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Existence ofMultiple Positive Solutions for a
Mixed-order Three-point Boundary Value Problem
with P-Laplacian

Yongtian Lv

Abstract—In this paper, we discuss the mixed-order three- Dy, u(0) = D u(l) =0,

int bound | bl ith p-Laplaci .
point botincary valiie problem with p-Laplactan where0 < o,3 < 1,1 < a+ 3 < 2, Df, is the Caputo
(¢p(DG3u(t)) +a(t)f(t,u(t)) =0, 0<t<1, (1) fractional derivative, angf : [0,1] x R> — R is continuous.
o / In [16], Z. Liu et al. studied a class of BVPs for nonlinear
D 0)=u(0) =0, 1) = , 2 . o . . . .
o+u(0) = w'(0) u(l) =~u(n) @ fractional differential equations with p-Laplacian operator
where ¢,(s) = |s|P"2%s,p > 1,v,n € (0,1),1 < a < 2, D§ is

B —
the Caputo fractional derivative. Benefiting from a fixed point D0+(¢p(D8‘+u(t)) = f(t u(t), D&u(t)), 0<t<l,
theorem for operators on a cone, we establish the existence 1

condition of multiple (at least three) positive solutions to the u(0) = u/ u(s)ds + Au(§),
above mixed-order three-point boundary value problem with 0
p-Laplacian are obtained. D8‘+u(0) = kDngU(U)a
Index Terms—Multiple positive solutions; Mixed-order three- \yhere dp(s) = |s[P"2s,p > 1,0 < 0, < 1,1 < o +

point boundary value problem; p-Laplacian; Caputo’s frac-

1,
tional derivative. B <2,uMkeR, &nel0,1], D§, denotes the Caputo

fractional derivative of order and f : [0,1] x R? — R is
a continuous function.
I. INTRODUCTION In [17], by using upper and lower solutions methods under

IFFERENTIAL equations of fractional order have beeguitable monotone conditions, the authors investigated the
Drecenﬂy proved to be valuable tools in the modeEXistence of positive solutions to the following nonlocal
ing of many phenomena in various fields of science arfoblem
gngi_neering. . Indeed, we can find numerous applicatiqnng+(¢p(D3+u(t)))(t) + f(t,u(t) =0, 0<t<l,
in viscoelasticity, electrochemistry, control porous media, B B
electromagnetism, etc. See [1-5]. There has been a significant u(0) =0, u(1) = au(§),
development in the study of fractional differential equations Dy, u(0) =0, Dg,u(l) = bDg, u(n)

in recent years, see the monographs of Kilbas et al. [% _ulp—2 11 <90 < <
Lakshmikantham et al. [7], Podlubny [4], Samko et al. [8]; gri‘zpf)n; |18| sp>Ll<afs20sabs

and the survey by Agarwal et al. [9]' Guoging Chai [18] investigated the existence and multi-
Recently, integer order p-Laplacian boundary value pro licity of positive solutions for a class of boundary value

lems have been widely studied owing to its importance i ,pjems of fractional differential equations with a p-
theory and application of mathematics and physics, see Oziplacian operator

example [10-13] and the references therein. Especially, in 4
[10], Ji and Ge studied the existence of multiple positive Do+ (¢p(Dgyu(t))) + f(t,u(t)) =0, 0<t <1,
solutions for Sturm-Liouville-Like four-point boundary value w(0) = 0, u(1) + oDy, u(1) =0, D§ u(0) =0,

problem with p-Laplacian )
wherel < a<2,0<8<1,0<y<1,0<a—y—1,0is

(pp(u' () () + f(t,u(t) =0, 0<t<1, a positive constant numbeRy, , D§+, D{, are the standard
, , Riemann-Liouville derivatives.
u(0) — aw'(§) =0, u(l)+ Bu'(n) =0, No contribution exists, as far as we know, concerning the

by means of a fixed-point theorem for operators on a con@ixed-order (both Caputo’s fractional-order derivative and
On the other hand, there are few articles dealing wifRteger-order derivative are included in the equation) three-
the existence of solutions to boundary value problems fBPINt boundary value problem with p-Laplacian
fractional differential equation with p-Laplacian operator. (6p(D§Lu(®)) +a(t)f(t,u®) =0, 0<t<l,
In [15], T. Chen et al. investigated the existence of o o _
solutions of the boundary value problem for fractional p- Dpyu(0) = u(0) =0, u(l) =yu(n),
Laplacian equation with the following form where ¢,(s) = |s|P72s,p > 1,7v,m7 € (0,1),1 < a < 2,
3 N N Dg, is the Caputo fractional derivative, the functighnis
Doy (¢p(Dgyu(t)) = f(t u(t), Dgyu(t), 0<t<1, assumed to satisfy certain conditions which will be specified
) o . __later. To obtain the existence of multiple positive solutions
Yongtian Lv is with the Department of Physics and Informanor{ h b bl ixed . h il
Engineering, Jining University, Qufu 273155, China ( E-mail: Ivyong-0 the a ove problem, a fixe point theorem on cones wi
tianjn@163.com). be applied.
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Il. THE PRELIMINARY LEMMAS Proof: Integrating both sides of equation (3) on [0,t],

The material in this section is basic in some sence. P have
the convenience of readers, we provide some background ¢
material i this section 30(DE (1) = 6,(DFu(0) = = [ a(o)h(s)is,
Definition 2.1[15] The fractional integral of ordes > 0 ’
for functiony : (0, +o00) — R is given by

18, y(t) = r(la)/o (t — 5)*y(s)ds, a> 0.

SO .
D) = 6, [ aton(s)as).

from Lemma 2.2, it follows that

Definition 2.2[15] The Caputo’s derivative for function _ _ 5o
is defined as ut) = F(a) fO (t=8)*" g Jo a(r)h(r)dr )ds
T T —a) fy E—s)erin T ’ since’(0) = 0, we haveB = 0. Namely
where[a] denotes the integer part of real number 1 ot
Lemma 2.1 Let o > 0, then the fractional differential “(t) = _F(a) t_ (bq( )ds A
equation
a _ 1
DGy u(t) =0 u(l) = — 1_5 a- 1¢q( a(r )ds+A,
: F(Oé) 0
has solutions
u(t) =c1+eat+cest+ - +cpt" !t ¢ €R, u(n):—L n—s)*" 1¢q< a(T >ds+A
i=1,2,-,n,n=la] + 1. F(a) 0
Lemma 2.2[15] Let a > 0, then furthermore, since:(1) = ), we get
I8, D u(t) = u(t) + c1 + cat + cst” + -+ + ct" A = = (=)0 e, (f; a(t )ds
for somec; € R, i=1,2,---,n,n=[a]+ 1. N n ot s
We shall consider the Banach spage= C|0, 1] equipped T TT(@ fO (n— dal Jo alr ds.
with standard norm
So,
Jull = max [u(t)]. Lo » .
_ == N o u(t) = — w5y Jo @& —=5)*"tp, (fo a(7’)h(7’)dr> ds
The proof of existence of multiple positive solutions is based
on an application of the following Theorem. + o ,Y)F ) fo )2 1o, (fos a(t )h(T)dT) ds
Theorem 2.3[13] Let K be a cone in a Banach spa&e
Let D bian open bounded subsgéfwith D, =DNK # — T v)F ) fo —5)*"1g, (fo dr) ds,
¢ and Dy, # K. AssumethatT : D, — K is a compact

map such that: # Tx for x € dDj. Then the following splitting thesecond integral in two parts of the form
results hold: 1 5 1

(1) If | Tz|| < ||z||, = € dDyg, theniy(T, D) = 1. T + T - (1=~ T(a)

(2) If there existse € K \ {0} such thatz # Tz + Xe for (@)~ (1=7@)  (1=7)T(a)
all z € dDy, and all\ > 0, theni, (T, Dy,) = 0. thus
(3) Let U be open inX such thaty C Dy. If i,(T, Dy,) = 1 _ 1ty aet s

andi,(T,U;) = 0, thenT has a fixed point irD;, \ Uy. The u(t) = =y Jo(t = 5)* " g Jo a(r)h(r)dr |ds

same resulholds if iy (T, Dy) = 0 and i (T, Uy) = 1. 1 1 a—1 s
Lemma 2.4 Let h(t) € C[0,1]. Then the following +ay Jo (1 =8)*7 g { Jo a()h(r)dr |ds
boundary value problem o
, + oz 'y)l"((y) fo 0 <fo T)dT |ds
(¢p(Dgyu(?)))’ +a(t)h(t) =0, 0<t<1,  (3) B
Dgu(0) = w'(0) =0, w(l) =qun), (&) ~ =it Jo (1= )7 da| J almh(r)dr )ds
has a unique solution which can be expressed by = fo <(1 F?: - (t_rsﬁ):)]>
u(t) = fol (t,8)dq <f0 dT)dS bq <f0 d7>ds
®)
1 s
+ﬁ fol (n, s ¢q <f0 d7'> ds + ff (1 F(L bq <f0 dT) ds
where + - 'yi)f‘ @ fo (T=s)t = (n—s)")
a—1 _ e\a—1
(L=s)* ' (t—s) 0<s<it<l, bq [y al dT)dS
Gt,s) = F(a)a_l I'(«) - - - -
- ;(8)) — 0<t<s<l. + o= Jy (1 % <f alr )h(T)dT>d5'
«

(6) The proofis complete. [ ]
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Lemma 2.5Let 3 € (0,1) be fixed. The functiorG(¢, s) Proof: From Lemma 2.5, we havé&/(t,s) > 0, so
defined by (6) satisfies the following properties. Tu(t) > 0.
1. 0<G(t,s) <G(s,s), for all s € (0,1),
1= 5 s
2. min, G(t,s) = ~G(s,s), for all s € (0,1). |Tul = [y Org%le(t,s)% ( I alr) f(T,u(T))dT)ds

Proof: 1. Asl<a<2and0<s<t<1 we have

+ 12 [y G, 5)og ( I a(r) f(T,u(T))dT> ds

(1-— 5)“71 > (t— s)afl,

thus G(t, s) > 0. Note = Jy Gs,9)8q( [y a(r) f(7,u(r))dr )ds
0G(t, s) _ (a—1)(t—s)*2 <0, + ﬁ fol G(n, 8)dq (fos a(T)f(T,u(T))dT) ds
ot I'(«a) (11)
then G(t, s) is nonincreasing as a function af therefore min Tu(t)
0<t<p

G(t,s) < G(s,s), Vs € (0,1).

2. For0 <t < g, we have

= Jy min_ G(t5)d, ( I a(r) f(r, U(T))d7> s
+% fol G(77, S)¢q (f()s a(T)f(T7 U(T))dT) ds

oin, G(t,s) = G(B, ), @) 3
where > )Gl ) f (e u(ryar )
(1 ;s)a*1 _ (BES)H, 0<s<p<l, +1 fy G(n,5)dq (fosa(T)f(T,u(T))dT>ds
@=y o > B [y Gls.9)e (f Ja(n)f(r u(ﬂ)dT)ds
L(a) 0<pB<s<1 = 2 Jo PO ’
@I0<s<a<l, A G164 (S alr) ()i ) ds
(1—s) ' (B—s)! — 1=pet [ LGs, ¢q< Ca(r)f(r,u(r dT)d
OI<ntl?ﬁG(t s) = o) 7; Fga - , 2 1 fo (s,8) fo a() f (T, u(r)) S
_ (1—s)>t B B (1 — g)a +ﬁ fo G(n,s)¢q (fOS a(7’)f(r,u(r))d7’> ds}
Tr T ’  sa—1
(1 _(sa){zx—l B 5(1—1(1((_1)3)@—1 — %HT’U,H (12)
a1 5(52_1)(1 3 S)QE(O‘) (8) Based on the (11), (12), it shows tH&tK) C K. In view of
the assumption of nonnegativeness and continuity of function
1 @Q}I% gt G(t,s) anda(t)f(t,u(t)), we conclude thaf’ : K — K is
> > continuous.
(1- %a,l) [() Let @ C K be bounded, that is, there exisis> 0 such
5 G(s,s), that |u|| < L for all u € Q. Let
b)If0<B<s<I, M=o el
1— a—1 == ==
0@25 G(t,s) = (p(i,z) then foru € €, from Lemma 2.4 and Lemma 2.5, we obtain
a—1 a—1
>(1—ﬂ ) (1—s) (9) L .
1 %ail) INE) [Tu(t)| = G(t,s)p, (fo a(t) f(T, u(T))dT) ds
- 2 G(s:5), + ﬁ fol G(n, s)¢q <fos a(7) f(r, u(T))dT) ds

(8), (9) imply that property 2 holds. The proof is complete. -
- <G ss¢q(f0 MdT)dS

+ 1 fy G0, 9)¢g <f0 MdT)d

Define thecone K by

1— /Bafl
K= Cl0,1] : >0, > ——
{ueC0,1): u(t) >0, min () 5 llull} - %(M)%(fol a(T)dT)
and theoperatorT : K — E by .
{ g L Lds + 1 01 Gl ds}
Tu(t) = fol G(t,s)¢, <f05 a(7’)f(7’,u(7’))d7'>ds
= 7_‘1 10} f T)dT f —s5)2 lds
1 s (1—-y)T(x) 72\ JO 0
#1503 60900y (I ar) . ut)ar ). i
(10) = T ¥ (fo ) =m.
Remark 2.1 By Lemma 2.4, the problem (1), (2) has a (13)

solutionw(t) if and only if u is a fixed point ofT. Hence, T'(Q?) is bounded.
Lemma 2.6 T is completely continuous arfi(K') C K. Onthe other hand, let € Q, 1, t2 € [0,1] with ¢; < to,
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then Proof: Based on the (10) and (14), we conclude for
t) € 0K,,
Tu(ts) ~ Tu(tr)| < 6,00) [ 1Glts,5) - Glr,s)| "0 € Ko
bq (fo dT) ds. | Tu| = fo (8,8)0q (fo& a(t) f(r, u(7))d7> ds
The continuity ofG implies that the right side of the above +1% Jo G(11,5)¢g (fos a()f(r, U(T))dT> ds
inequality tends to zero if; — t;. Therefore, by applying ) )
the Arzela-Ascoli Theorem, we havE is completely con- < fy G(s,5)0, <f0 a(r) f(r,u(r))dr |ds
tinuous. [ ] L L
Let . +ﬁ fo G(s,5)p, (fo a(T (T,u(T))dT) ds
1- g
&= 2 & < ¢q(dp(p) <f0 (s,8)0q <f01 (I(T)dT) ds
@ S = fol G(s,5)64 ( 5 a(T)dT> ds)
% <f0 G(s,8)¢q (fo a(T)dT> ds)a(l — 7)) {1y
- = np(fo dS + 1 ~ JO T'(a) dS)
1
d
% <f0 a(r) T) ?q <f0 a(T)dr
= <f05 G, 5) (f; a(T>dT> d8>a(1 —re S S (/1 a(r)dT> =p=|ul
T ) al(a)(1—~) "\ Jy
%a (fO nr dT> Which yields||Tu|| < ||u|| for u(t) € 0K,. By Theorem 2.3
(1), we havei, (T, K,) = [ |
Ky ={ueK: |ul <p}, Lemma 2.91f f satisfiesthe condition:
={ue K min ut) <&p} fE, > dp(NE), (15)
={u: ue C[Ov 1], u(t) = 0, then Zk(T, Qp) =0.
Sllull < jmin u(t) <&p}- Proof: Let e(t) = 1 for t € [0,1]. Thene € dK;, we
T claim that
Lemma 2.7 €2, has the following properties:
uFtTu+ e, we€d,, AX>0.

(a) R, is open relative to K. ) )
(b) KepCQ,C K, In fact, if not, there existy € 9Q, and Ay > 0 such that
() wedQ, if and only if ming<i<su(t) = Ep. ug = Tug + Aoe. Based on the lemma 2.5 and (15), we have
(d) Ifuedf,, then Ep < u(t) §_p_f0r t € [0, 5] that for¢ € [0, 4],
Now for convenience we introduce the following notations. Uo(t) TUO( )+ Aoelt) > 2 Tug| + Ao
Let = 1= {fo (8,8)Pq (fo a(T) T,u(T))dT)ds
A ftu)
fé= mm{ o0(0) te[0,8], uelgp, p]}, + fol G(n,5), <f; a(r) f(r,u(r))dr ds] +Xo
(t u) o
0= max{ onp) | (0 ue [O,p]}, {foﬂ G(s,5)0q (f;a(T)f(T,u(r))dr>ds
I IW) e o, > :
= u1_1)1}1 max 9, (1) : ﬁ fo (n,8)dq (fo a(7)f(7,u(7'))d7'> ds] + Ao
fo = lim min J;(p(’j)) teD, m} (6,()6p(VE))
(o := o0, or 0T), [fo (s,5) d)q(fO T)ds
_ al(a)(1-7) .
%(fl a(7)d¢> ’ +15 Jo G(n.5)dq (fo a(T) dT) ds] + Ao
JO

_ 1=t
N = 2

(jf s, s qsq(fo dT)ds
+ (ff G(n, 5)oq (f; a(T)dT> ds) )} 71.

Remark 2.2 It is easy to see thal < n, N < +o0 and

Ne=NLEB g = 12070 o,
Lemma 2 8If f satlsﬂes the condition:
18 < ¢p(n), (14)

then i (T, K,) = 1

>

=5NE |1} G i (1 )i )
+ﬁ foﬁ (7, 5)64 (fo d7> ds] + Ao

=&p+ Ao

Which yieldsép > £p+ Ag. Which is a contradlct|on Hence,
by Theorem Il (2), it follows that (T, (2,) = [ ]

IIl. MAIN RESULT

We now give our results on the existence of multiple
positive solutions of BVP (1) and (2).
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Theorem 3.1 Assume the following conditiof#; ) holds:
(H;) There existpy, p2, p3 € (0,00), with p; < €ps <
p2 < ps3 such that

¢ < ép(n), f£’,§2 > ¢p(NS), 0° < dp(n).
Then system (1) and (2) has three positive solution&in
Assume the following conditiotiHz) holds:
(Hz) There existp1, p2, ps € (0,00), With p1 < pa < €ps
such that

16, > p(NE), f5* <p(n), 18, = 6p(NE).
Then problem (1) and (2) has two positive solutiongiin
Proof: From lemma 2.8 and 2.9, we know(T', K,,) =
1, ix(T,Q,,) =0, ix(T,K,,) = 1. For p1 < £ps, lemma
2.7 (b) impliesK,, C K¢, C §2,,. Theorem 2.3 implieq’
has two fixed points;; € K, andus € Q,,\K,,. Similarly,
we can prove thaf" has the third fixed points € K,,\(2,,.
The proofof (Hy) is similar to that in(H;), we omit it here.
|

Theorem 3.1can be generalized to obtain many positive

solutions, we also omit it here.

As a special case of Theorem 3.1, we obtain the following

result.
Corollary 3.2 Assume there existg € (0, 00), such that
the following condition(Hs) holds:

(Hs)

Then system (1) and (2) has three positive solution&in
Assume if there existp € (0,00), such that the following
condition (H,) holds:

(Hi)  ¢p(N) < fo <00, f§ < dp(n), ¢p(N) < foo < 00

Then problem (1) and (2) has two positive solutiongiin

Proof: We show that(H3) implies (Hy). It is easy to
verify that0 < f° < ¢,(n) implies that there existg; €
(0,£p) such thatf{* < ¢,(n). Letk € (f°°,¢,(n)). Then
there exists) > p such thatmaxco,1] f(t,u) < kép(u) for
u € [9,00) sincel < f>* < ¢,(n). Let

t :
trerl[gf]f( 0
and p3 > ¢, (7¢p(f)_k) .
Then wehave

t
tgl[%ﬁ]f (t,u)

P :max{ O§u§§}

< kgp(u) + @ < kop(ps) + @

< @p(n)dp(ps) for u €0, ps].

This implies thatf§* < ¢,(n) and (H;) holds. Similarly
(Hy) implies (Hs). [ |

ng0<¢p(n)a fgpp>¢p(N§)a 0< f <¢p(n)-
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By anargument similar to that of Theorem 3.1 we obtain

the following results.

Theorem 3.3 Assume one of the following conditions

holds:
(Hs) There existp;, p2 € (0,00) with p; < €ps such that
PU< gp(n), fL2 > 6p(NE),

(Hg) There existpy, p2 € (0,00) with p; < p2 such that

fep = p(NE),  f57 < ¢p(n).
Then problem (1) and (2) has a positive solutionAn

Corollary 3.4 Assume one of the following conditions

holds:

(Hr) 0<f7<¢p(n),  ¢p(N) < foo < 00,

(Hs) 0< > <op(n), op(N) < fo < oc.

Then problem (1) and (2) has a positive solutionAn
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