
Bio-inspired Control Based on a Cerebellum
Model Applied to a Multivariable Nonlinear

System
Cristhian D. Molina-Machado, Eduardo Giraldo

Abstract—In this paper, a novel bio-inspired control system
is applied over a nonlinear multivariable system in real
time. The control system is based on a bi-hemispheric neural
network and a generalized polynomial controller. A ball
and plate system is selected to perform the experiments
since it adequately describes the brain interaction performed
through the cerebellum that implies the sensor (human eyes
or artificial vision system) and the actuator (human motor
system or servo-motors related with the angles of the plate).
The proposed method is evaluated by analyzing the settling
time and steady-state error in comparison with a nonlinear
controller obtained by using state feedback control law which
is computed through extended linearization. The proposed
approach is evaluated in a simulated and real environment,
where obtained results show that the proposed method reduces
the steady-state error of the nonlinear multivariable system.

Index Terms—Bio-inspired control, cerebellum, non-linear,
multivariable.

I. INTRODUCTION

EStimation and control of non-linear systems are highly
complex tasks, even more when they are performed

simultaneously. These tasks are usually solved through
classical methods such as exact linearization, sliding mode
control, fuzzy and neural networks based control [1], [2], [3].
But also, these tasks are solved by using a combination
of neural networks or intelligent controllers and classical
controllers [4], even under uncertainties conditions [5].

A particular structure of neural networks combined with
classical controllers is proposed in [6], which considers
a bio-inspired control based on a bi-hemispheric neural
network. It can be seen that the model successfully controls
an unstable robot. Besides, in [7] and [8], it is shown that
a bi-hemispherical neural network of the cerebellum with
realistic climbing fiber can reproduce the asymmetrical motor
learning process adequately during a robot control task. That
results show that a neural network with a cerebellum based
structure is a feasible design for non-linear control systems.
However, the methods mentioned above must be simplified
to perform a real-time control [9], [10].

The ball and plate system is a widely used nonlinear model
that consists of a plate and a ball. The plated is pivoted
in its center in such a way that the slope of the plate can
be manipulated in two perpendicular directions by using
servos, and the ball can move freely over the plate, where
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the measurement of x-y position is made through a coupled
vision system [11],[12]. Under this construction, the ball and
plate is a dynamic system with two inputs and two outputs
which describes adequately the brain interaction performed
through the cerebellum. That interaction implies the sensor
(human eyes or artificial vision system) and the actuator
(human motor system or servo-motors related to the angles of
the plate) where several control schemes linear and nonlinear
have been applied [13], [14]. The structure mentioned above
of the ball and plate system is a crucial factor to be used
as a referential framework to evaluate the cerebellum-based
controller, as stated by [15].

In this work, a novel bio-inspired control system based
on a bi-hemispheric neural network is proposed. The model
is simplified in order to obtain a feasible implementation
in both simulation and real-time. The performance of the
proposed controller is evaluated over a ball and plate system,
which is a nonlinear multivariable system that is suitable for a
cerebellum-based controller. The performance of the methods
is evaluated by using the settling time and steady-state
error in comparison with state of the art methods. The
paper is organized as follows: In section II, the model of
the cerebellum is proposed, in section III the results and
discussions are presented and in IV the final remarks and
future works are presented.

II. THEORETICAL FRAMEWORK

A. Cerebellum Neural Network Model

The controller consists of a Bi-hemispheric neural network
and a nonlinear controller, where the nonlinear controller
helps the brain controller while it is in the learning process.
Therefore, the parameters of the nonlinear controller are
designed in such a way that the controller can only initially
balance the system [6].

The structure of the brain network is configured according
to the microcircuit of the cerebellum. In Fig. 1 is shown
the neural circuit of the cerebellum where BA: basket
cell, CF: climbing fiber, DCN: deep cerebellar nuclei, GO:
Golgi cell, GC: granule cell, GPe: globus pallidus extern,
GPi: globus pallidus intern, IO: inferior olive, LU: Lugaro
cell, MFs: mossy fibers, PFs: parallel fibers, PN: pontine
nucleus, SR: striatum, SNr: substantia nigra pars reticulata,
ST: stellate cell, STN: subthalamic nucleus, TAL: thalamus,
UBC: unipolar brush cell [16].

It can be seen that the cerebellum inputs are transported
through moss fibers MFs in the brain follicle involved
in engine learning. MFs are postulated to provide desired
signals, copy efficiency of engine commands, and error
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Fig. 1. Neural Circuit of the Cerebellum

signals (desired trajectory - actual trajectory) [7]. There are
eight types of MFs, each of which carries the following
signal:

1) Desired angle of inclination of the body (rad).
2) Desired body inclination angular velocity (rad/s),
3) Desired plate angle (rad),
4) Desired angle (rad),
5) Error of angular control of the inclination of the body

(rad),
6) Error of control of the angle of inclination of the body

(rad),
7) Control of the angular speed of the inclination of the

Error (rad),
8) Engine command efficiency.
All this emulating the cell types found so far in the cerebral

cortex [8] (cells (Gr), Golgi cells (Go), cells (Ba/St), and
cells (Pk) ) and these are interconnected through moss fibers
mf , parallel fiber (pf) olive nucleus (IO) and climbing
fibers (cf). Each cell model is described as follows:

XGr =

7∑
mf=1

WGrmf · Ymf +

5∑
go=1

WGrGo · YGo (1)

YGo =
2

1 + e−XGo/u
− 1 (2)

XBa/St =
755∑
Gr=1

WBa/(StGr) · YGr (3)

XPk =
755∑
Gr=1

WPkGr · YGr (4)

YBa/St =
2

1 + e−X(Ba/st)/u
− 1 (5)

YPk =
755∑
Gr=1

WPkGr · YGr +
5∑

Ba/st=1

WPkBa · YBa/St (6)

where Y is the nonlinear output of each cell, W represents
the synaptic step between the x cell and the y cell.
The subscripts Gr,Go,mf, Pk,Ba/St are parameters for
Gr,Go, Pk,Ba/St respectively.

Therefore, by considering the aforementioned structure of
the cerebellum, the following bi-hemispheric controller can
be proposed, as described in Fig. 2.

Fig. 2. Control diagram based on a bi-hemispheric cerebellum structure

B. Non-linear least squares

Nonlinear least-squares are the form of least squares
analysis used to fit a set of m observations with a model that
is nonlinear in unknown parameters (m > n). It is used in
some forms of nonlinear regression. The basis of the method
is to approximate a system iteratively by a linear model [17].

Considering a set of m observations
(x1, y1), (x2, y2), ..., (xm, ym), and a curve (model function)
y = f(x, β), which besides the variable x also depends on
n parameters β = β1, β2, ....βn with m ≥ n. You want to
find the vector β, parameters such that the curve fits better
to the data given, that is, the sum of squares:

S =
m∑
i=1

r2i (7)

This is minimized when ri errors are given by:

ri = yi − f(xi, β) (i = 1, 2, ...,m) (8)

The minimum value of S occurs when the gradient is zero.
Since the model contains n parameters, there are n gradient
equations:

∂S

∂βi
=
∑
i

ri
∂ri
∂βj

= 0 (j = 1, ..., n) (9)

In a nonlinear system, the derivatives ∂ri
∂βj

are functions of
both the independent variable and the parameters, so these
gradient equations don’t have a final solution. Instead, the
initial values should be chosen for the parameters [18]. Then,
the parameters are refined iteratively, that is, the values are
obtained by successive approximation:

β ≈ βk+1
j + ∆βj (10)

Here, k is an iteration number, and the increment vector,
∆βi is known as the displacement vector. In each iteration
of the model is linearized by approximation to first order, in
Taylor series the expansion over βk:

f(xi, β) ≈ f(xi, β
k) +

∑
j

,
∂f(xi, βk)

∂βj
(βj − βjj ) (11)

≈ f(xi, β
k) +

∑
j

Jijδβj (12)

The Jacobian J , is a function of the constants, the
independent variable and the parameters, so it changes from
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one iteration to the next. So, in terms of the linear model,
∂ri
∂βj

= −Jij and the waste is given by:

ri = ∆yiyi −
n∑
s=1

∆βs; ∆yi = yi − f(xi, β) (13)

By substituting these expressions into the gradient
equations, they become:

m∑
i=1

n∑
s=1

JijJisδβs =
m∑
i=1

Jij∆yi (j = 1, ..., n) (14)

C. Extended linearization

The extended linearization method initially proposes to
obtain a linear controller by the feedback of the state vector,
or a combination of observer-controller or even a classical
controller obtained by means inherent to the description by
transfer functions. In this way, the linear controller derived
is defined in terms of the operational point and therefore
stabilize a family of linear models obtained in the initial
stage of the design [19].

The nonlinear control signal by state feedback is defined
as

u = k(x) (15)

Suppose the analytical system is derived into the following
theorem of existence of the function dx

dt = f(x, u) is
such that A(U), B(U) is a controllable pair. Then, there
is a nonlinear gain or feedback function k(cdot)<n → <,
such that the self-values of the closed-loop linear system of
the [A(U) − B(U)K(U)] matrix have previously specified
values, which are locally invariant with respect to U .

The test is essentially divided in two steps: the first step is
dX(U)
dU dU 6= 0. This quantity is useful in the second step

where a function k(·) is defined in in order to obtain a
linearization of u = −k(x) as δu = −k(U)δx.

Without loss of generality, it can be assumed that A(U)
is reversible. However, if it is not, we can do using previous
feedback of the state vector that all the auto-values are
non-zero and therefore, A(U) = ∂f

∂x |U,X(U) would be
reversible.

∂f

∂x
=
∂f(x, u)

∂x
+

[
∂k

∂u

]
−
(
∂k

∂x

)
(16)

The nonlinear gain to be obtained must satisfy:

∂k

∂x
|X(U)= K(U) = [K1(U), ...,Kn(U)] (17)

K(X(U)) = −U (18)

By differentiating k(x) with respect to xi, i = 1, 2, 3, ..., n
and evaluating in X(U), the following expression is
obtained:

∂k

∂xi
(X(U), U) = Ki(X

−1
1 (X1(U))) = Ki(U) (19)

By proceeding in a similar way with respect to x1 and
evaluating at point X−1

1 (x1), the following equation is
obtained:

∂k

∂x1
| x−1

1 (x1) = K1(X−1
1 (x1)− dX−1

1 (x1)

dX1
(20)

Finally, by particularizing the last expression with respect
to U = X−1

1 (x1) the following equation is obtained:

∂k

∂x1
= (X(U)) = K1(U) (21)

III. RESULTS AND DISCUSSION

The results are shown in simulation and a real environment
by using a two-dimensional prototype called ball and plate.
The ball and plate is an unstable, non-linear, multivariable,
open-loop system. The system consists of a plate pivoted
in its center in such a way that the slope of the plate can
be manipulated in two perpendicular directions, where the
measurement is made through a coupled vision system. The
ball and plate is a dynamic system with two inputs and two
outputs, so the controller must be accurate to keep the ball
at the desired point. In this system, there are two control
problems: the stabilization of the system around equilibrium
points and the tracking of trajectories. The first problem is
to take the ball to a specific position and keep it there. For
the second problem, the objective is to make the ball follow
a predefined trajectory (linear, square, circle, or Lissajous
curves) [11].

Two controllers are tested over the system: The
bi-hemispheric controller based on the cerebellum with a
generalized polynomial controller and a linear state feedback
method based on an extended linearization method, which
results in a nonlinear controller designed in terms of the
operational point.

In order to test the performance of the controllers,
two measures are used: the settling time and steady-state
error. Additional analysis under external disturbances is also
applied at several operational points.

For the two-dimensional system of the ball and plate,
two models are obtained that determine the estimated output
for each axis of the plate. The models are represented in
a third-order transfer function, where the parameters of the
numerator and denominator are estimated in an experimental
way with a sampling time of 100ms, and at the same time,
the controller will be carried out under the same sampling
time.

A. System identification

In order to obtain a model that describes the dynamical
of the nonlinear system around the operational point
(small input angles), a randomly generated output is
obtained experimentally to obtain movements throughout
the operating range of the system an therefore identify the
system. In order to perform this task, 120 seconds are
obtained using a sampling time of 100 ms. The input data
for each angle is generated and applied simultaneously, but
the identification is performed decoupled. As a result, only
two discrete transfer functions are obtained, one for each
input-output relationship associated to each axis.

As shown in Fig. 3 and Fig. 4, the estimated outputs for
each axis (x axis and y axis) adequately track the nonlinear
behaviour of the ball and plate system.
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Fig. 3. Estimated and real output for x axis.

Fig. 4. Estimated and real output for y axis.

It can be seen from Fig. 3 and Fig. 4 that the nonlinear
dynamics can be approximated around the operational point
by two equations, where (22) is the estimated transfer
function for the x axis and (23) is the estimated transfer
function for the y axis.

H(z) =
0.0340482z2 + 0.0975331z − 0.238661

z3 + 1.12029z2 − 0.09114312
(22)

H(z) =
−0.0115444z2 + 0.0977724z − 0.668972

z3 + 4.1573z2 − 3.89773
(23)

B. Simulation of the bi-hemispherical controller based on
the estimated system

By considering (22) and (23) a generalized polynomial
controller can be designed with transfer function defined by:

C(z) =
l0z

2 + l1z + l2
z3 + p1z2 + p2z + p3

(24)

As a result of the design process the parameters presented
in Table I for both axis (x axis and y axis) are obtained.

TABLE I
POLYNOMIAL CONTROLLER PARAMETERS CONSTANTS FOR THE BALL

AND PLATE SYSTEM

Controller parameters x-axis y-axis

p1 2.3608 -0.426
p2 -11.3577 2.78
p3 31.9423 5.6466
l0 75.4195 28.6904
l1 33.0461 -10.90975
l2 17.8976 -4.1212

The values of Table I of the polynomial controller are
included into the structure of a bi-hemispherical controller
based on the cerebellum model in such a way that the
system is able to train the neural network and achieve a new
control action, thus improving the response of the system.
It is noticeable that the polynomial controller is included in
the structure presented in Fig. 2. As a result, the tracking
response of the controlled system is presented in Fig. 5 and
Fig. 6 for x and y axis, respectively.

Fig. 5. Tracking response for a bi-hemispherical controller based on the
cerebellum with the polynomial controller for the x-axis.

Fig. 6. Tracking response for a bi-hemispherical controller based on the
cerebellum with the polynomial controller for the y-axis.

From Fig. 5 and Fig. 6, it can be seen that the controller
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manages to bring the system outputs to a desired reference
value. The output has no oscillations before the reference
change for both axes and it can also be seen that the error
in steady state is zero, so it is determined that the control
system operates efficiently for the parameters estimated on
the ball and plate system.

C. State feedback by extended linearization

In order to compare the performance of the proposed
method, a comparison with the state space feedback by using
an extended linearization method is performed, as shown in
Fig. 7 and Fig. 8.

Fig. 7. Tracking response by using state feedback controller based on an
extended feedback linearization method in the x-axis.

Fig. 8. Tracking response by using state feedback controller based on an
extended feedback linearization method in the y-axis.

It can be seen that for both axis the closed loop
response has steady error greater than zero, since the state
space feedback based on an extended linearization method
considers an approximated model. Therefore, as presented
in Fig. 7 and Fig. 8 these differences between the nonlinear
model an the approximated model result in a steady error
greater than zero for references non equal to zero.

In Fig. 9 a tracking response of a simulated ball and plate
system for a x-y trajectory generated with two sinusoidal

signals of 0.4Hz and 0.2Hz are presented by using the
bi-hemispheric cerebellum based controller. It can be seen
that the steady-state error is near to zero and also that the
system tracks x-y trajectory adequately.

Fig. 9. System response for a trajectory tracking in simulation for x-axis
and y-axis considering a bi-hemispheric cerebellum based controller.

D. Real-time MIMO controller

The tracking results of a real time implementation of a
bi-hemispheric neural network controller with a generalized
polynomial controller are shown in Fig. 10 and Fig. 11. In
this case, only a set point is considered for both axis, and
external impulse type disturbances are added a times t = 10s,
t = 40s, t = 70s.

Fig. 10. System response in real time for x-axis considering a
bi-hemispheric cerebellum based controller.

From Fig. 10 and Fig. 11, it is observed that the reference
tracking used by the system tries to reduce the error.
However, it can be seen that both axes have a steady-state
error. That behavior can be justified considering the inherent
dynamic of the system where it can be seen that a reduction
of the steady error is not achieved effectively. In the y axis
a smaller steady-state error is observed where the learning
of the neural network is better in terms of convergence.
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Fig. 11. System response in real time for y-axis considering a
bi-hemispheric cerebellum based controller.

It is also noticeable that the identification of the system
is performed on-line in order to adjust the generalized
polynomial controller adequately. On the other hand, it
can be seen that the controller tries to reduce the effect
of disturbances with the corresponding reference without
diminishing the estimation of the outputs.

IV. CONCLUSIONS

In this work, a novel bio-inspired control system applied
to a multivariable nonlinear system is presented. It can
be seen that by using a control-based in a Bi-hemispheric
neural network and a nonlinear controller, the steady-state
error of the nonlinear multivariable system is reduced. That
is proved over a ball and plate system and is evaluated
in terms of the settling time and steady-state error in
comparison with the extended linearization method, where
it can be seen that the proposed method outperforms the
state of the art method. The technique is successfully
proved over a simulated and a real environment. As a
result, the proposed method based on a bi-hemispheric
neural network is feasible for implementation in real-time,
at least for systems with visual-motor structures. As future
works, several tests over nonlinear multivariable systems are
proposed involving different structures and inputs-outputs
relations. In addition, future performance analysis must be
made by considering computational complexity and system
requirements.
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