

α1(t) + β1(t)x1(t) + γ1(t)x2(t)

−c1(t)x1(t)x2(t)},

ẋ2(t) = x2(t){r2(t)− a2(t)x2(t)

− b2(t)x1(t)

α2(t) + β2(t)x1(t) + γ2(t)x2(t)

−c2(t)x1(t)x2(t)},

(4)

they obtained the partial extinction of system.
Recently, Yu ang Chen [10] investigated the dynamic be-

haviors of system (4) without the effect of toxic substances:

ẋ1(t) = x1(t){r1(t)− a1(t)x1(t)

− b1(t)x2(t)

α1(t) + β1(t)x1(t) + γ1(t)x2(t)
},

ẋ2(t) = x2(t){r2(t)− a2(t)x2(t)

− b2(t)x1(t)

α2(t) + β2(t)x1(t) + γ2(t)x2(t)
},

(5)

Their results supplement the main results of [3, 9] and
generalize [2].

It is well known that the discrete time models are more
appropriate when the populations have nonoverlapping gen-
erations, and this motivated us to propose the discrete time
version of system (5) as follows:
x1(n+ 1) = x1(n) exp{r1(n)− a1(n)x1(n)

− b1(n)x2(n)

α1(n) + β1(n)x1(n) + γ1(n)x2(n)
},

x2(n+ 1) = x2(n) exp{r2(n)− a2(n)x2(n)

− b2(n)x1(n)

α2(n) + β2(n)x1(n) + γ2(n)x2(n)
},

(6)
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where x1(n), x2(n) are population density of species x1 and
x2 at the nth generation, respectively. The coefficients ri(n),
ai(n), bi(n),αi(n), βi(n), γi(n) (i = 1, 2) are all bounded
nonnegative sequences.

As regards the biological meaning, we assume (6) together
with the initial conditions: x1(0) > 0, x2(0) > 0. It is not
difficult to see that the solutions of (6) are positive.

The aim of this paper is to investigate the extinction
property of the system (6). The organization is as follows.
Section 2 is devoted to the results on extinction for system
(6). In Section 3, we study the global stability of another
species when the previous species is eventual extinction.
Then, in Section 4, two examples with numerical simulations
are given to illustrate the feasibility of the main results.
Finally, we conclude in Section 5.

II. EXTINCTION

In this section, we will establish sufficient conditions on
the extinction of species x1 and x2. First, let us introduce
the following lemma which will be useful for our main result.

Lemma 2.1 ([11]). Assume that {x(n)}, satisfies x(n) > 0,
and

x(n+ 1) ≤ x(n) exp{a(n)− b(n)x(n)}

for n ∈ N , where a(n) and b(n) are nonnegative sequences
bounded above and below by positive constants. Then

lim sup
n→+∞

x(n) ≤ 1

bl
exp(au − 1).

Lemma 2.2. Any positive solution (x1(n), x2(n))
T of system

(6) satisfies
lim sup
n→+∞

xi(n) ≤Mi,

where Mi =
1
ali

exp(rui − 1), i = 1, 2.

Proof. Let (x1(n), x2(n))T be any positive solution of sys-
tem (6). From the first and second equation of system (6), it
follows that

xi(n+1) ≤ xi(n) exp{ri(n)−ai(n)xi(n)}, i = 1, 2. (7)

By applying Lemma 2.1 to (7), we have

lim sup
n→+∞

xi(n) ≤
1

ali
exp(rui − 1)

def
= Mi, i = 1, 2. (8)

Lemma 2.2 shows that the positive solutions of system
(6) are bounded eventually.

Theorem 2.1. Assume

(H1)
ru2
rl1

< min{ bl2
au1 (α

u
2 + βu2M1 + γu2M2)

,
al2α

l
1

bu1
}

holds, where Mi, i = 1, 2 is defined in Theorem 2.1,
then the species x2 will be driven to extinction, that is,
for any positive solution (x1(n), x2(n))

T of system (6),
limn→+∞ x2(n) = 0.

Proof. According to (H1), one can choose a small enough
positive constant ε1 such that

ru2
rl1

< min{ bl2
au1 (α

u
2 + βu

2 (M1 + ε1) + γu
2 (M2 + ε1))

,
al2α

l
1

bu1
}
(9)

By (9), there exist two positive constants p and q such that

ru2
rl1

<
p

q
< min{ bl2

au1 (α
u
2 + βu

2 (M1 + ε1) + γu
2 (M2 + ε1))

,

al2α
l
1

bu1
}.

(10)
Thus,

qru2 − prl1
def
= −δ1 < 0,

pau1 −
qbl2

αu2 + βu2 (M1 + ε1) + γu2 (M2 + ε1)
< 0,

pbu1
αl1
− qal2 < 0.

(11)

For the above ε1, it follows from Theorem 2.1 that there
exists a large enough N1 such that for all n ≥ N1,

xi(n) < Mi + ε1, i = 1, 2. (12)

For any k > N1, according to the equations of system (6)
and (12), we can get

ln
x1(k + 1)

x1(k)
= r1(k)− a1(k)x1(k)

− b1(k)x2(k)

α1(k) + β1(k)x1(k) + γ1(k)x2(k)
,

≥ rl1 − au1x1(k)−
bu1x2(k)

al1
,

ln
x2(k + 1)

x2(k)
= r2(k)− a2(k)x2(k)

− b2(k)x1(k)

α2(k) + β2(k)x1(k) + γ2(k)x2(k)
,

≤ ru1 − al1x2(k)

− bl2x1(k)

αu
2 + βu

2 (M1 + ε1) + γu
2 (M2 + ε1)

.

(13)
Consider the following Lyapunov type extinction function,

for k > N1, from (11)-(13), we have

q ln
x2(k + 1)

x2(k)
− p ln x1(k + 1)

x1(k)

≤ (qru2 − prl1)

+ [pau1 −
qbl2

αu2 + βu2 (M1 + ε1) + γu2 (M2 + ε1)
]x1(k)

+ [
pbu1
αl1
− qal2]x2(k)

< −δ1 < 0
(14)

Summing both sides of the above inequalities from N + 1
to n− 1 leads to

q ln
x2(n)

x2(N + 1)
−p ln x1(n)

x1(N + 1)
< −δ1(n−N −1), (15)

hence

x2(n) < [
x1(n)

x1(N + 1)
]
p
q x2(N + 1) exp(−δ1

q
(n−N − 1)).

(16)
The above inequality together with the ultimate boundedness
of x1(n) shows that limn→+∞ x2(n) = 0. The proof is
completed.

Theorem 2.2. Let (x1(n), x2(n))T be any positive solution
of system (6). Suppose

(H2)
rl2
ru1

> max{ bu2
αl2a

l
1

,
au2 (α

u
1 + βu1M1 + γu1M2)

bl1
}
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holds, where Mi, i = 1, 2 are defined in Theorem 2.1,
then the species x1 will be driven to extinction, that is,
limn→+∞ x1(n) = 0.

Proof. Due to (H2), one can choose a small enough positive
constant ε2 such that

rl2
ru1

> max{ bu2
αl2a

l
1

,
au2 [α

u
1 + βu1 (M1 + ε2) + γu1 (M2 + ε2)]

bl1
}.

(17)
By (17), there exist two positive constants p and q such that

rl2
ru1

>
p

q
> max{ bu2

αl2a
l
1

,

au2 [α
u
1 + βu1 (M1 + ε2) + γu1 (M2 + ε2)]

bl1
}.

(18)
Thus,

pru1 − qrl2
def
= −δ2 < 0,

−pal1 +
qbu2
αl2

< 0,

− pbl1
αu1 + βu1 (M1 + ε2) + γu1 (M2 + ε2)

+ qau2 < 0.

(19)

For the above ε2, it follows from Theorem 2.1 that there
exists a large enough N2 such that for all n ≥ N2,

xi(n) < Mi + ε2, i = 1, 2. (20)

For any k > N2, according to the equations of system (6)
and (20), we can get

ln
x1(k + 1)

x1(k)
≤ ru1 − al1x1(k)

− bl1x2(k)

αu1 + βu1 (M1 + ε2) + γu1 (M2 + ε2)
,

ln
x2(k + 1)

x2(k)
≥ rl2 − au2x2(k)−

bu2x1(k)

αl2
.

(21)
Therefore, inequalities (19)-(21) show that

p ln
x1(k + 1)

x1(k)
− q ln x2(k + 1)

x2(k)

≤ (prm1 − qrl2) + (
qbu2
αl2
− pal1)x1(k)

+ [qau2 −
pbl1

αu1 + βu1 (M1 + ε2) + γu1 (M2 + ε2)
]x2(k)

< −δ2 < 0, k > N2.
(22)

Similarly to the analysis in Theorem 2.1, we can get
limn→+∞ x1(n) = 0.

III. GLOBAL STABILITY

In Section 2, we get sufficient conditions which guarantee
the extinction of the first or second species in system (6).
Following, we investigate the stability property of the rest
species. Let us first state several lemmas which will be
useful in the proof of the main result of this section.

Lemma 3.1 ([12]). Assume that {x(n)} satisfies

x(n+ 1) ≥ x(n) exp{a(n)− b(n)x(n)}, n ≥ N0,

lim supn→+∞ x(n) ≤ x∗ and x(N0) > 0, where a(n) and
b(n) are nonnegative sequences bounded above and below
by positive constants and N0 ∈ N . Then

lim inf
n→+∞

x(n) ≥ min{ a
l

bu
exp(al − bux∗), a

l

bu
}.

Lemma 3.2. Suppose (H1) holds, and (x1(n), x2(n))
T be

any positive solution of system (6) , then

m1 ≤ lim inf
n→+∞

x1(n) ≤ lim sup
n→+∞

x1(n) ≤M1,

where m1 =
rl1
au1

exp(rl1 − au1M1) and M1 is defined in

Lemma 2.1.

Proof. It follows from Lemma 2.1 and Theorem 2.1 that

lim sup
n→+∞

x1(n) ≤M1, lim
n→+∞

x2(n) = 0. (23)

To end the proof of Lemma 3.2, we just need to show that

lim inf
n→+∞

x1(n) ≥ m1.

Since rl1 > 0, there exists a small enough ε3 > 0 such that

rl1 −
bu2ε3
αl1

> 0. (24)

According to (23), for the above ε3 > 0, there exists a large
enough N3 > 0, such that, for n ≥ N3, it follows from
Lemma 2.1 and Theorem 2.1 that

x1(n) ≤M1 + ε3, x2(n) ≤ ε3. (25)

Thus, it follows from (25) and the first equation of system
(6) that

x1(n+ 1) ≥ x1(n) exp{rl1 − au1x1(n)−
bu2ε3
αl1
}. (26)

Since rl1 −
bu2ε3
αl1

> 0, by applying Lemma 3.1 to (26), it

immediately follows that

lim inf
n→+∞

x1(n) ≥ min{
rl1 −

bu2 ε3
αl

1

au1
exp(rl1 −

bu2ε3
αl1
− au1M1),

rl1 −
bu2 ε3
αl

1

au1
}.

(27)
Setting ε3 → 0 in the above inequality, one can obtain

lim inf
n→+∞

x1(n) ≥ min{ r
l
1

au1
exp(rl1 − au1M1),

rl1
au1
}. (28)

By calculation, one can easily get

rl1 − au1M1 = rl1 − au1
exp(ru1 − 1)

al1
≤ rl1 − exp(ru1 − 1)

≤ rl1 − ru1 ≤ 0.

(29)

Inequality (28) together with (29) lead to

lim inf
n→+∞

x1(n) ≥
rl1
au1

exp(rl1 − au1M1)
def
= m1. (30)
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This ends the proof of Lemma 3.2.

Lemma 3.3. Suppose (H2) holds, and (x1(n), x2(n))
T be

any positive solution of system (6) , then

m2 ≤ lim inf
n→+∞

x2(n) ≤ lim sup
n→+∞

x2(n) ≤M2,

where m2 =
rl2
au2

exp(rl2 − au2M2) and M2 is defined in

Lemma 2.1.

Proof. The proof of Lemma 3.3 is similar to that of the proof
of Lemma 3.2, we omit the details here.

Consider the following discrete logistic equation:

x(n+ 1) = x(n) exp{r1(n)− a1(n)x(n)}, n ∈ N, (31)

where r1(n) and a1(n) are bounded nonnegative sequences.

Lemma 3.4 ([13]). For any positive solution x(n) of (31),
we have

m1 ≤ lim inf
n→+∞

x(n) ≤ lim sup
n→+∞

x(n) ≤M1,

where m1 and M1 are defined by Lemma 3.2.
Consider the following discrete logistic equation:

x(n+ 1) = x(n) exp{r2(n)− a2(n)x(n)}, n ∈ N, (32)

where r2(n) and a2(n) are bounded nonnegative sequences.

Lemma 3.5 ([13]). For any positive solution x̃(n) of (32),
we have

m2 ≤ lim inf
n→+∞

x̃(n) ≤ lim sup
n→+∞

x̃(n) ≤M2,

where m2 and M2 are defined by Lemma 3.3.
Now, we come to showing the main results of this section.

Theorem 3.1. Suppose (H1) holds, further suppose that

(H3)
au1
al1

exp(ru1 − 1) < 2, then

lim
n→+∞

(x1(n)− x(n)) = 0, lim
n→+∞

x2(n) = 0.

where (x1(n), x2(n))
T and x(n) are any two positive

solutions of system (6) and (31), respectively.

Proof. It follows from Theorem 2.1 that

lim
n→+∞

x2(n) = 0. (33)

Set y(n) = lnx1(n)− lnx(n), then it follows from the first

equation of system (6) and (31) that

y(n+ 1)

= lnx1(n) + {r1(n)− a1(n)x1(n)

− b1(n)x2(n)

α1(n) + β1(n)x1(n) + γ1(n)x2(n)
}

− lnx(n)− {r1(n)− a1(n)x(n)},

= y(n)− a1(n)(x1(n)− x(n))

− b1(n)x2(n)

α1(n) + β1(n)x1(n) + γ1(n)x2(n)

= y(n)− a1(n)x(n)[exp(y(n))− 1]

− b1(n)x2(n)

α1(n) + β1(n)x1(n) + γ1(n)x2(n)

(34)

Using the mean value theorem, we can obtain

exp(y(n))−1 = y(n) exp[θ(n)y(n)], θ(n) ∈ (0, 1). (35)

Substituting (35) into the equation (34), we can get

y(n+ 1) = [1− a1(n)x(n) exp(θ(n)y(n))]y(n)

− b1(n)x2(n)

α1(n) + β1(n)x1(n) + γ1(n)x2(n)

(36)

Considering (H3) implies that −1 < 1−au1M1 , there exists
a small enough ε > 0 such that

−1 < 1− au1 (M1 + ε). (37)

According to Lemma 3.2, Lemma 3.4, and (33), for the above
ε > 0, there exists large enough N > 0 , such that, for
n ≥ N ,

m1 + ε ≤ x1(n) ≤M1 + ε,

m1 + ε ≤ x(n) ≤M1 + ε, x2(n) ≤ ε.
(38)

Note that θ(n) ∈ (0, 1) implies that x(n) exp(θ(n)y(n)) lies
between x(n) and x1(n). From (36) and (38), for n ≥ N ,
one can get

|y(n+ 1)| ≤ max{|1− au1 (M1 + ε)|,

|1− al1(m1 − ε)|}|y(n)|+
bu1
αl1
ε

= λε|y(n)|+
bu1
αl1
ε,

(39)

where λε = max{|1− au1 (M1 + ε)|, |1− al1(m1− ε)|}. This
implies that

|y(n)| ≤ λn−Nε |y(N)|+ 1− λn−Nε

1− λε
bu1
αl1
ε, (n ≥ N).

(40)
Note that

−1 < 1− au1 (M1 + ε) ≤ 1− al1(m1 − ε) < 1,

hence 0 < λε < 1. Thus, limn→+∞ y(n) = 0 can be
immediately obtained by (40), and so limn→+∞(x1(n) −
x(n)) = 0. This ends the proof of Theorem 3.1.

Similarly, by using Lemmas 3.3 and 3.5, we have the
following theorem.

Theorem 3.2. In addition to the conditions of Theorem 2.2,

Engineering Letters, 28:2, EL_28_2_19

Volume 28, Issue 2: June 2020

 
______________________________________________________________________________________ 



further suppose that (H4)
au2
al2

exp(ru2 − 1) < 2. Then for

any positive solution (x1(n), x2(n))
T of system (6) and any

positive solution x̃(n) of system (32), we have

lim
n→+∞

(x2(n)− x̃(n)) = 0, lim
n→+∞

x1(n) = 0.

IV. NUMERIC SIMULATIONS

In this section, we give the following two examples to
verify the feasibilities of our results.

Example 4.1. Consider the following system:

x1(n+ 1) = x1(n) exp{1.5− 1.5x1(n)

− (1 + 0.8sin(
√
7n))x2(n)

0.6 + (0.2 + sin(
√
5n))x1(n) + 0.2x2(n)

},

x2(n+ 1) = x2(n) exp{0.7− 0.9x2(n)

− (3 + cos(
√
5n))x1(n)

0.9 + (0.6 + 0.1cos(
√
4n))x1(n) + 0.2x2(n)

},

(41)

Take easy calculation, we have
ru2
rl1
≈ 0.4667, M1 ≈

1.0991, M2 ≈ 0.8231,
bl2

au1 (α
u
2 + βu2M1 + γu2M2)

≈ 0.7270,

al2α
l
1

bu1
≈ 0.63. Thus, condition (H1) is satisfied and it

follows from Theorem 2.1 that, for any positive solution
(x1(n), x2(n))

T of system (41), we have limn→+∞(x1(n)−
x(n)) = 0, limn→+∞ x2(n) = 0, where x(n) is any positive
solution of the system

x1(n+ 1) = x1(n) exp{1.5− 1.5x1(n)}.

Figure 1 supports the conclusion.
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x 1 a
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 x
2

x
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x
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Fig. 1. Dynamic behaviors of system (41) with initial conditions
(x1(n), x2(n)) = (1, 0.4)T , (0.3, 0.15)T , (0.7, 0.9)T , and (0.9, 0.6)T ,
respectively.

Example 4.2. Consider the following system:

x1(n+ 1) = x1(n) exp{0.4− 1.75x1(n)

− (3.4 + 0.4sin(
√
3n))x2(n)

2 + (3.5 + 0.5cos(
√
7n))x1(n) + x2(n)

},

x2(n+ 1) = x2(n) exp{1.6− 1.3x2(n)

− (3 + cos(
√
5n))x1(n)

0.8 + (0.6 + 0.4sin(
√
7n))x1(n) + 0.2x2(n)

},

(42)

Take easy calculation, we have
rl2
ru1

= 4, M1 ≈ 0.3136,

M2 ≈ 1.4016,
bu2
αl2a

l
1

≈ 2.8571,
au2 (α

u
1 + βu1M1 + γu1M2)

bl1
≈ 2.0176. It shows that (H2) holds and according to
Theorem 2.2, for system (42), species (x1(n) is driven to
extinction while species (x2(n) is asymptotic to any positive
solution of

x2(n+ 1) = x2(n) exp{1.6− 1.3x2(n)}.

Figure 2 also supports our result.
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x
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Fig. 2. Dynamic behaviors of system (42) with initial conditions
(x1(n), x2(n)) = (0.9, 0.4)T , (0.2, 0.1)T , (0.6, 0.8)T , and (0.5, 0.5)T ,
respectively.

V. CONCLUSION

In this paper, we study a discrete competitive system with
Beddington-DeAngelis functional response and obtain suffi-
cient conditions on partial extinction and stability property
of the other species. When βi(n) = 0, αi(n) = γi(n) =
1 (i = 1, 2), (6) becomes (2) which was investigated
by Qin et al. [3] and Wang et al. [4]. Moreover, when
αi(n) = 1, γi(n) = 0 (i = 1, 2), system (6) reduces to
system (3) studied by Ma et al. [8]. So our results generalize
[3,5,8].
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