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Abstract—In this paper, we discuss the mixed-order three-
point boundary value problem with p-Laplacian

(φp(Dα
0+u(t)))′ + a(t)f(t, u(t)) = 0, 0 < t < 1, (1)

Dα
0+u(0) = u′(0) = 0, u(1) = γu(η), (2)

where φp(s) = |s|p−2s, p > 1, γ, η ∈ (0, 1), 1 < α ≤ 2, Dα
0+ is

the Caputo fractional derivative. Benefiting from a fixed point
theorem for operators on a cone, we establish the existence
condition of multiple (at least three) positive solutions to the
above mixed-order three-point boundary value problem with
p-Laplacian are obtained.

Index Terms—Multiple positive solutions; Mixed-order three-
point boundary value problem; p-Laplacian; Caputo’s frac-
tional derivative.

I. I NTRODUCTION

D IFFERENTIAL equations of fractional order have been
recently proved to be valuable tools in the model-

ing of many phenomena in various fields of science and
engineering. Indeed, we can find numerous applications
in viscoelasticity, electrochemistry, control porous media,
electromagnetism, etc. See [1-5]. There has been a significant
development in the study of fractional differential equations
in recent years, see the monographs of Kilbas et al. [6],
Lakshmikantham et al. [7], Podlubny [4], Samko et al. [8],
and the survey by Agarwal et al. [9].

Recently, integer order p-Laplacian boundary value prob-
lems have been widely studied owing to its importance in
theory and application of mathematics and physics, see for
example [10-13] and the references therein. Especially, in
[10], Ji and Ge studied the existence of multiple positive
solutions for Sturm-Liouville-Like four-point boundary value
problem with p-Laplacian

(φp(u′(t)))′(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0)− αu′(ξ) = 0, u(1) + βu′(η) = 0,

by means of a fixed-point theorem for operators on a cone.
On the other hand, there are few articles dealing with

the existence of solutions to boundary value problems for
fractional differential equation with p-Laplacian operator.

In [15], T. Chen et al. investigated the existence of
solutions of the boundary value problem for fractional p-
Laplacian equation with the following form

Dβ
0+(φp(Dα

0+u(t)) = f(t, u(t), Dα
0+u(t)), 0 < t < 1,
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Dα
0+u(0) = Dα

0+u(1) = 0,

where0 < α, β ≤ 1, 1 < α + β ≤ 2, Dα
0+ is the Caputo

fractional derivative, andf : [0, 1]×R2 → R is continuous.
In [16], Z. Liu et al. studied a class of BVPs for nonlinear

fractional differential equations with p-Laplacian operator

Dβ
0+(φp(Dα

0+u(t)) = f(t, u(t), Dα
0+u(t)), 0 < t < 1,

u(0) = µ

∫ 1

0

u(s)ds + λu(ξ),

Dα
0+u(0) = kDα

0+u(η),

where φp(s) = |s|p−2s, p > 1, 0 < α, β ≤ 1, 1 < α +
β ≤ 2, µ, λ, k ∈ R, ξ, η ∈ [0, 1], Dα

0+ denotes the Caputo
fractional derivative of orderα andf : [0, 1]× R2 → R is
a continuous function.

In [17], by using upper and lower solutions methods under
suitable monotone conditions, the authors investigated the
existence of positive solutions to the following nonlocal
problem

Dβ
0+(φp(Dα

0+u(t)))(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) = au(ξ),

Dα
0+u(0) = 0, Dα

0+u(1) = bDα
0+u(η)

where φp(s) = |s|p−2s, p > 1, 1 < α, β ≤ 2, 0 ≤ a, b ≤
1, 0 < ξ < η < 1.

Guoqing Chai [18] investigated the existence and multi-
plicity of positive solutions for a class of boundary value
problems of fractional differential equations with a p-
Laplacian operator

Dβ
0+(φp(Dα

0+u(t))) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) + σDγ
0+u(1) = 0, Dα

0+u(0) = 0,

where1 < α ≤ 2, 0 < β ≤ 1, 0 < γ ≤ 1, 0 ≤ α−γ−1, σ is
a positive constant number,Dα

0+, Dβ
0+, Dγ

0+ are the standard
Riemann-Liouville derivatives.

No contribution exists, as far as we know, concerning the
mixed-order (both Caputo’s fractional-order derivative and
integer-order derivative are included in the equation) three-
point boundary value problem with p-Laplacian

(φp(Dα
0+u(t)))′ + a(t)f(t, u(t)) = 0, 0 < t < 1,

Dα
0+u(0) = u′(0) = 0, u(1) = γu(η),

where φp(s) = |s|p−2s, p > 1, γ, η ∈ (0, 1), 1 < α ≤ 2,
Dα

0+ is the Caputo fractional derivative, the functionf is
assumed to satisfy certain conditions which will be specified
later. To obtain the existence of multiple positive solutions
to the above problem, a fixed point theorem on cones will
be applied.
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II . THE PRELIMINARY LEMMAS

The material in this section is basic in some sence. For
the convenience of readers, we provide some background
material in this section.

Definition 2.1[15] The fractional integral of orderα > 0
for function y : (0, +∞) → R is given by

Iα
0+y(t) =

1
Γ(α)

∫ t

0

(t− s)α−1y(s)ds, α > 0.

Definition 2.2[15] The Caputo’s derivative for functiony
is defined as

Dα
0+y(t) =

1
Γ(n− α)

∫ t

0

y(n)(s)ds

(t− s)α+1−n
, n = [α] + 1,

where[α] denotes the integer part of real numberα.
Lemma 2.1 Let α > 0, then the fractional differential

equation
Dα

0+u(t) = 0

has solutions

u(t) = c1 + c2t + c3t
2 + · · ·+ cntn−1, ci ∈ R,

i = 1, 2, · · · , n, n = [α] + 1.

Lemma 2.2 [15] Let α > 0, then

Iα
0+Dα

0+u(t) = u(t) + c1 + c2t + c3t
2 + · · ·+ cntn−1

for someci ∈ R, i = 1, 2, · · · , n, n = [α] + 1.
We shall consider the Banach spaceE = C[0, 1] equipped

with standard norm

||u|| = max
0≤t≤1

|u(t)|.

The proof of existence of multiple positive solutions is based
on an application of the following Theorem.

Theorem 2.3[13] Let K be a cone in a Banach spaceX.
Let D be an open bounded subset ofX with Dk = D∩K 6=
∅ and Dk 6= K. Assumethat T : Dk −→ K is a compact
map such thatx 6= Tx for x ∈ ∂Dk. Then the following
results hold:
(1) If ‖Tx‖ ≤ ‖x‖, x ∈ ∂Dk, then ik(T, Dk) = 1.
(2) If there existse ∈ K \ {0} such thatx 6= Tx + λe for
all x ∈ ∂Dk and allλ > 0, then ik(T, Dk) = 0.
(3) Let U be open inX such thatU ⊂ Dk. If ik(T,Dk) = 1
andik(T,Uk) = 0, thenT has a fixed point inDk \Uk. The
same resultholds if ik(T,Dk) = 0 and ik(T, Uk) = 1.

Lemma 2.4 Let h(t) ∈ C[0, 1]. Then the following
boundary value problem

(φp(Dα
0+u(t)))′ + a(t)h(t) = 0, 0 < t < 1, (3)

Dα
0+u(0) = u′(0) = 0, u(1) = γu(η), (4)

has a unique solution which can be expressed by

u(t) =
∫ 1

0
G(t, s)φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

+ γ
1−γ

∫ 1

0
G(η, s)φq

(∫ s

0
a(τ)h(τ)dτ

)
ds,

(5)

where

G(t, s) =





(1− s)α−1

Γ(α)
− (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

(1− s)α−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(6)

Proof: Integrating both sides of equation (3) on [0,t],
we have

φp(Dα
0+u(t))− φp(Dα

0+u(0)) = −
∫ t

0

a(s)h(s)ds,

so

Dα
0+u(t) = −φq

(∫ t

0

a(s)h(s)ds

)
,

from Lemma 2.2, it follows that

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

+A + Bt,

sinceu′(0) = 0, we haveB = 0. Namely

u(t) = − 1
Γ(α)

∫ t

0

(t− s)α−1φq

(∫ s

0

a(τ)h(τ)dτ

)
ds + A,

u(1) = − 1
Γ(α)

∫ 1

0

(1− s)α−1φq

(∫ s

0

a(τ)h(τ)dτ

)
ds + A,

u(η) = − 1
Γ(α)

∫ η

0

(η− s)α−1φq

(∫ s

0

a(τ)h(τ)dτ

)
ds + A,

furthermore, sinceu(1) = γu(η), we get

A = 1
(1−γ)Γ(α)

∫ 1

0
(1− s)α−1φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

− γ
(1−γ)Γ(α)

∫ η

0
(η − s)α−1φq

(∫ s

0
a(τ)h(τ)dτ

)
ds.

So,

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

+ 1
(1−γ)Γ(α)

∫ 1

0
(1− s)α−1φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

− γ
(1−γ)Γ(α)

∫ η

0
(η − s)α−1φq

(∫ s

0
a(τ)h(τ)dτ

)
ds,

splitting thesecond integral in two parts of the form

1
Γ(α)

+
γ

(1− γ)Γ(α)
=

1
(1− γ)Γ(α)

,

thus

u(t) = − 1
Γ(α)

∫ t

0
(t− s)α−1φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

+ 1
Γ(α)

∫ 1

0
(1− s)α−1φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

+ γ
(1−γ)Γ(α)

∫ 1

0
(1− s)α−1φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

− γ
(1−γ)Γ(α)

∫ η

0
(η − s)α−1φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

=
∫ t

0

(
(1−s)α−1

Γ(α) − (t−s)α−1

Γ(α)

)

φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

+
∫ 1

t
(1−s)α−1

Γ(α) φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

+ γ
(1−γ)Γ(α)

∫ η

0
((1− s)α−1 − (η − s)α−1)

φq

(∫ s

0
a(τ)h(τ)dτ

)
ds

+ γ
(1−γ)Γ(α)

∫ 1

η
(1− s)α−1φq

(∫ s

0
a(τ)h(τ)dτ

)
ds.

The proofis complete.

Engineering Letters, 28:2, EL_28_2_22

Volume 28, Issue 2: June 2020

 
______________________________________________________________________________________ 



Lemma 2.5 Let β ∈ (0, 1) be fixed. The functionG(t, s)
defined by (6) satisfies the following properties.
1. 0 ≤ G(t, s) ≤ G(s, s), for all s ∈ (0, 1),
2. min

0≤t≤β
G(t, s) ≥ 1−βα−1

2 G(s, s), for all s ∈ (0, 1).

Proof: 1. As 1 < α ≤ 2 and0 ≤ s ≤ t ≤ 1, we have

(1− s)α−1 > (t− s)α−1,

thusG(t, s) > 0. Note

∂G(t, s)
∂t

= − (α− 1)(t− s)α−2

Γ(α)
≤ 0,

thenG(t, s) is nonincreasing as a function oft, therefore

G(t, s) ≤ G(s, s), ∀s ∈ (0, 1).

2. For 0 ≤ t ≤ β, we have

min
0≤t≤β

G(t, s) = G(β, s), (7)

where

G(β, s) =





(1− s)α−1

Γ(α)
− (β − s)α−1

Γ(α)
, 0 ≤ s ≤ β ≤ 1,

(1− s)α−1

Γ(α)
, 0 ≤ β ≤ s ≤ 1.

(a) If 0 ≤ s ≤ β ≤ 1,

min
0≤t≤β

G(t, s) =
(1− s)α−1

Γ(α)
− (β − s)α−1

Γ(α)
,

=
(1− s)α−1

Γ(α)
−

βα−1(1− s
β )α−1

Γ(α)
,

≥ (1− s)α−1

Γ(α)
− βα−1(1− s)α−1

Γ(α)

=
(1− βα−1)(1− s)α−1

Γ(α)

>
(1− βα−1)

2
(1− s)α−1

Γ(α)

=
(1− βα−1)

2
G(s, s),

(8)

(b) If 0 ≤ β ≤ s ≤ 1,

min
0≤t≤β

G(t, s) =
(1− s)α−1

Γ(α)

>
(1− βα−1)

2
(1− s)α−1

Γ(α)

=
(1− βα−1)

2
G(s, s),

(9)

(8), (9) imply that property 2 holds. The proof is complete.

Define theconeK by

K = {u ∈ C[0, 1] : u(t) ≥ 0, min
0≤t≤β

u(t) ≥ 1− βα−1

2
‖u‖}

and theoperatorT : K → E by

Tu(t) =
∫ 1

0
G(t, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

+ γ
1−γ

∫ 1

0
G(η, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds.

(10)
Remark 2.1 By Lemma 2.4, the problem (1), (2) has a

solutionu(t) if and only if u is a fixed point ofT.
Lemma 2.6 T is completely continuous andT (K) ⊂ K.

Proof: From Lemma 2.5, we haveG(t, s) ≥ 0, so
Tu(t) ≥ 0.

‖Tu‖ =
∫ 1

0
max
0≤t≤1

G(t, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

+ γ
1−γ

∫ 1

0
G(η, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

=
∫ 1

0
G(s, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

+ γ
1−γ

∫ 1

0
G(η, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

(11)
min

0≤t≤β
Tu(t)

=
∫ 1

0
min

0≤t≤β
G(t, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

+ γ
1−γ

∫ 1

0
G(η, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

≥ 1−βα−1

2

∫ 1

0
G(s, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

+ γ
1−γ

∫ 1

0
G(η, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

≥ 1−βα−1

2

∫ 1

0
G(s, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

+ 1−βα−1

2
γ

1−γ

∫ 1

0
G(η, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

= 1−βα−1

2

[∫ 1

0
G(s, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

+ γ
1−γ

∫ 1

0
G(η, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

]

= 1−βα−1

2 ‖Tu‖.
(12)

Based on the (11), (12), it shows thatT (K) ⊆ K. In view of
the assumption of nonnegativeness and continuity of function
G(t, s) anda(t)f(t, u(t)), we conclude thatT : K → K is
continuous.

Let Ω ⊂ K be bounded, that is, there existsL > 0 such
that ‖u‖ ≤ L for all u ∈ Ω. Let

M = max
0≤t≤1, 0≤u≤L

|f(t, u)|,

then foru ∈ Ω, from Lemma 2.4 and Lemma 2.5, we obtain

|Tu(t)| =
∣∣∣∣
∫ 1

0
G(t, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

+ γ
1−γ

∫ 1

0
G(η, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

∣∣∣∣
≤ ∫ 1

0
G(s, s)φq

(∫ 1

0
a(τ)Mdτ

)
ds

+ γ
1−γ

∫ 1

0
G(η, s)φq

(∫ 1

0
a(τ)Mdτ

)
ds

≤ φq(M)φq

(∫ 1

0
a(τ)dτ

)

[∫ 1

0
(1−s)α−1

Γ(α) ds + γ
1−γ

∫ 1

0
(1−s)α−1

Γ(α) ds

]

= φq(M)
(1−γ)Γ(α)φq

(∫ 1

0
a(τ)dτ

) ∫ 1

0
(1− s)α−1ds

= φq(M)
(1−γ)Γ(α)αφq

(∫ 1

0
a(τ)dτ

)
= m.

(13)
Hence,T (Ω) is bounded.

On the other hand, letu ∈ Ω, t1, t2 ∈ [0, 1] with t1 < t2,
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then

|Tu(t2)− Tu(t1)| ≤ φq(M)
∫ 1

0
|G(t2, s)−G(t1, s)|

φq

(∫ s

0
a(τ)dτ

)
ds.

The continuity ofG implies that the right side of the above
inequality tends to zero ift2 → t1. Therefore, by applying
the Arzela-Ascoli Theorem, we haveT is completely con-
tinuous.

Let

ξ =
1− βα−1

2
ξ1

ξ1

=

1−βα−1

2

(∫ β

0
G(s, s)φq

(∫ s

0
a(τ)dτ

)
ds

)
α(1− γ)Γ(α)

φq

(∫ 1

0
a(τ)dτ

)

+

γ
1−γ

(∫ β

0
G(η, s)φq

(∫ s

0
a(τ)dτ

)
ds

)
α(1− γ)Γ(α)

φq

(∫ 1

0
a(τ)dτ

)

Kρ = {u ∈ K : ‖u‖ < ρ},
Ωρ = {u ∈ K : min

0≤t≤β
u(t) < ξρ}

= {u : u ∈ C[0, 1], u(t) ≥ 0,
ξ‖u‖ ≤ min

0≤t≤β
u(t) < ξρ}.

Lemma 2.7 Ωρ has the following properties:

(a) Ωρ is open relative to K.
(b) Kξρ ⊂ Ωρ ⊂ Kρ.
(c) u ∈ ∂Ωρ if and only if min0≤t≤β u(t) = ξρ.
(d) If u ∈ ∂Ωρ, then ξρ ≤ u(t) ≤ ρ for t ∈ [0, β].

Now for convenience we introduce the following notations.
Let

f ρ
ξρ = min

{
f(t, u)
φp(ρ)

: t ∈ [0, β], u ∈ [ξρ, ρ]
}

,

fρ
0 = max

{
f(t, u)
φp(ρ)

: t ∈ [0, 1], u ∈ [0, ρ]
}

,

fα = lim
u→α

max
{

f(t, u)
φp(u)

: t ∈ [0, 1]
}

,

fα = lim
u→α

min
{

f(t, u)
φp(u)

: t ∈ [0, β]
}

(α := ∞, or 0+),

n =
αΓ(α)(1− γ)

φq

(∫ 1

0
a(τ)dτ

) ,

N =
[

1−βα−1

2

(∫ β

0
G(s, s)φq

(∫ s

0
a(τ)dτ

)
ds

+ γ
1−γ

(∫ β

0
G(η, s)φq

(∫ s

0
a(τ)dτ

)
ds

))]−1

.

Remark 2.2 It is easy to see that0 < n,N < +∞ and
Nξ = N 1−βα−1

2 ξ1 = 1−βα−1

2 n < n.
Lemma 2.8 If f satisfies the condition:

fρ
0 < φp(n), (14)

then ik(T,Kρ) = 1.

Proof: Based on the (10) and (14), we conclude for
u(t) ∈ ∂Kρ,

‖Tu‖ =
∫ 1

0
G(s, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

+ γ
1−γ

∫ 1

0
G(η, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

≤ ∫ 1

0
G(s, s)φq

(∫ 1

0
a(τ)f(τ, u(τ))dτ

)
ds

+ γ
1−γ

∫ 1

0
G(s, s)φq

(∫ 1

0
a(τ)f(τ, u(τ))dτ

)
ds

< φq(φp(ρ)φp(n))
(∫ 1

0
G(s, s)φq

(∫ 1

0
a(τ)dτ

)
ds

+ γ
1−γ

∫ 1

0
G(s, s)φq

(∫ 1

0
a(τ)dτ

)
ds

)

= nρ

(∫ 1

0
(1−s)α−1

Γ(α) ds + γ
1−γ

∫ 1

0
(1−s)α−1

Γ(α) ds

)

φq

(∫ 1

0
a(τ)dτ

)

= nρ
1

αΓ(α)(1− γ)
φq

(∫ 1

0

a(τ)dτ

)
= ρ = ‖u‖.

Which yields‖Tu‖ < ‖u‖ for u(t) ∈ ∂Kρ. By Theorem 2.3
(1), we haveik(T,Kρ) = 1.

Lemma 2.9 If f satisfiesthe condition:

fρ
ξρ > φp(Nξ), (15)

then ik(T, Ωρ) = 0.
Proof: Let e(t) ≡ 1 for t ∈ [0, 1]. Then e ∈ ∂K1, we

claim that

u 6= Tu + λe, u ∈ ∂Ωρ, λ ≥ 0.

In fact, if not, there existu0 ∈ ∂Ωρ and λ0 ≥ 0 such that
u0 = Tu0 +λ0e. Based on the lemma 2.5 and (15), we have
that for t ∈ [0, β],

u0(t) = Tu0(t) + λ0e(t) ≥ 1−βα−1

2 ‖Tu0‖+ λ0

= 1−βα−1

2

[∫ 1

0
G(s, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

+ γ
1−γ

∫ 1

0
G(η, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

]
+ λ0

≥ 1−βα−1

2

[∫ β

0
G(s, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

+ γ
1−γ

∫ β

0
G(η, s)φq

(∫ s

0
a(τ)f(τ, u(τ))dτ

)
ds

]
+ λ0

> 1−βα−1

2 φq(φp(ρ)φp(Nξ))[∫ β

0
G(s, s)φq

(∫ s

0
a(τ)dτ

)
ds

+ γ
1−γ

∫ β

0
G(η, s)φq

(∫ s

0
a(τ)dτ

)
ds

]
+ λ0

> 1−βα−1

2 Nξρ

[∫ β

0
G(s, s)φq

(∫ s

0
a(τ)dτ

)
ds

+ γ
1−γ

∫ β

0
G(η, s)φq

(∫ s

0
a(τ)dτ

)
ds

]
+ λ0

= ξρ + λ0.

Which yieldsξρ > ξρ+λ0. which is a contradiction. Hence,
by Theorem II (2), it follows thatik(T, Ωρ) = 0.

II I. M AIN RESULT

We now give our results on the existence of multiple
positive solutions of BVP (1) and (2).
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Theorem 3.1Assume the following condition(H1) holds:
(H1) There existρ1, ρ2, ρ3 ∈ (0,∞), with ρ1 < ξρ2 <
ρ2 < ρ3 such that

fρ1
0 < φp(n), fρ2

ξρ2
> φp(Nξ), fρ3

0 ≤ φp(n).

Then system (1) and (2) has three positive solutions inK.
Assume the following condition(H2) holds:
(H2) There existρ1, ρ2, ρ3 ∈ (0,∞), with ρ1 < ρ2 < ξρ3

such that

fρ1
ξρ1

> φp(Nξ), fρ2
0 < φp(n), fρ3

ξρ3
≥ φp(Nξ).

Then problem (1) and (2) has two positive solutions inK.
Proof: From lemma 2.8 and 2.9, we knowik(T, Kρ1) =

1, ik(T, Ωρ2) = 0, ik(T, Kρ3) = 1. For ρ1 < ξρ2, lemma
2.7 (b) impliesKρ1 ⊂ Kξρ2 ⊂ Ωρ2 . Theorem 2.3 impliesT
has two fixed pointsu1 ∈ Kρ1 andu2 ∈ Ωρ2\Kρ1 . Similarly,
we can prove thatT has the third fixed pointu3 ∈ Kρ3\Ωρ2 .
The proofof (H2) is similar to that in(H1), we omit it here.

Theorem 3.1can be generalized to obtain many positive
solutions, we also omit it here.

As a special case of Theorem 3.1, we obtain the following
result.

Corollary 3.2 Assume there existsρ ∈ (0,∞), such that
the following condition(H3) holds:

(H3) 0 ≤ f0 < φp(n), fρ
ξρ > φp(Nξ), 0 ≤ f∞ < φp(n).

Then system (1) and (2) has three positive solutions inK.
Assume if there existsρ ∈ (0,∞), such that the following
condition (H4) holds:

(H4) φp(N) < f0 ≤ ∞, fρ
0 < φp(n), φp(N) < f∞ ≤ ∞.

Then problem (1) and (2) has two positive solutions inK.
Proof: We show that(H3) implies (H1). It is easy to

verify that 0 ≤ f0 < φp(n) implies that there existsρ1 ∈
(0, ξρ) such thatfρ1

0 < φp(n). Let k ∈ (f∞, φp(n)). Then
there existsδ > ρ such thatmaxt∈[0,1] f(t, u) ≤ kφp(u) for
u ∈ [δ,∞) since0 ≤ f∞ < φp(n). Let

Φ = max
{

max
t∈[0,1]

f(t, u) : 0 ≤ u ≤ δ

}

and ρ3 > φq

(
Φ

φp(n)−k

)
.

Then wehave
max

t∈[0,1]
f(t, u) ≤ kφp(u) + Φ ≤ kφp(ρ3) + Φ

< φp(n)φp(ρ3) for u ∈ [0, ρ3].

This implies thatfρ3
0 ≤ φp(n) and (H1) holds. Similarly

(H4) implies (H2).
By an argument similar to that of Theorem 3.1 we obtain

the following results.
Theorem 3.3 Assume one of the following conditions

holds:
(H5) There existρ1, ρ2 ∈ (0,∞) with ρ1 < ξρ2 such that
fρ1
0 ≤ φp(n), fρ2

ξρ2
≥ φp(Nξ),

(H6) There existρ1, ρ2 ∈ (0,∞) with ρ1 < ρ2 such that
fρ1

ξρ1
≥ φp(Nξ), fρ2

0 ≤ φp(n).
Then problem (1) and (2) has a positive solution inK.

Corollary 3.4 Assume one of the following conditions
holds:
(H7) 0 ≤ f0 < φp(n), φp(N) < f∞ ≤ ∞,
(H8) 0 ≤ f∞ < φp(n), φp(N) < f0 ≤ ∞.
Then problem (1) and (2) has a positive solution inK.
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