



Abstract — The paper shows an experimental approach to

the selection of a set of software components based on

computational experiments simulating the desired operating

conditions of the software system being developed. A

mathematical model is constructed, aimed at an effective

selection of components from the available alternative options.

The model and process of components selection are introduced

and applied to the case of selecting Node.js components for the

development of the Digital Psychological Tools for Conducting

the Large-Scale Psychological Research. The aim of the

platform development is to facilitate the countrywide

simultaneous online psychological surveys in schools in the

conditions of unstable Internet connection and the large variety

of desktop and mobile client devices, running different

operating systems and browsers. The module, which

development is considered in the paper, should provide the

functionality for archiving and checksum verification of the

survey forms and graphical data. With the experimental

approach proposed in the paper, the effective set of components

was identified based on evaluations of 14 quality of operation

indicators. To simulate the desired operating conditions and to

guarantee the reproducibility of the experiments, the virtual

infrastructure was configured, and the genetic algorithm was

applied to reduce the number of experiments with the

unpromising sets of software components. The application of

the genetic algorithm led to the reproducible results of

components selection after 220 experiments instead of 1080

experiments needed by the exhaustive search algorithm. The

suggested approach can be widely used for effective selection of

software components for distributed systems operating in the

given conditions at the stage of their development.

Index Terms — quality of systems and programs, software

systems development, frameworks, genetic algorithm,

evolutionary computation, computational experiments.

Manuscript received June 18, 2019; revised February 18, 2020.

This work was supported in the Ministry of Science and Higher

Education of the Russian Federation, project 8.2321.2017 and grant of

RFBR 17-29-02198.

Alexander Gusev, is with the MIREA – Russian Technological

University, 78 Vernadsky Avenue, Moscow 119454, Russia (e-mail:

alexandrgsv@gmail.com).

Dmitry Ilin, is with the MIREA – Russian Technological University, 78

Vernadsky Avenue, Moscow 119454, Russia (e-mail: i@dmitryilin.com).

Pavel Kolyasnikov, is with the Russian Academy of Education, 8

Pogodinskaya Street, Moscow 119121, Russia (e-mail:

pavelkolyasnikov@gmail.com).

Evgeny Nikulchev, is the professor of the chair of Systems Control and

Modelling of MIREA – Russian Technological University, 78 Vernadsky

Avenue, Moscow 119454, Russia (corresponding author, phone no.

+74957705012, e-mail: nikulchev@mirea.ru).

I. INTRODUCTION

n the integrated development and design of distributed

highly loaded systems the question of proper

technological solutions selection always arises [1].

Moreover, technologies are often already implemented in

several components [2]. Thus, the software designer should

select the components as best as possible. The basis for the

selection can be formulated as a set of parameters and

criteria [3]. But it is necessary to answer the question how to

evaluate the value of those parameters [4]. Although expert

assessments and load test reports for the single components

are widely used, they may be irrelevant to the specific

operating conditions the software system made of those

interacting components is intended for (infrastructure,

number of users, communication channels, operating

systems, computing resources, other interacting

components). Thus, the main task is to formulate a set of

parameters and methods for their assessment for the

effective selection of components considering their

interaction and the desired operating conditions of the

software system being designed.

Ineffective selection of software components can lead to

one of them blocking access of other components to the

shared resources, such as a database. Another example is

choosing the least resource-intensive set of interacting

software components when client hardware resources are

limited [5]. This is especially important when developing

Internet platforms and decentralized control systems for

mobile agents. Also, the effective selection of components is

necessary to ensure the guaranteed data delivery over the

limited or unstable channel through archiving, checksum

verification, encryption. Many other examples can be given

in which the selection of components is the crucial decision

to provide the required quality of operation of the software

system.

For the popular software development frameworks, for

example Node.js, the number of available components is

measured in millions, while lots of them implement similar

functionality. For instance, the Node.js components Lodash

and Underscore provide 114 similar functions. Thus, the

preference of a component should be based on an

experimental study of the quality of its operation in a stack

together with the components implementing the rest of the

functionality of the software system to ensure the

components do not block each other’s access to the shared

resources, do not consume too much of resources, guarantee

Effective Selection of Software Components

Based on Experimental Evaluations of Quality

of Operation

Aleхander Gusev, Dmitry Ilin, Pavel Kolyasnikov and Evgeny Nikulchev, Member, IAENG

I

Engineering Letters, 28:2, EL_28_2_21

Volume 28, Issue 2: June 2020

__

the data delivery over the unstable channel and fulfill all the

other requirements to the quality of operation.

In the previous decades, a significant amount of research

was devoted to the development of an optimal modular

architecture for the component-oriented programming [6],

including quality assessment of modular software

architecture [7], increasing the productivity of modular

software by various methods, including clustering methods

[8], genetic algorithms [9] and other evolutionary algorithms

[10]. These studies were aimed at a priori optimization of

the component-oriented software architecture in terms of the

structural connectivity of the modules, preliminary expert

assessments of the functional completeness of the selected

components. The modern spread of the framework-based

architecture requires the new approach for numerical

measurements of the quality of software products, i.e. the

degree to which the product meets the stated and implied

needs when used under specified conditions.

Considering the exhaustive nature of the problem, as well

as the resource consumption and time duration of the

experiments to evaluate the quality of operation for each

component selection, it is advisable to use evolutionary

algorithms that are highly convergent and reduce the number

of experiments with unpromising sets of software

components. Evolutionary algorithms have proven

themselves in the problems of optimizing the modular

structure of software, as well as in other tasks of multi-

criteria optimization in the field of software development,

i.e. optimization of software development efforts [11],

optimizing the allocation of computing resources [12],

generating optimal test data sets [13], evaluation [14] and

increasing [15] of software reliability, optimizing the

software module clustering [16], release planning [17],

separating the implementation of functionality into software

and hardware parts [18], refactoring [19], in developing web

services with dynamic selection of components [20].

The aim of this article is to offer an experimental

approach to the effective selection of software components

based on evaluations of the quality of operation in a virtual

infrastructure that simulates the operating conditions of the

software system being developed and allows the software

developer to identify the most effective stack for the given

operational conditions.

The proposed approach is illustrated with the case of

development of the Digital Psychological Tools

(DigitalPsyTools.ru) for Conducting the Large-Scale

Psychological Research at the Russian Academy of

Education [21, 22].

The article consists of seven sections. The first is

Introduction. In the second section the model of selection is

presented. The third section describes the use of the model

in software engineering for the specific case of design of the

Digital Platform for Conducting the Large-Scale

Psychological Research. The fourth section presents the

experimental methodology. The fifth section provides the

results of the effective selection of components for the

Digital Platform. The sixth section discusses the results of

the implementation of the proposed approach. The seventh

section concludes the article.

II. MODEL

At the first stage of constructing the model of components

selection the n functional requirements , 1, iq i n to the

software system should be identified as well as t different

configurations , 1,k k t  of the virtual infrastructure,

representing the set of desired operating conditions of the

software system. The software developer identifies then the

set of M software components available for the research.

Each component should implement at least one of the

requirements .iq and may be provided by various third-party

providers. The subset of alternative software components

from M , capable of implementing the requirement iq , is

denoted as , 1, im i n . The sets of software components, in

which for every functional requirement , 1, iq i n there

exists at least one software component from M , are defined

as stacks , 1,js j p . S is the set of all the possible stacks.

To evaluate the quality of operation for a stack, the f

experimentally evaluated partial quality indicators ,
,

k j
r

1, f  are introduced. Their values belong to the space

f . Thus,

, f : ,k j k js R  

, , , ,,
1 2(, , , , ,) , 1, , 1, ,
k j k j k j k jk j T

fR r r r r k t j p    

where ,
, 1, , 1, , 1,

k j
r f k t j p     are the values of

experimentally evaluated partial quality indicators for the

configuration k of the virtual infrastructure and the stack
js being evaluated.

The integral quality indicator for the stack is defined as:

  ,

1

Ψ , ,

f
k jk js w r 



  (1)

where ,k j
r are the normalized values of partial quality

indicators ,k j
r ; 1, f  ; ,w are the weights of the partial

indicators. Herewith

1

1

f

w



 .

The process of the effective selection of software

components based on the experimental evaluation of the

quality of operation (see Figure 1) for the chosen

configuration of the virtual infrastructure
k is aimed at the

selection of the technology stack
*s satisfying the following

condition:

 *

, 1,

argminΨ , .
j

k j

s j p

s s


  (2)

Engineering Letters, 28:2, EL_28_2_21

Volume 28, Issue 2: June 2020

__

Fig. 1. The process of the effective selection of software components based

on the experimental evaluation of the quality of operation

III. THE USE OF THE MODEL IN SOFTWARE ENGINEERING

With the model and process introduced above, let us

consider the case of selecting Node.js components for the

development of the Digital Psychological Tools for

Conducting the Large-Scale Psychological Research in

Russia.

The aim of the platform design is to facilitate the

countrywide simultaneous online psychological surveys in

schools. Due to the unstable Internet connectivity in the

villages and remote territories, it is crucial to provide the

guaranteed data delivery even if the communication channel

suddenly breaks down. The questionnaire includes the

description structure and may include additional resources

such as images. Figure 2 shows the standard scheme of

questionnaire transmission without the resource preloading.

All the images are downloaded from the server in the survey

process.

Fig. 2. Scheme of questionnaire transmission without the resource

preloading

In the case of an unstable Internet connection, the

participant waits for an image downloading to be able to

answer the question. This may significantly affect the

reliability of the research. Therefore, the batch approach was

chosen to preload the questionnaire resources from the

platform server with a single file. An archive with the data

acts as the batch. Figure 3 shows the transmission of the

questionnaire with the preloading of all the resources.

Fig. 3. The questionnaire transmission with the batch resource preloading

The batch approach provides the following advantages: it

becomes necessary to check the checksum of a single file

only, the number of HTTP requests to the server is reduced,

an Internet connection is only required to download the

questionnaire and send the results back to the platform

server, a poor Internet connection will not affect the research

process.

The chosen architecture is a good option for similar

software systems that need to ensure stable operation

without constant access to the Internet. However, the

software components that are used to implement the

archiving may show different performance in a stack of

software components implementing the rest of the system

while operating in the desirable conditions. Thus, there is a

need to select the archiving components and the rest of the

components effectively, experimentally evaluating various

options together.

To meet the goal of the surveys facilitating, the following

set of functional requirements and alternative Node.js

components was considered: 1q – “sequentially check all

the elements of the array for compliance with the condition

and return an array consisting of elements, for which the

check gave the value “True”, alternative components:

Lodash, Underscore;
2q – “apply the specified function to

all the elements of an array, thereby return a new array

consisting of the transformed elements”, alternative

components: “Lodash”, “Underscore”, JavaScript language

Engineering Letters, 28:2, EL_28_2_21

Volume 28, Issue 2: June 2020

__

tools;
3q – “return the first element of an array”, alternative

components: Lodash, Underscore;
4q – “generate the full

path to the file or directory based on the specified array of

path elements”, alternative components: “Path”;
5q – “find

and replace a substring in the string passed”, alternative

components: JavaScript language tools;
6q – “perform

archiving of the transferred file array and return the

generated Zip-archive”, alternative components: “Adm-zip”,

“Jszip”, “Zipit”;
7q – “calculate the MD5 hash for the

specified data set”, alternative components: “Hasha”, “md5”,

“Ts-md5”;
8q – “read the data from a file”, alternative

components: “Fs-Extra”, “Fs”;
9q – “read the contents of a

directory, returning an array of file and subdirectory names

in the directory”, alternative components: “Fs-extra”;
10q –

“recursively read the contents of a directory and return an

array of file and subdirectory names in the directory”,

alternative components: “Recursive-readdir”.

Thus, 10, 216.n p 

The considered configuration , 1k k t   of the virtual

infrastructure included host CPU: Intel® Core ™ i7–7700;

number of cores: 4; number of logical processors: 8; clock

frequency: 3.60 GHz; host RAM: 12 GB; host operating

system: Ubuntu 16.04 LTS; Vagrant version: 2.2.4; Node.js

version: 10.15.3; 2 virtual CPU cores; 2.0 GB of virtual

RAM; virtual machine operating system: Ubuntu 16.04

LTS; provisioning software: Ansible; file exchange tools for

the virtual machine: NFS-server + BindFS inside the virtual

machine; additional system software: git, make, htop, iotop,

rsync, node-gyp.

The evaluation of the quality of operation is performed

with respect to the 14f  partial quality indicators: ,
1
k jr

the microprocessor operating time spent on the initialization

of the experiment, ms; ,
2
k jr – the operating time of the

microprocessor spent on the execution of system functions

during the initialization of the experiment, ms; ,
3
k jr – the

increase in the Resident Set Size noted after the completion

of the initialization of the experiment (including heap, code

segment and stack), byte; ,
4
k jr – the increase in the heap

size, marked upon completion of the initialization of the

experiment, byte; ,
5
k jr – the increase in the volume of the

used heap, marked upon completion of the initialization of

the experiment, byte; ,
6
k jr – the increase in the amount of

RAM used by C++ objects associated with JavaScript

objects, marked after the experiment has been initialized,

byte;
,

7
k jr – the real time spent on the initialization of the

experiment, ns; ,
8
k jr – the microprocessor operating time

spent on the experiment, ms; ,
9
k jr – the microprocessor

operating time spent on the execution of system functions

during the experiment, ms; ,
10

k jr – the increase in the

Resident Set Size noted at the end of the experiment

(including heap, code segment and stack), byte; ,
11

k jr – the

increase in the heap size, marked at the end of the

experiment, byte; ,
12

k jr – the increase in the amount of the

used heap noted at the end of the experiment, byte; ,
13

k jr the

increase in the amount of RAM used by C ++ objects

associated with JavaScript objects, marked upon completion

of the experiment, byte; ,
14

k jr – real time spent on the

experiment, ns.

The reason for choosing these indicators was that the

client devices at schools across the country were represented

by a wide range of mobile and desktop devices running

various operating systems (see Figure 4) so the selection of

the software stack should be aimed at minimizing the

hardware resource consumption and facilitating the survey

operation at the devices with the lowest hardware features.

Fig. 4. The amounts of clients running different operating systems

The set of indicators coincides with all the available

indicators provided by the Node.js global object “process”.

The platform development team set up the weighting

factors for the indicators as 2 11 0.08;w w 

0.07(1, 3, 10, 12)w     to reach a compromise

between them and prevent too much influence of a particular

indicator on the decision.

When conducting the experiment the indicators
, (1,14, 1, , 1,)k jr k t j p     are normalized with respect

to their maximum values in the experiment and take their

values in the segment [0; 1].

The task is selecting the stack
*s of Node.js components,

which satisfies the criterion (2).

IV. EXPERIMENTAL METHODOLOGY

The selection of a software stack can be carried out with a

complete search algorithm for the set of all the possible

software stacks. However, due to the unavoidable

measurement noise caused by non-linear delays associated

with access to information on the hard drives and network

devices during the execution of the experiment algorithm, it

is not possible to use the results of a single measurement of

Engineering Letters, 28:2, EL_28_2_21

Volume 28, Issue 2: June 2020

__

quality indicators.

It was found in the experiments that reproducible results

of selecting a software stack can be obtained after at least 5

consecutive experimental evaluations of each stack with

averaging the resulting integral indicator (1).

Thus, 1080 runs of the experiment algorithm should be

carried out to evaluate all the 216 possible stacks. Another

option is using an evolutionary algorithm, for example, the

genetic algorithm to reduce the number of evaluations

through the rejection of “unpromising” stacks at an early

stage and reevaluation the fitting stacks in the subsequent

generations. The integral indicator (1) can be used as a

fitness function for the genetic algorithm.

The experimental methodology with the use of a genetic

algorithm in MATLAB environment is presented in

Figure 5.

Fig. 5. Experimental methodology

At the beginning of the experiment the genetic algorithm

generates the functions.json file, which is a json

representation of the stack under evaluation which defines a

set of alternative Node.js components to implement the

functional requirements in the experiment.

For the numerical representation of stacks, the encoding

mapping is introduced as

: Λ nC S  . Thus, to each

stack , 1, js j p , which is called a phenotype, corresponds

the natural set   , , 1,j jC s j p   , which is called a

genotype. The genetic algorithm treats genotypes as

 1 ... , 1 , Θ
g g

h h h
g n gh     ,

where each
g

h
i takes its values in the range from 1 to im ,

with respect to the sequence number of the selected

alternative component from im ; Θg is a set of genotypes

(population of individuals), which belong to the g
th

generation, Θ ,g pH H  . The inverse mapping

1

:Λ С S  converts the genotype of a stack into its

corresponding phenotype. Considering the above introduced

notation, the initial problem (2) with the use of the genetic

algorithm transforms into the following problem:

 *

, 1 ,Θ

argmin Ψ , ,
h
G G

k h
G G

s h

s s


 
 (3)

here G is the last population of individuals before the

genetic algorithm stops.

Thereby, the algorithm of genetic search for the solution

of problem (3) consists of the following steps:

1. Creating the initial population: assign 1 g  ; generate

N random genotypes constituting the initial population
1 2

1 1 1 1Θ { , , , }H     , for each 1
h get the corresponding

choice of the software components
1

1 1 ()j js C  , perform

the computational experiment and calculate the value vector

of the integral criterion (1) for each individual in the

population 1 2)(, , , H      , 1 Ψ ,(,)
jk

i s   ; set

1,
minmin j
j H

   .

2. Start creating the next generation: assign 1  .

3. Select of the first parent: assign 1g g  ; using the

specified selection method choose 'g
 individual as the

first parent.

4. Crossing-over: using the specified selection method

choose ''g
 individual as the second parent. With the

probability КP cross over the parents 'g
 and ''g

 using

the specified crossing-over operator. Mark the result (the

child) as 'g
 .

5. Mutation: with the probability МP act on the individual

 'g
 with the specified mutation operator.

6. Create the next child: assign 1;    if H  then

go to step 7, else go to step 3.

7. Select the elite individual: from the population g the

individual i
g with the lowest value of the quality criterion

1,
mini jj H

   is selected.

8. Complete creating next generation: create the

population '1 '2
1 Θ { , , , ' }g g g

H
g      of individuals selected

earlier; for each 'g
 get the corresponding choice of the

software components
1

 ' ()'j j
g gs C  , perform the

computational experiment and compute the value vector of

integral criterion (1) 1 2' (' , ' , ,)'H      ,

 ' Ψ(), 'k j
i gs   ; set

1,
minmin j
j H

   .

9. Stop condition check: if no termination condition is met

then go to step 3, else issue the solution corresponding to the

min as the answer and terminate the genetic search.

The algorithm may stop when it reaches the limit number

of generations; upon reaching the limit number of stall

generations (the best fitness value among such consecutive

generations does not change); when the change of the

Engineering Letters, 28:2, EL_28_2_21

Volume 28, Issue 2: June 2020

__

average fitness for a number of consecutive generations is

less than the established threshold; at the request of the user;

in other cases defined by the developer.

The genetic algorithm is executed with the following

parameters: MATLAB version: R2018a; integer constrains:

all the genes are integer-valued; selection operator:

tournament selection; mutation operator: extended power

mutation; crossover: Laplace crossover; probability of

mutation, MP : 0.01; probability of crossover, KP : 0.8; elite

count: 1; population size: 20; max generations: 100; max

stall generations: 10; function tolerance: 0.01.

The evaluation of a stack consists of two main stages: the

initialization of the components and the execution of the

experimental algorithm with those components.

The integration of the components of the stack is

implemented using a functional approach, which is the most

convenient way of combining various sets of software

components. Each function which is being called during the

experiment is a kind of software interface that is

implemented using one of the stack components.

At the initialization stage, the functions, which define the

basic settings of the components, are called. Each of them

forms a new anonymous function at the output, which has

exclusive access to the component with the specified

settings. Next, anonymous functions are placed in a single

namespace with the code names of the functional

requirements. To increase the reliability of the results

obtained, the component cache (also known as Node.js

module cache) is cleared before initialization.

After the initialization, the execution phase of the

experimental algorithm begins. The following experimental

algorithm is used:

1. Form the path to the directory with a set of

subdirectories.

2. Read the list of subdirectories.

3. Exclude hidden subdirectories.

4. Form the path for each directory.

5. Do the following for each path:

5.1 Read all the list of files recursively.

5.2 Read and load into the RAM all the files.

5.3 Create a Zip-archive in the RAM.

5.4 Calculate the MD5-hash for the created archive.

After the initialization procedure and the execution of the

experimental algorithm are done, a json file “results.json” is

generated. It contains the source data for the calculation of

the integral indicator (1). This data is obtained through the

interface of the “process” object of Node.js.

V. RESULTS

The genetic algorithm converged to the solution of the

problem (3) after 11 generations, performing 220

experimental evaluations of the various software stacks. The

genotype of the solution is [2 3 2 1 1 1 2 2 1 1], which

corresponds to the following selection of the components to

meet the functional requirements: 1q , 2q and 3q are

implemented with the component “Underscore”; 4q , 5q and

8q are implemented with the JavaScript language tools; 6q is

implemented with the component “Adm-zip”; 7q is

implemented with the component “Md5”; 9q is implemented

with the component “Fs-extra”; 10q is implemented with the

component “Recursive-readdir”. The integral indicator (1)

for the solution was equal to 0.242436.

Experimental measurements for the terminal generation of

the genetic algorithm are presented in the Table I for the

partial quality indicators , ,
1 6... (1)k j k jr r k  and in the Table

II for the indicators , ,
7 10 12 14... , ... , (1)k j k jr r r r k  . The

,
11

k jr indicator was equal to zero for all the individuals in

the terminal generation.

TABLE I

EXPERIMENTAL MEASUREMENTS FOR THE TERMINAL GENERATION OF THE

GENETIC SEARCH FOR THE INDICATORS
, ,

1 6... (1)k j k jr r k 

j ,

1

k jr
,

2

k jr
,

3

k jr
,

4

k jr
,

5

k jr
,

6

k jr

1 0.24 0 0.0754 0.6816 0.071 0.0873

2 0.24 0 0.0782 0.5243 0.0519 0.0672

3 0.28 0 0.1036 0.6291 0.0666 0.0807

4 0.2 0.4 0.1036 0.4719 0.055 0.0667

5 0.12 0.8 0.1032 0.5243 0.0565 0.0668

6 0.24 0 0.2392 0.6332 0.2689 0.1717

7 0.12 0.8 0.0766 0.5243 0.0584 0.0664

8 0.08 1.2 0.0782 0.5767 0.0564 0.0754

9 0.2 0.4 0.2388 0.6332 0.2689 0.1854

10 0.24 0 0.0766 0.6291 0.0586 0.0665

11 0.16 0.8 0.0774 0.5767 0.057 0.0674

12 0.2 0 0.1061 0.5767 0.0675 0.0892

13 0.16 0.4 0.1303 0.5243 0.0918 0.0754

14 0.16 0.8 0.1298 0.5243 0.0817 0.0667

15 0.16 1.2 0.2654 0.7381 0.3004 0.1714

16 0.2 0 0.0762 0.5243 0.0657 0.0748

17 0.24 0 0.1016 0.6291 0.0683 0.0829

18 0.2 0 0.1303 0.6291 0.0679 0.0748

19 0.2 0 0.1032 0.4719 0.0634 0.0745

20 0.2 0 0.1032 0.5243 0.0831 0.0668

Normalized, rounded to 4 decimal places, experimental measurements of

the partial quality indicators in the terminal generation of the genetic

algorithm. The measurements corresponding to the effective solution are

highlighted

The graph of genetic search, reflecting the solution

process for the problem of minimizing the integral quality

indicator  , is shown in the Figure 6.

TABLE II

EXPERIMENTAL MEASUREMENTS FOR THE TERMINAL GENERATION OF THE

GENETIC SEARCH FOR THE INDICATORS
, ,

7 10 12 14... , ... , (1)k j k jr r r r k 

j ,

7

k jr
,

8

k jr

,

9

k jr

,

10

k jr
,

12

k jr
,

13

k jr

,

14

k jr Ψ

1 0.4283 0 0.4 0.2621 0.1709 0.96 0.4549 0.2682

2 0.5067 0.4 0 0.2376 0.1678 0.96 0.457 0.2583

3 0.4705 0.4 0 0 0.1726 0.96 0.4222 0.251

4 0.4299 0.8 0 0 0.1699 0.96 0.6203 0.3034

5 0.5538 0 0 0 0.1699 0.96 0.4606 0.2751

6 0.4578 0 0.4 0 0.162 0.96 0.4051 0.2757

7 0.4251 0.4 0 0.2376 0.1675 0.96 0.4323 0.3068

8 0.5054 0.4 0 0 0.1673 0.96 0.4534 0.3307

9 0.4913 0.4 0 0.2335 0.1599 0.96 0.4067 0.3244

10 0.3863 0.4 0 0.2417 0.4296 0.96 0.4274 0.2741

11 0.5028 0.4 0 0.2335 0.1696 0.96 0.4512 0.3199

12 0.4072 0.4 0 0.2294 0.1696 0.96 0.44 0.2552

13 0.4091 0.4 0 0 0.1703 0.96 0.4133 0.2654

14 0.5337 0.4 0 0 0.1711 0.96 0.469 0.3087

15 0.4411 0 0.4 0.2458 0.1596 0.96 0.4016 0.393

16 0.4049 0.4 0 0.2376 0.1728 0.96 0.4222 0.2477

17 0.4867 0.4 0 0.512 0.4318 0.96 0.4596 0.306

18 0.4159 0 0.4 0 0.1701 0.96 0.4152 0.2424

19 0.3574 0.4 0 0.2376 0.1742 0.96 0.482 0.2467

20 0.5173 0.4 0 0 0.1671 0.96 0.4737 0.2447

Normalized, rounded to 4 decimal places, experimental measurements of

the partial quality indicators in the terminal generation of the genetic

algorithm. The measurements corresponding to the effective solution are

highlighted

Engineering Letters, 28:2, EL_28_2_21

Volume 28, Issue 2: June 2020

__

Fig. 6. Graph of genetic search. Penalty value is equal to the Ψ for the

specific stack being evaluated in the experiment. Best penalty value is the

minimal Ψ in the generation. Mean penalty value is the average Ψ in the

generation

It should be noted that the slight “oscillation” in the

genetic search graph was due to the unavoidable

measurement noise caused by small variations of the

execution time by the machine.
However, as the genetic search proceeds, the genotype of

the best selection begins to predominate from generation to

generation which is confirmed by decreasing mean value of

Ψ and the best selection is identified.

VI. DISCUSSION

As the digital economy becomes the major application of

distributed software systems providing government,

municipal and banking services, traffic control, household

automation etc. the problem of maintaining their quality of

service in normal and peak modes turns to be the crucial

one. As those distributed systems grow rapidly the wrong

decisions made at the development stage can become an

obstacle for their continuous operation. Modern component-

oriented development environments and frameworks provide

plenty of development tools, significant in their number and

approximately the same in their functionality. The specific

selection of such tools brings different values of

performance indicators depending on the desired operating

conditions of the software system being developed.

The framework architectural approach allows the rapid

construction of software systems based on template solutions

combining the permanent piece of software (the framework)

and variable components compatible with the permanent part

so the software system is made up by components selection

for the appropriate framework, while it is possible to use

alternative sets of components that have a similar interface

to implement similar functionality.

The task of quality evaluation is particularly important for

the development and operation of software systems in the

desired conditions. The results of numerical evaluation of

sets of software components can be the basis for the

formalization and finding the solution of the problem of

selecting an effective set from a variety of alternatives.

In accordance with ISO/IEC 25041:2014, measurement

procedure should be able to provide measurement to the

quality characteristics of software. It should ensure that the

measurements are made with the sufficient accuracy to

determine the criteria and make the necessary comparisons.

In the developed method, the physical execution time of the

invariant algorithm of the experiment are measured with an

accuracy of 10
–9

 seconds, the measurements of the amount

of memory occupied are carried out with an accuracy of 1

Byte, the measurement of processor time spent on the

execution of the experimental algorithm are carried out with

an accuracy of 10
–6

 sec.

VII. CONCLUSIONS

The aim of the platform development is to facilitate the

countrywide simultaneous online psychological surveys in

schools in the conditions of unstable Internet connection and

the large variety of desktop and mobile client devices,

running different operating systems and browsers. The

module, which development is considered in the paper,

should provide the functionality for archiving and checksum

verification of the survey forms and graphical data. The 216

possible sets of software components were available to build

the module. With the experimental approach proposed in the

paper, the effective set of components was identified based

on evaluations of 14 quality of operation indicators. To

simulate the desired operating conditions and to guarantee

the reproducibility of the experiments, the virtual

infrastructure was configured, and the genetic algorithm was

applied to reduce the number of experiments with the

unpromising sets of software components. The application

of the genetic algorithm led to the reproducible results of

components selection after 220 experiments instead of 1080

experiments needed by the exhaustive search algorithm.

A software engineering model is proposed. The model is

aimed at providing an effective choice of technologies and

components used in integrated design, and based on

experimental evaluations that consider the specific operating

conditions and the environment of the designed distributed

system.

The methodology for effective selection of software

components based on experimental evaluations of their

quality of operation was discussed and applied to the

problem of development psychological surveys facilitating

module for the countrywide Digital Psychological Tools for

Conducting the Large-Scale Psychological Research. It was

shown how the software developers can set the desired

quality indicators and perform a search for the appropriate

set of software components using the virtual infrastructure,

simulating the planned operating conditions of the software

system. To reduce the number of experiments the developers

can use the evolutionary approach presented in the article.

REFERENCES

[1] J. C. Pereira and R. de F. S. M. Russo, “Design thinking integrated

in agile software development: A systematic literature review,”

Procedia computer science, vol. 138, pp. 775-782, 2018.

[2] N. Belhaj, D. Belaïd, and H. Mukhtar, “Framework for building self-

adaptive component applications based on reinforcement learning,”.

In 2018 IEEE International Conference on Services Computing

(SCC), IEEE, pp. 17-24, 2018.

Engineering Letters, 28:2, EL_28_2_21

Volume 28, Issue 2: June 2020

__

[3] L. Lun, X. Chi and H. Xu, “Coverage criteria for component path-

oriented in software architecture,” Engineering Letters, vol. 27, no. 1,

pp. 40-52, 2019.

[4] B. M. Basok, V. N. Zakharov and S. L. Frenkel, “Iterative approach

to increasing quality of programs testing,” Russian Technological

Journal, vol. 5, no. 4, pp. 43-12, 2017.

[5] S. Gerasimou, R. Calinescu and G. Tamburrelli, “Synthesis of

probabilistic models for quality-of-service software engineering,”

Automated Software Engineering, vol. 25, no. 4, pp. 785-831, 2018.

[6] R. C. Shock and T. C. Hartrum, “A classification scheme for software

modules,” Journal of Systems and Software, vol. 42, no. 1, pp. 29-44,

1998.

[7] S. Sarkar, G. M. Rama and A. C. Kak, “API-Based and Information-

Theoretic Metrics for Measuring the Quality of Software

Modularization,” IEEE Transactions on Software Engineering, vol.

33, no. 1, pp. 14-32, 2007.

[8] B. Mitchell, M. Traverso and S. Mancoridis, “An architecture for

distributing the computation of software clustering algorithms,” In

Proceedings Working IEEE/IFIP Conference on Software

Architecture, Amsterdam, Netherlands, 2001, pp. 181-190.

[9] C. K. Kwong, L. F. Mu, J. F. Tang and X. G. Luo, “Optimization of

software components selection for component-based software system

development,” Computers & Industrial Engineering, vol. 58, no. 4,

pp. 618-624, 2010.

[10] B. S. Mitchell and S. Mancoridis, “On the automatic modularization

of software systems using the bunch tool,” IEEE Transactions on

Software Engineering, vol. 32, no. 3, pp. 193-208, 2006.

[11] S. J. Huang, N. H. Chiu and L. W. Chen, “Integration of the grey

relational analysis with genetic algorithm for software effort

estimation,” European Journal of Operational Research, vol. 188,

no. 3, pp. 898-909, 2008.

[12] Y. S. Dai and X. L. Wang, “Optimal resource allocation on grid

systems for maximizing service reliability using a genetic algorithm,”

Reliability Engineering & System Safety, vol. 91, no. 9, pp. 1071-

1082, 2006.

[13] C. C. Michael, G. McGraw and M. A. Schatz, “Generating software

test data by evolution,” IEEE Transactions on Software Engineering,

vol. 27, no. 12, pp. 1085-1110, 2001.

[14] S. H. Aljahdali and M. E. El-Telbany, “Software reliability prediction

using multi-objective genetic algorithm,” In 2009 IEEE/ACS

International Conference on Computer Systems and Applications,

Rabat, 2009, pp. 293-300.

[15] R. Feldt, “Generating diverse software versions with genetic

programming: an experimental study,” IEE Proceedings – Software,

vol. 145, no. 6, p. 228, 1998.

[16] A. C. Kumari, K. Srinivas and M. P. Gupta, “Software module

clustering using a hyper-heuristic based multi-objective genetic

algorithm,” In 2013 3rd IEEE International Advance Computing

Conference (IACC), Ghaziabad, 2013, pp. 813-818.

[17] D. Greer and G. Ruhe, “Software release planning: an evolutionary

and iterative approach,” Information and Software Technology, vol.

46, no. 4, p. 243-253, 2004.

[18] D. Saha, R. S. Mitra and A. Basu, “Hardware software partitioning

using genetic algorithm,” In Proceedings Tenth International

Conference on VLSI Design, Hyderabad, India, 1997, pp. 155-160.

[19] A. Ouni, M. Kessentini, H. Sahraoui and M . S. Hamdi, “The use of

development history in software refactoring using a multi-objective

evolutionary algorithm,” In GECCO '13: Proceedings of the 15th

annual conference on Genetic and evolutionary computation, pp.

1461-1468, 2013.

[20] K. Shuang, S. Yu and S. Su, “TTS-Coded Genetic Algorithm for

QoS-driven web service selection,” In 2009 IEEE International

Conference on Communications Technology and Applications,

Beijing, 2009, pp. 885-890.

[21] E. Nikulchev, D. Ilin, P. Kolyasnikov, V. Ismatullina, I. Zakharov and

S. Malykh, “Development of the Open Digital Platform for

Conducting the Large-Scale Psychological Research,” Russian

Foundation for Basic Research Journal, no. 4 (104), pp. 114-119,

2019.

[22] P. Kolyasnikov, E. Nikulchev, I. Silakov, D. Ilin and A. Gusev,

“Experimental evaluation of the virtual environment efficiency for

distributed software development,” International Journal of

Advanced Computer Science and Applications, vol. 10, no. 5, pp.

309-316, 2019.

Engineering Letters, 28:2, EL_28_2_21

Volume 28, Issue 2: June 2020

__

