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Abstract — The paper shows an experimental approach to 

the selection of a set of software components based on 

computational experiments simulating the desired operating 

conditions of the software system being developed. A 

mathematical model is constructed, aimed at an effective 

selection of components from the available alternative options. 

The model and process of components selection are introduced 

and applied to the case of selecting Node.js components for the 

development of the Digital Psychological Tools for Conducting 

the Large-Scale Psychological Research. The aim of the 

platform development is to facilitate the countrywide 

simultaneous online psychological surveys in schools in the 

conditions of unstable Internet connection and the large variety 

of desktop and mobile client devices, running different 

operating systems and browsers. The module, which 

development is considered in the paper, should provide the 

functionality for archiving and checksum verification of the 

survey forms and graphical data. With the experimental 

approach proposed in the paper, the effective set of components 

was identified based on evaluations of 14 quality of operation 

indicators. To simulate the desired operating conditions and to 

guarantee the reproducibility of the experiments, the virtual 

infrastructure was configured, and the genetic algorithm was 

applied to reduce the number of experiments with the 

unpromising sets of software components. The application of 

the genetic algorithm led to the reproducible results of 

components selection after 220 experiments instead of 1080 

experiments needed by the exhaustive search algorithm. The 

suggested approach can be widely used for effective selection of 

software components for distributed systems operating in the 

given conditions at the stage of their development. 

 
Index Terms — quality of systems and programs, software 

systems development, frameworks, genetic algorithm, 

evolutionary computation, computational experiments. 
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I. INTRODUCTION 

n the integrated development and design of distributed 

highly loaded systems the question of proper 

technological solutions selection always arises [1]. 

Moreover, technologies are often already implemented in 

several components [2]. Thus, the software designer should 

select the components as best as possible. The basis for the 

selection can be formulated as a set of parameters and 

criteria [3]. But it is necessary to answer the question how to 

evaluate the value of those parameters [4]. Although expert 

assessments and load test reports for the single components 

are widely used, they may be irrelevant to the specific 

operating conditions the software system made of those 

interacting components is intended for (infrastructure, 

number of users, communication channels, operating 

systems, computing resources, other interacting 

components). Thus, the main task is to formulate a set of 

parameters and methods for their assessment for the 

effective selection of components considering their 

interaction and the desired operating conditions of the 

software system being designed. 

Ineffective selection of software components can lead to 

one of them blocking access of other components to the 

shared resources, such as a database. Another example is 

choosing the least resource-intensive set of interacting 

software components when client hardware resources are 

limited [5]. This is especially important when developing 

Internet platforms and decentralized control systems for 

mobile agents. Also, the effective selection of components is 

necessary to ensure the guaranteed data delivery over the 

limited or unstable channel through archiving, checksum 

verification, encryption. Many other examples can be given 

in which the selection of components is the crucial decision 

to provide the required quality of operation of the software 

system. 

For the popular software development frameworks, for 

example Node.js, the number of available components is 

measured in millions, while lots of them implement similar 

functionality. For instance, the Node.js components Lodash 

and Underscore provide 114 similar functions. Thus, the 

preference of a component should be based on an 

experimental study of the quality of its operation in a stack 

together with the components implementing the rest of the 

functionality of the software system to ensure the 

components do not block each other’s access to the shared 

resources, do not consume too much of resources, guarantee 
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the data delivery over the unstable channel and fulfill all the 

other requirements to the quality of operation. 

In the previous decades, a significant amount of research 

was devoted to the development of an optimal modular 

architecture for the component-oriented programming [6], 

including quality assessment of modular software 

architecture [7], increasing the productivity of modular 

software by various methods, including clustering methods 

[8], genetic algorithms [9] and other evolutionary algorithms 

[10]. These studies were aimed at a priori optimization of 

the component-oriented software architecture in terms of the 

structural connectivity of the modules, preliminary expert 

assessments of the functional completeness of the selected 

components. The modern spread of the framework-based 

architecture requires the new approach for numerical 

measurements of the quality of software products, i.e. the 

degree to which the product meets the stated and implied 

needs when used under specified conditions. 

Considering the exhaustive nature of the problem, as well 

as the resource consumption and time duration of the 

experiments to evaluate the quality of operation for each 

component selection, it is advisable to use evolutionary 

algorithms that are highly convergent and reduce the number 

of experiments with unpromising sets of software 

components. Evolutionary algorithms have proven 

themselves in the problems of optimizing the modular 

structure of software, as well as in other tasks of multi-

criteria optimization in the field of software development, 

i.e. optimization of software development efforts [11], 

optimizing the allocation of computing resources [12], 

generating optimal test data sets [13], evaluation [14] and 

increasing [15] of software reliability, optimizing the 

software module clustering [16], release planning [17], 

separating the implementation of functionality into software 

and hardware parts [18], refactoring [19], in developing web 

services with dynamic selection of components [20]. 

The aim of this article is to offer an experimental 

approach to the effective selection of software components 

based on evaluations of the quality of operation in a virtual 

infrastructure that simulates the operating conditions of the 

software system being developed and allows the software 

developer to identify the most effective stack for the given 

operational conditions. 

The proposed approach is illustrated with the case of 

development of the Digital Psychological Tools 

(DigitalPsyTools.ru) for Conducting the Large-Scale 

Psychological Research at the Russian Academy of 

Education [21, 22]. 

The article consists of seven sections. The first is 

Introduction. In the second section the model of selection is 

presented. The third section describes the use of the model 

in software engineering for the specific case of design of the 

Digital Platform for Conducting the Large-Scale 

Psychological Research. The fourth section presents the 

experimental methodology. The fifth section provides the 

results of the effective selection of components for the 

Digital Platform. The sixth section discusses the results of 

the implementation of the proposed approach. The seventh 

section concludes the article. 

II. MODEL 

At the first stage of constructing the model of components 

selection the n  functional requirements ,   1,  iq i n  to the 

software system should be identified as well as t  different 

configurations , 1,k k t   of the virtual infrastructure, 

representing the set of desired operating conditions of the 

software system. The software developer identifies then the 

set of M  software components available for the research. 

Each component should implement at least one of the 

requirements .iq  and may be provided by various third-party 

providers. The subset of alternative software components 

from M , capable of implementing the requirement iq , is 

denoted as ,  1,  im i n . The sets of software components, in 

which for every functional requirement ,   1,  iq i n  there 

exists at least one software component from M , are defined 

as stacks ,  1,js j p . S  is the set of all the possible stacks. 

To evaluate the quality of operation for a stack, the f  

experimentally evaluated partial quality indicators ,
,

k j
r  

1,  f   are introduced. Their values belong to the space 

f . Thus, 

 
, f :  ,k j k js R    

, , , ,,
1 2( , , , , , ) ,  1, ,  1, ,
k j k j k j k jk j T

fR r r r r k t j p      

 

where ,
, 1,   ,  1, , 1,  

k j
r f k t j p      are the values of 

experimentally evaluated partial quality indicators for the 

configuration   k of the virtual infrastructure and the stack 
js  being evaluated. 

The integral quality indicator for the stack is defined as: 

 

  ,

1

Ψ , ,

f
k jk js w r 



              (1) 

 

where ,k j
r  are the normalized values of partial quality 

indicators ,k j
r ; 1,  f  ; ,w  are the weights of the partial 

indicators. Herewith 

1

1

f

w



 . 

The process of the effective selection of software 

components based on the experimental evaluation of the 

quality of operation (see Figure 1) for the chosen 

configuration of the virtual infrastructure 
k  is aimed at the 

selection of the technology stack 
*s  satisfying the following 

condition: 

 

 *

, 1,

argminΨ , .
j

k j

s j p

s s


              (2) 
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Fig. 1. The process of the effective selection of software components based 

on the experimental evaluation of the quality of operation 

 

III. THE USE OF THE MODEL IN SOFTWARE ENGINEERING  

With the model and process introduced above, let us 

consider the case of selecting Node.js components for the 

development of the Digital Psychological Tools for 

Conducting the Large-Scale Psychological Research in 

Russia. 

The aim of the platform design is to facilitate the 

countrywide simultaneous online psychological surveys in 

schools. Due to the unstable Internet connectivity in the 

villages and remote territories, it is crucial to provide the 

guaranteed data delivery even if the communication channel 

suddenly breaks down. The questionnaire includes the 

description structure and may include additional resources 

such as images. Figure 2 shows the standard scheme of 

questionnaire transmission without the resource preloading. 

All the images are downloaded from the server in the survey 

process. 

 

 
 

Fig. 2. Scheme of questionnaire transmission without the resource 

preloading 

 

In the case of an unstable Internet connection, the 

participant waits for an image downloading to be able to 

answer the question. This may significantly affect the 

reliability of the research. Therefore, the batch approach was 

chosen to preload the questionnaire resources from the 

platform server with a single file. An archive with the data 

acts as the batch. Figure 3 shows the transmission of the 

questionnaire with the preloading of all the resources. 

 

 
 

Fig. 3. The questionnaire transmission with the batch resource preloading  

 

The batch approach provides the following advantages: it 

becomes necessary to check the checksum of a single file 

only, the number of HTTP requests to the server is reduced, 

an Internet connection is only required to download the 

questionnaire and send the results back to the platform 

server, a poor Internet connection will not affect the research 

process. 

The chosen architecture is a good option for similar 

software systems that need to ensure stable operation 

without constant access to the Internet. However, the 

software components that are used to implement the 

archiving may show different performance in a stack of 

software components implementing the rest of the system 

while operating in the desirable conditions. Thus, there is a 

need to select the archiving components and the rest of the 

components effectively, experimentally evaluating various 

options together. 

To meet the goal of the surveys facilitating, the following 

set of functional requirements and alternative Node.js 

components was considered:  1q  – “sequentially check all 

the elements of the array for compliance with the condition 

and return an array consisting of elements, for which the 

check gave the value “True”, alternative components: 

Lodash, Underscore; 
2q  – “apply the specified function to 

all the elements of an array, thereby return a new array 

consisting of the transformed elements”, alternative 

components: “Lodash”, “Underscore”, JavaScript language 
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tools; 
3q  – “return the first element of an array”, alternative 

components: Lodash, Underscore;  
4q   – “generate the full 

path to the file or directory based on the specified array of 

path elements”, alternative components: “Path”; 
5q  – “find 

and replace a substring in the string passed”, alternative 

components: JavaScript language tools; 
6q  – “perform 

archiving of the transferred file array and return the 

generated Zip-archive”, alternative components: “Adm-zip”, 

“Jszip”, “Zipit”; 
7q  – “calculate the MD5 hash for the 

specified data set”, alternative components: “Hasha”, “md5”, 

“Ts-md5”; 
8q  – “read the data from a file”, alternative 

components: “Fs-Extra”, “Fs”; 
9q  – “read the contents of a 

directory, returning an array of file and subdirectory names 

in the directory”, alternative components: “Fs-extra”; 
10q  – 

“recursively read the contents of a directory and return an 

array of file and subdirectory names in the directory”, 

alternative components: “Recursive-readdir”. 

Thus, 10, 216.n p   

The considered configuration , 1k k t    of the virtual 

infrastructure included host CPU: Intel® Core ™ i7–7700; 

number of cores: 4; number of logical processors: 8; clock 

frequency: 3.60 GHz; host RAM: 12 GB; host operating 

system: Ubuntu 16.04 LTS; Vagrant version: 2.2.4; Node.js 

version: 10.15.3; 2 virtual CPU cores; 2.0 GB of virtual 

RAM;  virtual machine operating system: Ubuntu 16.04 

LTS; provisioning software: Ansible; file exchange tools for 

the virtual machine: NFS-server + BindFS inside the virtual 

machine; additional system software: git, make, htop, iotop, 

rsync, node-gyp. 

The evaluation of the quality of operation is performed 

with respect to the 14f   partial quality indicators: ,
1
k jr  

the microprocessor operating time spent on the initialization 

of the experiment, ms; ,
2
k jr – the operating time of the 

microprocessor spent on the execution of system functions 

during the initialization of the experiment, ms; ,
3
k jr – the 

increase in the Resident Set Size noted after the completion 

of the initialization of the experiment (including heap, code 

segment and stack), byte; ,
4
k jr – the increase in the heap 

size, marked upon completion of the initialization of the 

experiment, byte; ,
5
k jr  – the increase in the volume of the 

used heap, marked upon completion of the initialization of 

the experiment, byte; ,
6
k jr – the increase in the amount of 

RAM used by C++ objects associated with JavaScript 

objects, marked after the experiment has been initialized, 

byte; 
,

7
k jr – the real time spent on the initialization of the 

experiment, ns; ,
8
k jr – the microprocessor operating time 

spent on the experiment, ms; ,
9
k jr – the microprocessor 

operating time spent on the execution of system functions 

during the experiment, ms; ,
10

k jr – the increase in the 

Resident Set Size noted at the end of the experiment 

(including heap, code segment and stack), byte; ,
11

k jr – the 

increase in the heap size, marked at the end of the 

experiment, byte; ,
12

k jr – the increase in the amount of the 

used heap noted at the end of the experiment, byte; ,
13

k jr  the 

increase in the amount of RAM used by C ++ objects 

associated with JavaScript objects, marked upon completion 

of the experiment, byte; ,
14

k jr  – real time spent on the 

experiment, ns. 

The reason for choosing these indicators was that the 

client devices at schools across the country were represented 

by a wide range of mobile and desktop devices running 

various operating systems (see Figure 4) so the selection of 

the software stack should be aimed at minimizing the 

hardware resource consumption and facilitating the survey 

operation at the devices with the lowest hardware features. 

 

 
 

Fig. 4. The amounts of clients running different operating systems 

 

The set of indicators coincides with all the available 

indicators provided by the Node.js global object “process”.  

The platform development team set up the weighting 

factors for the indicators as 2 11 0.08;w w   

0.07( 1, 3, 10, 12)w      to reach a compromise 

between them and prevent too much influence of a particular 

indicator on the decision. 

When conducting the experiment the indicators 
, ( 1,14, 1, , 1, )k jr k t j p      are normalized with respect 

to their maximum values in the experiment and take their 

values in the segment [0; 1]. 

The task is selecting the stack 
*s  of Node.js components, 

which satisfies the criterion (2). 

IV. EXPERIMENTAL METHODOLOGY 

The selection of a software stack can be carried out with a 

complete search algorithm for the set of all the possible 

software stacks. However, due to the unavoidable 

measurement noise caused by non-linear delays associated 

with access to information on the hard drives and network 

devices during the execution of the experiment algorithm, it 

is not possible to use the results of a single measurement of 
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quality indicators. 

It was found in the experiments that reproducible results 

of selecting a software stack can be obtained after at least 5 

consecutive experimental evaluations of each stack with 

averaging the resulting integral indicator (1).  

Thus, 1080 runs of the experiment algorithm should be 

carried out to evaluate all the 216 possible stacks. Another 

option is using an evolutionary algorithm, for example, the 

genetic algorithm to reduce the number of evaluations 

through the rejection of “unpromising” stacks at an early 

stage and reevaluation the fitting stacks in the subsequent 

generations. The integral indicator (1) can be used as a 

fitness function for the genetic algorithm.  

The experimental methodology with the use of a genetic 

algorithm in MATLAB environment is presented in 

Figure 5. 

 

 
 
Fig. 5. Experimental methodology 

 

At the beginning of the experiment the genetic algorithm 

generates the functions.json file, which is a json 

representation of the stack under evaluation which defines a 

set of alternative Node.js components to implement the 

functional requirements in the experiment. 

For the numerical representation of stacks, the encoding 

mapping is introduced as 
 

: Λ nC S  . Thus, to each 

stack ,  1,  js j p , which is called a phenotype, corresponds 

the natural set      ,  ,   1,j jC s j p   , which is called a 

genotype. The genetic algorithm treats genotypes as 

 

 1      ... ,    1  , Θ
g g

h h h
g n gh     ,  

 

where each 
g

h
i  takes its values in the range from 1 to im , 

with respect to the sequence number of the selected 

alternative component from im ; Θg  is a set of genotypes 

(population of individuals), which belong to the g
th 

generation, Θ ,g pH H  . The inverse mapping 

1

 
:Λ  С S   converts the genotype of a stack into its 

corresponding phenotype. Considering the above introduced 

notation, the initial problem (2) with the use of the genetic 

algorithm transforms into the following problem:  

 

 *

,   1  ,Θ

argmin Ψ , ,
h
G G

k h
G G

s h

s s


 
 (3) 

 

here G  is the last population of individuals before the 

genetic algorithm stops. 

Thereby, the algorithm of genetic search for the solution 

of problem (3) consists of the following steps: 

1. Creating the initial population: assign   1 g  ; generate 

N  random genotypes constituting the initial population 
1 2

1 1  1 1Θ { , , , }H     , for each 1 
h  get the corresponding 

choice of the software components 
1

1  1   ( )j js C  , perform 

the computational experiment and calculate the value vector 

of the integral criterion (1) for each individual in the 

population 1 2 )( , , , H      , 1    Ψ ,( , )
jk

i s    ; set 

1,
minmin j
j H

   . 

2. Start creating the next generation: assign 1  . 

3. Select of the first parent: assign 1g g  ; using the 

specified selection method choose  'g
   individual as the 

first parent.  

4. Crossing-over: using the specified selection method 

choose ''g
   individual as the second parent. With the 

probability КP  cross over the parents  'g
  and  ''g

  using 

the specified crossing-over operator. Mark the result (the 

child) as  'g
 . 

5. Mutation: with the probability МP  act on the individual 

 'g
  with the specified mutation operator.  

6. Create the next child: assign 1;     if H   then 

go to step 7, else go to step 3.  

7. Select the elite individual: from the population g  the 

individual i
g  with the lowest value of the quality criterion 

1,
mini jj H

    is selected. 

8. Complete creating next generation: create the 

population '1 '2
1      Θ { , , , ' }g g g

H
g        of individuals selected 

earlier; for each   'g
  get the corresponding choice of the 

software components
1

   '   ( )'j j
g gs C  , perform the 

computational experiment and compute the value vector of 

integral criterion (1) 1 2'   ( ' , ' , , )'H      , 

 '    Ψ( ), 'k j
i gs    ; set 

1,
minmin j
j H

   . 

9. Stop condition check: if no termination condition is met 

then go to step 3, else issue the solution corresponding to the 

min  as the answer and terminate the genetic search. 

The algorithm may stop when it reaches the limit number 

of generations; upon reaching the limit number of stall 

generations (the best fitness value among such consecutive 

generations does not change); when the change of the 
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average fitness for a number of consecutive generations is 

less than the established threshold; at the request of the user; 

in other cases defined by the developer. 

The genetic algorithm is executed with the following 

parameters: MATLAB version: R2018a; integer constrains: 

all the genes are integer-valued; selection operator: 

tournament selection; mutation operator: extended power 

mutation; crossover: Laplace crossover; probability of 

mutation, MP : 0.01; probability of crossover, KP : 0.8; elite 

count: 1; population size: 20; max generations: 100; max 

stall generations: 10; function tolerance: 0.01. 

The evaluation of a stack consists of two main stages: the 

initialization of the components and the execution of the 

experimental algorithm with those components. 

The integration of the components of the stack is 

implemented using a functional approach, which is the most 

convenient way of combining various sets of software 

components. Each function which is being called during the 

experiment is a kind of software interface that is 

implemented using one of the stack components. 

At the initialization stage, the functions, which define the 

basic settings of the components, are called. Each of them 

forms a new anonymous function at the output, which has 

exclusive access to the component with the specified 

settings. Next, anonymous functions are placed in a single 

namespace with the code names of the functional 

requirements. To increase the reliability of the results 

obtained, the component cache (also known as Node.js 

module cache) is cleared before initialization. 

After the initialization, the execution phase of the 

experimental algorithm begins. The following experimental 

algorithm is used: 

1. Form the path to the directory with a set of 

subdirectories. 

2. Read the list of subdirectories. 

3. Exclude hidden subdirectories. 

4. Form the path for each directory. 

5. Do the following for each path: 

5.1 Read all the list of files recursively. 

5.2 Read and load into the RAM all the files. 

5.3 Create a Zip-archive in the RAM. 

5.4 Calculate the MD5-hash for the created archive. 

After the initialization procedure and the execution of the 

experimental algorithm are done, a json file “results.json” is 

generated. It contains the source data for the calculation of 

the integral indicator (1). This data is obtained through the 

interface of the “process” object of Node.js. 

V. RESULTS 

The genetic algorithm converged to the solution of the 

problem (3) after 11 generations, performing 220 

experimental evaluations of the various software stacks. The 

genotype of the solution is [2 3 2 1 1 1 2 2 1 1], which 

corresponds to the following selection of the components to 

meet the functional requirements: 1q , 2q  and 3q  are 

implemented with the component “Underscore”; 4q , 5q  and 

8q  are implemented with the JavaScript language tools; 6q  is 

implemented with the component “Adm-zip”; 7q  is 

implemented with the component “Md5”; 9q  is implemented 

with the component “Fs-extra”; 10q  is implemented with the 

component “Recursive-readdir”. The integral indicator (1) 

for the solution was equal to 0.242436.  

Experimental measurements for the terminal generation of 

the genetic algorithm are presented in the Table I for the 

partial quality indicators , ,
1 6... ( 1)k j k jr r k   and in the Table 

II for the indicators , ,
7 10 12 14... , ... , ( 1)k j k jr r r r k  . The 

,
11

k jr  indicator was equal to zero for all the individuals in 

the terminal generation.  

 
TABLE I 

EXPERIMENTAL MEASUREMENTS FOR THE TERMINAL GENERATION OF THE 

GENETIC SEARCH FOR THE INDICATORS 
, ,

1 6... ( 1)k j k jr r k   

j  ,

1

k jr  
,

2

k jr  
,

3

k jr  
,

4

k jr  
,

5

k jr  
,

6

k jr  

1 0.24 0 0.0754 0.6816 0.071 0.0873 

2 0.24 0 0.0782 0.5243 0.0519 0.0672 

3 0.28 0 0.1036 0.6291 0.0666 0.0807 

4 0.2 0.4 0.1036 0.4719 0.055 0.0667 

5 0.12 0.8 0.1032 0.5243 0.0565 0.0668 

6 0.24 0 0.2392 0.6332 0.2689 0.1717 

7 0.12 0.8 0.0766 0.5243 0.0584 0.0664 

8 0.08 1.2 0.0782 0.5767 0.0564 0.0754 

9 0.2 0.4 0.2388 0.6332 0.2689 0.1854 

10 0.24 0 0.0766 0.6291 0.0586 0.0665 

11 0.16 0.8 0.0774 0.5767 0.057 0.0674 

12 0.2 0 0.1061 0.5767 0.0675 0.0892 

13 0.16 0.4 0.1303 0.5243 0.0918 0.0754 

14 0.16 0.8 0.1298 0.5243 0.0817 0.0667 

15 0.16 1.2 0.2654 0.7381 0.3004 0.1714 

16 0.2 0 0.0762 0.5243 0.0657 0.0748 

17 0.24 0 0.1016 0.6291 0.0683 0.0829 

18 0.2 0 0.1303 0.6291 0.0679 0.0748 

19 0.2 0 0.1032 0.4719 0.0634 0.0745 

20 0.2 0 0.1032 0.5243 0.0831 0.0668 

Normalized, rounded to 4 decimal places, experimental measurements of 

the partial quality indicators in the terminal generation of the genetic 

algorithm. The measurements corresponding to the effective solution are 

highlighted 

 
The graph of genetic search, reflecting the solution 

process for the problem of minimizing the integral quality 

indicator  , is shown in the Figure 6. 

 
TABLE II 

EXPERIMENTAL MEASUREMENTS FOR THE TERMINAL GENERATION OF THE 

GENETIC SEARCH FOR THE INDICATORS 
, ,

7 10 12 14... , ... , ( 1)k j k jr r r r k   

j  ,

7

k jr  
,

8

k jr

 

,

9

k jr

 

,

10

k jr  
,

12

k jr  
,

13

k jr

 

,

14

k jr  Ψ  

1 0.4283 0 0.4 0.2621 0.1709 0.96 0.4549 0.2682 

2 0.5067 0.4 0 0.2376 0.1678 0.96 0.457 0.2583 

3 0.4705 0.4 0 0 0.1726 0.96 0.4222 0.251 

4 0.4299 0.8 0 0 0.1699 0.96 0.6203 0.3034 

5 0.5538 0 0 0 0.1699 0.96 0.4606 0.2751 

6 0.4578 0 0.4 0 0.162 0.96 0.4051 0.2757 

7 0.4251 0.4 0 0.2376 0.1675 0.96 0.4323 0.3068 

8 0.5054 0.4 0 0 0.1673 0.96 0.4534 0.3307 

9 0.4913 0.4 0 0.2335 0.1599 0.96 0.4067 0.3244 

10 0.3863 0.4 0 0.2417 0.4296 0.96 0.4274 0.2741 

11 0.5028 0.4 0 0.2335 0.1696 0.96 0.4512 0.3199 

12 0.4072 0.4 0 0.2294 0.1696 0.96 0.44 0.2552 

13 0.4091 0.4 0 0 0.1703 0.96 0.4133 0.2654 

14 0.5337 0.4 0 0 0.1711 0.96 0.469 0.3087 

15 0.4411 0 0.4 0.2458 0.1596 0.96 0.4016 0.393 

16 0.4049 0.4 0 0.2376 0.1728 0.96 0.4222 0.2477 

17 0.4867 0.4 0 0.512 0.4318 0.96 0.4596 0.306 

18 0.4159 0 0.4 0 0.1701 0.96 0.4152 0.2424 

19 0.3574 0.4 0 0.2376 0.1742 0.96 0.482 0.2467 

20 0.5173 0.4 0 0 0.1671 0.96 0.4737 0.2447 

Normalized, rounded to 4 decimal places, experimental measurements of 

the partial quality indicators in the terminal generation of the genetic 

algorithm. The measurements corresponding to the effective solution are 

highlighted 
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Fig. 6. Graph of genetic search. Penalty value is equal to the Ψ  for the 

specific stack being evaluated in the experiment. Best penalty value is the 

minimal Ψ  in the generation. Mean penalty value is the average Ψ  in the 

generation 

 

It should be noted that the slight “oscillation” in the 

genetic search graph was due to the unavoidable 

measurement noise caused by small variations of the 

execution time by the machine. 
However, as the genetic search proceeds, the genotype of 

the best selection begins to predominate from generation to 

generation which is confirmed by decreasing mean value of 

Ψ and the best selection is identified. 

VI. DISCUSSION 

As the digital economy becomes the major application of 

distributed software systems providing government, 

municipal and banking services, traffic control, household 

automation etc. the problem of maintaining their quality of 

service in normal and peak modes turns to be the crucial 

one. As those distributed systems grow rapidly the wrong 

decisions made at the development stage can become an 

obstacle for their continuous operation. Modern component-

oriented development environments and frameworks provide 

plenty of development tools, significant in their number and 

approximately the same in their functionality. The specific 

selection of such tools brings different values of 

performance indicators depending on the desired operating 

conditions of the software system being developed. 

The framework architectural approach allows the rapid 

construction of software systems based on template solutions 

combining the permanent piece of software (the framework) 

and variable components compatible with the permanent part 

so the software system is made up by components selection 

for the appropriate framework, while it is possible to use 

alternative sets of components that have a similar interface 

to implement similar functionality. 

The task of quality evaluation is particularly important for 

the development and operation of software systems in the 

desired conditions. The results of numerical evaluation of 

sets of software components can be the basis for the 

formalization and finding the solution of the problem of 

selecting an effective set from a variety of alternatives. 

In accordance with ISO/IEC 25041:2014, measurement 

procedure should be able to provide measurement to the 

quality characteristics of software. It should ensure that the 

measurements are made with the sufficient accuracy to 

determine the criteria and make the necessary comparisons. 

In the developed method, the physical execution time of the 

invariant algorithm of the experiment are measured with an 

accuracy of 10
–9

 seconds, the measurements of the amount 

of memory occupied are carried out with an accuracy of 1 

Byte, the measurement of processor time spent on the 

execution of the experimental algorithm are carried out with 

an accuracy of 10
–6

 sec. 

VII. CONCLUSIONS 

The aim of the platform development is to facilitate the 

countrywide simultaneous online psychological surveys in 

schools in the conditions of unstable Internet connection and 

the large variety of desktop and mobile client devices, 

running different operating systems and browsers. The 

module, which development is considered in the paper, 

should provide the functionality for archiving and checksum 

verification of the survey forms and graphical data. The 216 

possible sets of software components were available to build 

the module. With the experimental approach proposed in the 

paper, the effective set of components was identified based 

on evaluations of 14 quality of operation indicators. To 

simulate the desired operating conditions and to guarantee 

the reproducibility of the experiments, the virtual 

infrastructure was configured, and the genetic algorithm was 

applied to reduce the number of experiments with the 

unpromising sets of software components. The application 

of the genetic algorithm led to the reproducible results of 

components selection after 220 experiments instead of 1080 

experiments needed by the exhaustive search algorithm. 

A software engineering model is proposed. The model is 

aimed at providing an effective choice of technologies and 

components used in integrated design, and based on 

experimental evaluations that consider the specific operating 

conditions and the environment of the designed distributed 

system. 

The methodology for effective selection of software 

components based on experimental evaluations of their 

quality of operation was discussed and applied to the 

problem of development psychological surveys facilitating 

module for the countrywide Digital Psychological Tools for 

Conducting the Large-Scale Psychological Research. It was 

shown how the software developers can set the desired 

quality indicators and perform a search for the appropriate 

set of software components using the virtual infrastructure, 

simulating the planned operating conditions of the software 

system. To reduce the number of experiments the developers 

can use the evolutionary approach presented in the article.  
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