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Abstract—By incorporating the density dependent birth rate
to the traditional May type cooperative system, we propose the
following cooperative system

dx

dt
= x

(

b11

b12 + b13x
− b14 − a11x−

a12x

y + k1

)

,

dy

dt
= y

(

b21

b22 + b23y
− b24 − a22y −

a21y

x+ k2

)

,

where bij , i = 1, 2, j = 1, 2, 3, 4, a11, a12, a21, a22, k1 and k2
are all positive constants. By applying the comparison principle,
sufficient conditions which ensure the extinction, partial sur-
vival and permanence of the system are obtained, respectively.
By applying the Dulac criterion, a set of sufficient conditions
which ensure the existence of a unique globally asymptotically
stable equilibrium is obtained. Numeric simulations are carried
out to show the feasibility of the main results.

Index Terms—Global attractivity;Cooperative model; Density
dependent birth rate.

I. I NTRODUCTION

T HE aim of this paper is to investigate the dynamic
behaviors of the following May cooperative model

incorporating density dependent birth rate

dx

dt
= x

( b11

b12 + b13x
− b14 − a11x−

a12x

y + k1

)

,

dy

dt
= y

( b21

b22 + b23y
− b24 − a22y −

a21y

x+ k2

)

,

(1.1)

wherebij , i = 1, 2, j = 1, 2, 3, 4, a11, a12, a21, a22, k1 and
k2 are all positive constants.x(t), y(t) are the density of the
first and second species at timet, respectively. Here we make
the following assumptions:

(a)
b11

b12 + b13x
is the birth rate of the first species, which is

density dependent,b14 is the death rate of the first species;

(c)
b21

b22 + b23y
is the birth rate of the second species,b24 is

the death rate of the second species;
(e) The relationship between two species is cooperative, i. e.,
both species has positive effect to the other species, and this
effect is described by increasing the environment carrying
capacity of the corresponding species.

During the last decade, many scholars investigated the
dynamic behaviors of the mutualism model([1]-[36]). Some
scholars ([1], [2], [3], [4], [10], [11], [12], [13], [14],
[16], [17], [18], [20], [22], [26], [32], [33]) investigated the
stability property of the positive equilibrium, some scholars
([5], [6], [7], [8], [9], [15]) focused their attention to the the
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persistent property of the system, some scholars ([20], [21],
[23], [24]) investigated the positive periodic solution of the
system. Other topics such as the extinction of the species ([5],
[25], [28]), the influence of harvesting([11], [13], [14], [26],
[29]), the influence of feedback control variables([1], [5], [6],
[8], [9], [10], [22]) and the influence of stage structure([2],
[4]) were also extensively investigated. Among those works,
May cooperative system, as one of the basic cooperative
system, was studied by many scholars ([2], [7], [11], [12],
[14], [15], [18]).

May [19] suggested the following set of equations to
describe a pair of mutualist:

dx1

dt
= rx1

[

1−
x1

K1 + αx2

]

,

dx2

dt
= rx2

[

1−
x2

K2 + βx1

]

,

(1.2)

wherex1, x2 are the densities of the species, respectively.
r, Ki, α, β, i = 1, 2 are positive constants. The system
will “run away”, in the sense that both populations growing
unboundedly large ifαβ ≥ 1. To overcome this drawback,
May further considered the density restriction of the species
and proposed the following system:

ẋ = r1x
[

1−
x

K1 + α1y
− ε1x

]

,

ẏ = r2y
[

1−
y

K2 + α2x
− ε2y

]

,
(1.3)

where ri, Ki, αi, εi, i = 1, 2 are positive constants. May
showed that system (1.3) has a unique positive equilibrium
which is globally stable.

Xie, Chen and Xue[12] further studied the influence of
harvesting to the above system, indeed, they studied the
dynamic behaviors of the following system

ẋ = x
(

r1 − b1x−
a1x

y + k1

)

− Eqx,

ẏ = y
(

r2 − b2y −
a2y

x+ k2

)

.
(1.4)

They showed thatr1 > Eq is enough to ensure the system
(1.4) admits a unique globally attractive positive equilibrium.
Recently, Chen, Wu and Xie[15] argued that the discrete time
models governed by difference equations are more appro-
priate than the continuous ones. Corresponding to system
(1.4), they further proposed a discrete cooperative model
incorporating harvesting, they also investigated the stability
property of the interior equilibrium. Lei[14] studied the
dynamic behaviors of the following non-selective harvesting
May cooperative system incorporating partial closure for the
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populations

ẋ = x
(

r1 − b1x−
a1x

y + k1

)

− Eq1mx,

ẏ = y
(

r2 − b2y −
a2y

x+ k2

)

− Eq2my.
(1.5)

Han and Chen[11] incorporated the feedback control vari-
ables to May cooperative system, this leads to

dx1

dt
= r1x1

[

1− b1x1 −
x1

αx2 + k1
− c1u1

]

,

dx2

dt
= r2x2

[

1− b2x2 −
x2

βx1 + k2
− c2u2

]

,

du1

dt
= −η1u1 + e1x1,

du2

dt
= −η2u2 + e2x2.

(1.6)

For the casebi 6= 0, i = 1, 2, they showed that the feedback
control variables have no influence on the global stability
of the unique positive equilibrium of the system. For the
casebi ≡ 0, they showed that the system admits a unique
globally attractive positive equilibrium, which means that the
unbounded system becomes bounded, and feedback control
variables have the stable effect to the system.

Chen, Xie and Chen[2] proposed the following stage
structured May cooperative system

ẋ1(t) = b1e
−d11τ1x1(t− τ1)− d12x1(t)

−
a11x

2
1(t)

c1 + f1x2(t)
− a12x

2
1(t),

ẏ1(t) = b1x1(t)− d11y1(t)

−b1e
−d11τ1x1(t− τ1),

ẋ2(t) = b2e
−d22τ2x2(t− τ2)− d21x2(t)

−
a22x

2
2(t)

c2 + f2x1(t)
− a21x

2
2(t),

ẏ2(t) = b2x2(t)− d22y2(t)

−b2e
−d22τ2x2(t− τ2).

(1.7)

Their study showed that the stage structure and the death
rate of mature species are two of the most important reasons
that cause global attractivity and extinction of the species,
however cooperate has no influence on the persistent property
of the model.

Zhao, Qin and Chen [7] proposed a May cooperative
system with strong and weak cooperative partners as follows:

dH1

dt
= r1H1

(

1−
H1

a1 + b1P
− c1H1 −

αH2

r1

)

,

dH2

dt
= H2

(

αH1 + d− eH2

)

,

dP

dt
= r2P

(

1−
P

a2 + b2H1

− c2P

)

,

(1.8)

where ri, ai, bi, ci, d, alpha, i = 1, 2 are positive con-
stants. The authors investigated the permanence and non-
permanence of the system, the existence and global stability
of the positive equilibrium point and boundary equilibrium
point, respectively.

It brings to our attention that in system (1.2)-(1.6), if we
do not consider the relationship of the two species, then the
equations for both species reduces to the traditional Logistic
equation. For example, the first species in (1.3) takes the
form

ẋ = r1x
[

1−
x

K1

− ε1x
]

, (1.9)

wherer1 is the intrinsic growth rate, which is equal to the
birth rate minus death rate of the speciesx. Recently, several
scholars ([28]-[30]) argued that the density dependent birth
rate of the species is more suitable. For example, Chen,
Xue, Lin and Xie[28] proposed the following commensalism
model with density dependent birth rate:

dx

dt
= x

( b11

b12 + b13x
− b14 − a11x+ a12y

)

,

dy

dt
= y

( b21

b22 + b23y
− b24 − a22y

)

.
(1.10)

Their study showed that the system may admit four nonneg-
ative equilibria, and under some suitable assumptions, all of
the four equilibria maybe globally asymptotically stable, such
a property is quite different to the traditional Lotka-Volterra
commensalism model. Noting that all of the three papers
([28]-[30]) are concerned with the commensalism model,
to the best of our knowledge, to this day, still no schol-
ars propose and study the cooperative system with density
dependent birth rate. This motivated us to propose and study
the dynamic behaviors of the system (1.1). We must point
out that there are some essential difference between system
(1.7) and (1.1). In system (1.7), since the second and fourth
equations are independent of the other species, its dynamic
behaviors is easily to investigate. One could refer to [29],[30]
for more detail analysis on this aspect. However, in system
(1.1), since both equations are dependent onx andy, it’s not
an easy thing to deal with the stability property of the positive
equilibrium. We also point out that Chen, Xie and Chen[2],
Xie Chen and Xue[12], Xie, Chen, Yang and Xue[13] had
used the iterative method to investigate the stability property
of the mutualism model, however, this method could not be
applied to system (1.1), since here we could not express the
upper bound or lower bound of the solution clearly, and could
not use the method of [2], [12], [13] directly.

The aim of this paper is to investigate the dynamic
behaviors of the system (1.1) and to find out the influence of
the nonlinear density birth rate. The rest of the paper is ar-
ranged as follows. In section 2, we investigate the extinction
or partial survival of the system; We then investigate the
persistent property in section 3; In section 4, by applying
the Dulac criterion, we obtain a set of sufficient conditions
which ensure the global asymptotic stability of the positive
equilibrium. Section 5 presents some numerical simulations
to show the feasibility of the main results. We end this paper
by a briefly discussion.

II. EXTINCTION OF SYSTEM (1.1)

We first introduce a lemma, which is useful in the prove
of the main result.

Consider the following equation

dy

dt
= y

( a21

a22 + a23y
− a24 − b2y

)

(2.1)
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with y(0) = y0 > 0 ∈ [0,+∞).

Lemma 2.1 [29] The following statements on (2.1) hold.
(1) Assume thata21 > a22a24, then the unique positive
equilibrium y∗ of system (2.1) is globally attractive in
(0,+∞);

(2)Assume thata21 ≤ a22a24, then the equilibriumy = 0 of
system (2.1) is globally attractive in(0,+∞).

Consider the following equation

du

dt
= u

( b11

b12 + b13u
− b14 − a11u−

a12u

ε+ k1

)

(2.2)

with u(0) = u0 > 0 ∈ [0,+∞).

Lemma 2.2. Assume thatb11 > b12b14 hold, then the
unique positive equilibriumu∗(ε) of system (2.2) is globally
attractive in (0,+∞), where

u∗(ε) =
−A2(ε) +

√

(A2(ε))2 − 4A1(ε)A3(ε)

2A1(ε)
, (2.3)

here

A1(ε) = a11b13k1 + a12b13 + a11b13ε,

A2(ε) = a11b12k1 + a11b12ε+ b13b14k1

+b13b14ε+ a12b12,

A3(ε) = b12b14k1 − b11k1 + b12b24ε− b11ε.

(2.4)

Obviously,u∗(ε) is the continuous function ofε and

u∗(ε) → x∗ as ε → 0, (2.5)

wherex∗ is defined by (2.12).

Consider the following equation

dv

dt
= v
( b21

b22 + b23v
− b24 − a22v −

a21v

ε+ k2

)

, (2.6)

with v(0) = v0 > 0 ∈ [0,+∞).

Lemma 2.3. Assume thatb21 > b22b24 hold, then the
unique positive equilibriumv∗(ε) of system (2.6) is globally
attractive in (0,+∞), where

v∗(ε) =
−B2(ε) +

√

(B2(ε))2 − 4B1(ε)B3(ε)

2B1(ε)
, (2.7)

here

B1(ε) = a22b23k2 + a21b23 + a22b23ε,

B2(ε) = a22b22k2 + b23b24k2 + a21b22

+a22b22ε+ b23b24ε,

B3(ε) = b22b24k2 − b21k2 + b22b24ε− b21ε.

(2.8)

Also, v∗(ε) is the continuous function ofε and

v∗(ε) → y∗ as ε → 0, (2.9)

wherey∗ is defined by (2.17).

The proof of Lemma 2.2 and 2.3 is similarly to that of the
proof of Lemma 2.1, one could refer to [29] for more detail,
here we omit it.

Now we are in the position of considering the existence
and stability property of the boundary equilibria of system

(1.1). The equilibrium of system (1.1) is determined by the
equation

x
( b11

b12 + b13x
− b14 − a11x−

a12x

y + k1

)

= 0,

y
( b21

b22 + b23y
− b24 − a22y −

a21y

x+ k2

)

= 0.

(2.10)

The system (1.1) always admits a boundary equilibrium
A1(0, 0). Assume that

b11

b12
> b14 (2.11)

holds, then

b11

b12 + b13x
− b14 − a11x−

a12x

k1
= 0 (2.12)

admits a unique positive solutionx∗, where

x∗ =
−A2 +

√

A2
2 − 4A1A3

2A1

, (2.13)

here

A1 = a11b13k1 + a12b13,

A2 = a11b12k1 + b12b13k1 + a12b12,

A3 = b12b14k1 − b11k1.

(2.14)

Assume that (2.11) and

b21

b22
< b24 (2.15)

hold, then system (1.1) admits the nonnegative boundary
equilibriumA2(x

∗, 0). Assume that

b21

b22
> b24 (2.16)

hold, then

b21

b22 + b23y
− b24 − a22y −

a21y

k2
= 0

admits a unique positive solutiony∗, where

y∗ =
−B2 +

√

B2
2 − 4B1B3

2B1

, (2.17)

here

B1 = a22b23k2 + a21b23,

B2 = a22b22k2 + b23b24k2 + a21b22,

B3 = b22b24k2 − b21k2.

(2.18)

Assume that (2.16) and

b11

b12
< b14 (2.19)

hold, then system (1.1) admits the nonnegative boundary
equilibriumA3(0, y

∗).

Concerned with the extinction of the species in system
(1.1), we have the following result.

Theorem 2.1.

(1) Assume that (2.15) and (2.19) hold, then

lim
t→+∞

x(t) = 0, lim
t→+∞

y(t) = 0, (2.20)
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i.e., the boundary equilibriumA1(0, 0) is globally asymptot-
ically stable;
(2) Assume that (2.11) and (2.15) hold, then

lim
t→+∞

x(t) = x∗, lim
t→+∞

y(t) = 0, (2.21)

i.e., the boundary equilibriumA2(x
∗, 0) is globally asymp-

totically stable;
(3) Assume that (2.16) and (2.19) hold, then

lim
t→+∞

x(t) = 0, lim
t→+∞

y(t) = y∗, (2.22)

i.e., the boundary equilibriumA3(0, y
∗) is globally asymp-

totically stable.

Proof.
(1) It follows from the first equation of system (1.1) that

dx

dt
= x

( b11

b12 + b13x
− b14 − a11x−

a12x

y + k1

)

≤ x
( b11

b12 + b13x
− b14 − a11x

)

.

(2.23)
Now let us consider the equation

du

dt
= u

( b11

b12 + b13u
− b14 − a11u

)

. (2.24)

It follows from (2.19) and Lemma 2.1 thatu = 0 of system
(2.24) is globally attractive, i.e.,

lim
t→+∞

u(t) = 0. (2.25)

Applying the caparison principle of differential equation to
(2.23) and (2.24) leads to

lim
t→+∞

x(t) = 0. (2.26)

Similarly, by using (2.15) and the comparison principle, from
the second equation we could draw the conclusion

lim
t→+∞

y(t) = 0. (2.27)

(2) From (2.15) and the second equation of (1.1), by using
the comparison principle, we have

lim
t→+∞

y(t) = 0. (2.28)

For ε > 0 enough small, it follows from (2.28) that there
exists aT1 > 0 such that

y(t) < ε for all t ≥ T1. (2.29)

From (2.29) and the first equation of system (1.1), fort ≥ T1,
we have

dx

dt
≤ x

( b11

b12 + b13x
− b14 − a11x−

a12x

ε+ k1

)

.

(2.30)
Now let us consider the equation

du

dt
= u

( b11

b12 + b13u
− b14 − a11u−

a12u

ε+ k1

)

.

(2.31)
It follows from Lemma 2.2 that system (2.31) admits a u-
nique positive equilibriumu∗(ε), which is globally asymptot-
ically stable. Hence, from (2.30), (2.31) and the comparison
principle, one has

lim sup
t→+∞

x(t) ≤ u∗(ε). (2.32)

From the continuity theorem of solution on parameters, one
could see that

u∗(ε) → x∗ as ε → 0.

On the other hand, from the first equation of system (1.1),
we also have

dx

dt
≥ x

( b11

b12 + b13x
− b14 − a11x−

a12x

k1

)

. (2.33)

Now let us consider the equation

du

dt
= u

( b11

b12 + b13u
− b14 − a11u−

a12u

k1

)

. (2.34)

It follows from Lemma 2.2 that system (2.34) admits a
unique positive equilibriumx∗, which is globally asymptot-
ically stable. Hence, from (2.33), (2.34) and the comparison
principle, one has

lim inf
t→+∞

x(t) ≥ x∗. (2.35)

(2.32) together with (2.35) leads to

x∗ ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ u∗(ε). (2.36)

Settingε → 0 in (2.36) leads to

lim
t→+∞

x(t) = x∗. (2.37)

(3) From (2.19) and the first equation of (1.1), by using
the comparison principle, similarly to the analysis of (2.23)-
(2.26), we have

lim
t→+∞

x(t) = 0. (2.38)

For ε > 0 enough small, it follows from (2.38) that there
exists aT2 > 0 such that

x(t) < ε for all t ≥ T2. (2.39)

From (2.39) and the first equation of system (1.1), fort ≥ T2,
we have

dy

dt
≤ y

( b21

b22 + b23y
− b24 − a22y −

a21y

ε+ k2

)

,

(2.40)
Now let us consider the equation

dv

dt
= v

( b21

b22 + b23v
− b24 − a22v −

a21v

ε+ k2

)

.

(2.41)
It follows from Lemma 2.2 that system (2.41) admits a u-
nique positive equilibriumv∗(ε), which is globally asymptot-
ically stable. Hence, from (2.40), (2.41) and the comparison
principle, one has

lim sup
t→+∞

y(t) ≤ v∗(ε). (2.42)

From the continuity theorem of solution on parameters, one
could see that

v∗(ε) → y∗ as ε → 0.

On the other hand, from the second equation of system (1.1),
we also have

dy

dt
≥ y

( b21

b22 + b23y
− b24 − a22y −

a21y

k2

)

. (2.43)

Now let us consider the equation

dv

dt
= v

( b21

b22 + b23v
− b24 − a22v −

a21v

k2

)

. (2.44)
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It follows from Lemma 2.2 that system (2.44) admits a
unique positive equilibriumy∗, which is globally asymptot-
ically stable. Hence, from (2.43), (2.44) and the comparison
principle, one has

lim inf
t→+∞

y(t) ≥ y∗. (2.45)

(2.42) together with (2.45) leads to

y∗ ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ v∗(ε). (2.46)

Settingε → 0 in (2.46) leads to

lim
t→+∞

y(t) = y∗. (2.47)

This ends the proof of Theorem 2.1.

Remark 2.1.As was pointed out in the introduction section,
for the traditional May cooperative system (1.3), the sys-
tem admits a unique positive equilibrium which is globally
asymptotically stable. That is, for system (1.3), two species
could be coexist in a stable state. None of the species will
be driven to extinction. Our result (Theorem 2.1) shows that
by introducing the density dependent birth rate, the system
may become extinct in the sense that both speciesx and
y will be driven to extinction or the system maybe partial
survival, in the sense that one of the species will be driven to
extinction while the other species will be survival in the long
run. Therefore, the dynamic behaviors of the system become
complicated.

III. PERMANENCE

Previously, we had discussed the extinction property of
the system (1.1). This section we will discuss the persistent
property of the system.

Definition 3.1. Let (x(t), y(t)) be any positive solution of
system (1.1), if there exist positive constantsmi,Mi, i = 1, 2
such that

m1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M1,

m2 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ M2.

Then system (1.1) is permanent.

By means of permanence, two species could be coexist in
the long run.

Theorem 3.1Assume that (2.11) and (2.16) hold, then system
(1.1) is permanent.

Proof. It follows from the first equation of system (1.1) that

dx

dt
= x

( b11

b12 + b13x
− b14 − a11x−

a12x

y + k1

)

≤ x
( b11

b12 + b13x
− b14 − a11x

)

.

(3.1)

Now let us consider the equation

du

dt
= u

( b11

b12 + b13u
− b14 − a11u

)

(3.2)

It follows from (2.11) and Lemma 2.1 thatu = u∗ of system
(3.2) is globally attractive, i.e.,

lim
t→+∞

u(t) = u∗. (3.3)

Applying the caparison principle of differential equation to
(3.1) and (3.2) leads to

lim sup
t→+∞

x(t) ≤ u∗. (3.4)

Similarly, by using (2.16) and the comparison principle, from
the second equation we could draw the conclusion

lim sup
t→+∞

y(t) ≤ v∗, (3.5)

wherev∗ is the positive solution of the equation

b21

b22 + b23v
− b24 − a22v = 0. (3.6)

On the other hand, from the first equation of system (1.1),
we also have

dx

dt
≥ x

( b11

b12 + b13x
− b14 − a11x−

a12x

k1

)

. (3.7)

Similarly to the analysis of (2.33)-(2.35), we have

lim inf
t→+∞

x(t) ≥ x∗. (3.8)

From the second equation of system (1.1), we also have

dy

dt
≥ y

( b21

b22 + b23y
− b24 − a22y −

a21y

k2

)

. (3.9)

similarly to the analysis of (2.43)-(2.35), we have

lim inf
t→+∞

y(t) ≥ y∗. (3.10)

Noting that x∗, y∗, u∗, v∗ are all can be expressed by the
coefficients of the system (1.1), and independent of the
solutions of system (1.1). Hence, (3.4), (3.5), (3.8) and (3.10)
show that under the assumption of Theorem 3.1, system (1.1)
is permanent.

IV. GLOBAL STABILITY OF THE POSITIVE EQUILIBRIUM

Concerned with the existence of the positive equilibrium
of the system (1.1), we have the following result.

Lemma 4.1.Assume that (2.11) and (2.16) holds, then sys-
tem (1.1) admits the unique positive equilibriumA4(x1, y1).

Proof. The positive equilibrium is the solution of the equa-
tions

b11

b12 + b13x
− b14 − a11x−

a12x

y + k1
= 0,

b21

b22 + b23y
− b24 − a22y −

a21y

x+ k2
= 0.

Set

F1(x, y) =
b11

b12 + b13x
− b14 − a11x−

a12x

y + k1
, (4.1)

F2(x, y) =
b21

b22 + b23y
− b24 − a22y −

a21y

x+ k2
. (4.2)

Obviously,F1(x, y) = 0 andF2(x, y) = 0 define two lines,
we denote them byl1 : y = y1(x) and l2 : x = x2(x),
respectively.

Noting that

dF1

dx
= −

b11 b13

(b13 x+ b12)
2
− a11 −

a12

k1 + y
< 0, (4.3)
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dF1

dy
=

a12 x

(k1 + y)
2
> 0. (4.4)

Hence,
dy1

dx
= −

F1x

F1y

> 0. (4.5)

That is,l1 is the strictly increasing function, also, one could
easily see thatl1 pass throughA2(x

∗, 0), andy1(x) → +∞

asx → x∗

1, wherex∗

1 is the unique positive solution of the
equation

b11

b12 + b13x
− b14 − a11x = 0. (4.6)

On the other hand, by computing, forl2, we also have

dF2

dx
=

a21 y

(k2 + x)
2
> 0, (4.7)

dF2

dy
= −

b21 b23

(b23 y + b22)
2
− a22 −

a21

k2 + x
< 0. (4.8)

Hence,
dy2

dx
= −

F2x

F2y

> 0. (4.9)

That is,l2 is the strictly increasing function, also, one could
easily see thatl2 pass throughA3(0, y

∗), andx2(y) → +∞

as y → y∗1 , wherey∗1 is the unique positive solution of the
equation

b21

b22 + b23y
− b24 − a22y = 0. (4.10)

Above analysis shows thatl1 and l2 must intersect at least
one point, and the two lines could intersect at most one point.
Denote this point byA4(x1, y1). Then, system (1.1) admits
the unique positive equilibriumA4. This ends the proof of
Lemma 4.1.

Lemma 4.2. Assume that (2.11) and (2.16) hold, then the
system (1.1) admits a unique positive equilibriumA4(x1, y1),
which is locally asymptotically stable.

Proof. The existence and uniqueness of the positive equi-
librium is ensured by Lemma 4.1. To end the proof of
Lemma 4.2, it is enough to show thatA4(x1, y1) is locally
asymptotically stable.

The variational matrix of the continuous-time system (1.1)
at an equilibrium solution(x, y) is

J(x, y) =

(

G11(x, y) G12(x, y)

G21(x, y) G22(x, y)

)

, (4.11)

where

G11(x, y) =
b11

b13 x+ b12
− b14 − a11 x−

a12 x

k1 + y

+x

(

−
b11 b13

(b13 x+ b12)
2
− a11 −

a12

k1 + y

)

,

G12(x, y) =
x2a12

(k1 + y)2
,

G21(x, y) =
y2a21

(k2 + x)2
,

G22(x, y) =
b21

b23 y + b22
− b24 − a22 y −

a21 y

k2 + x

+y

(

−
b21 b23

(b23 y + b22)
2
− a22 −

a21

k2 + x

)

.

The characteristic equation of the variational matrix is

λ2 − tr(J)λ + det(J) = 0. (4.12)

For a continuous-time system, asymptotic stability of an
equilibrium solution is satisfied as long astr(J) < 0 and
det(J) > 0. Now, at the positive equilibriumA4(x1, y1),
one has

tr(J)

= x1

(

−
b11 b13

(b13 x1 + b12)
2
− a11 −

a12

k1 + y1

)

+y1

(

−
b21 b23

(b23 y1 + b22)
2
− a22 −

a21

k2 + x1

)

< 0,

det(J)

= x1y1

(

b11 b13

(b13 x1 + b12)
2
+ a11 +

a12

k1 + y1

)

×

(

b21 b23

(b23 y1 + b22)
2
+ a22 +

a21

k2 + x1

)

−
x1

2a12

(k1 + y1)
2

y1
2a21

(k2 + x1)
2

> x1y1

(

b11 b13

(b13 x1 + b12)
2
+ a11

)

×

(

b21 b23

(b23 y1 + b22)
2
+ a22

)

> 0.

(4.13)

Hence the positive steady-state solution is locally asymptot-
ically stable. This ends the proof of Lemma 4.2.

Concerned with the stability property of the positive
equilibrium, we have the following result.

Theorem 4.1.Assume that (2.11) and (2.16) hold, then the
system (1.1) admits a unique positive equilibriumA4(x1, y1),
which is globally asymptotically stable.

Proof. Under the assumption of Theorem 4.1, it follows from
Theorem 3.1 that system (1.1) is uniformly bounded. Let

D =
{

(x, y) ∈ R2
+ : x <

3

2
u∗, y <

3

2
v∗
}

.

Then every solution of system (1.1) starts inR2
+ is uniformly

bounded onD. Also, from the permanence of the system,
one could see that the boundary equilibriaA0, A1, A2 are all
unstable. Lemma 4.2 shows that there is a unique local stable
positive equilibriumA4(x1, y1). To show thatA4(x1, y1) is
globally stable, it’s enough to show that the system admits
no limit cycle in the areaD. To this end, let’s consider the
Dulac functionB(x, y) = x−1y−1, then

∂(BP )

∂x
+

∂(BQ)

∂y

= −
1

y

( b11 b13

(b13 x+ b12)
2
+ a11 +

a12

k1 + y

)

−
1

x

( b21 b23

(b23 y + b22)
2
+ a22 +

a21

k2 + x

)

,

(4.14)
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where

P (x, y) = x
( b11

b12 + b13x
− b14 − a11x−

a12x

y + k1

)

,

Q(x, y) = y
( b21

b22 + b23y
− b24 − a22y −

a21y

x+ k2

)

.

By Dulac Theorem[33], there is no closed orbit in areaD.
Consequently,A4(x1, y1) is globally asymptotically stable.
This completes the proof of Theorem 4.1.

Remark 4.1 Noting that inequalities (2.11) and (2.16) are
independent of the parametersb13, b23, hence, from the first
sight, it seems that nonlinear density dependent birth rate
has no influence to the persistent and stability of the positive
equilibrium, consequently, it has no influence to the dynamic
behaviors of the system, however, Example 5.4 in the next
section shows that with the increasing ofb13, the final density
of the first species is decreasing, and this may increasing
the extinct chance of the first species, it’s in this sense that
the nonlinear birth rate has negative effect on the persistent
property of the species.

V. NUMERIC SIMULATIONS

Now let’s consider the following three examples.

Example 5.1

dx

dt
= x

( 1

2 + x
− 1− 2x−

x

1 + y

)

,

dy

dt
= y

( 1

4 + y
− 1− y −

y

2 + x

)

.

(5.1)

In this system, corresponding to system (1.1), we takeb11 =
b13 = b14 = a12 = b21 = b23 = b24 = a22 = a21 =
1, a11 = 2, b12 = 2, b22 = 4, k1 = 1, k2 = 2. Since b11 <

b12b14, b21 < b22b24, it follows from Theorem 2.1(1) that
the boundary equilibriumA1(0, 0) is globally asymptotically
stable. Fig. 1 supports this assertion.

Fig. 1. Dynamic behaviors of the system (5.1) the initial condition
(x(0), y(0)) = (2, 0.5), (2, 2) and (0.5, 3), respectively.

Example 5.2

dx

dt
= x

( 2

1 + x
− 1− x−

x

1 + y

)

,

dy

dt
= y

( 2

1 + y
− 1− y −

y

1 + x

)

.

(5.2)

In this system, corresponding to system (1.1), we take
b12 = b13 = b14 = a11 = a12 = b22 = b23 = b24 =
a22 = a12 = a21 = 1, b11 = b21 = 2, k1 = k2 = 1. Since
b11 > b12b14, b21 > b22b24, it follows from Theorem 3.1 and
4.1 that the system is permanent, and the unique positive
equilibrium A4(0.3050995891, 0.3419788843) is globally
asymptotically stable. Fig. 2 supports this assertion.

Fig. 2. Dynamic behaviors of the system (5.2) the initial con-
dition (x(0), y(0)) = (0.2, 0.4), (0.2, 0.2), (0.4, 0.3) (0.4, 0.2),
(0.2, 0.3) and (0.4, 0.4), respectively.

Example 5.3

dx

dt
= x

( 1

2 + x
− 1− 2x−

x

1 + y

)

,

dy

dt
= y

( 4

1 + y
− 1− y −

y

2 + x

)

.

(5.3)

In this system, corresponding to system (1.1), we take
b11 = b13 = b14 = a12 = b22 = b23 = b24 = a22 =
a21 = 1, a11 = 2, b12 = 2, b21 = 4, k1 = 1, k2 = 2. Since
b11 < b12b14, b21 > b22b24, it follows from Theorem 2.1(3)
that the boundary equilibriumA2(0, 0.8081429670) is
globally asymptotically stable. Fig. 3 supports this assertion.

Fig. 3. Dynamic behaviors of the system (5.3) the initial condition
(x(0), y(0)) = (2, 0.5), (2, 2) and (0.5, 2), respectively.
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Example 5.4

dx

dt
= x

( 2

1 + b13x
− 1− x−

x

1 + y

)

,

dy

dt
= y

( 2

1 + y
− 1− y −

y

1 + x

)

.

(5.4)

In this system, corresponding to system (1.1), we take
b12 = b14 = a11 = a12 = b22 = b23 = b24 = a22 =
a12 = a21 = 1, b11 = b21 = 2, k1 = k2 = 1, since
b11 > b12b14, b21 > b22b24, it follows from Theorem 3.1
and 4.1 that for any positive constantb13, the system
is permanent, and the unique positive equilibrium which
is globally asymptotically stable. Forb13 = 1, 2 and 3,
respectively, Fig. 4-6 shows the dynamic behaviors ofx(t).
From Fig.4-6, one could see that with the increasing ofb13,
the final density of the first species is decreasing.

Fig. 4. Dynamic behaviors of the speciesx(t) in system (5.4)
the initial condition (x(0), y(0)) = (0.2, 0.2), (0.4, 0.4) and
(0.5, 0.5), respectively.b13 = 1.

Fig. 5. Dynamic behaviors of the speciesx(t) in system (5.4)
the initial condition (x(0), y(0)) = (0.2, 0.2), (0.4, 0.4) and
(0.5, 0.5), respectively.b13 = 2.

VI. D ISCUSSION

Recently, many scholars studied the dynamic behaviors of
the mutualism model (cooperative model), see [1]-[32] and
the references cited therein. Among those works, May[18],
Xie, Xue and Chen[12], Chen, Wu and Xie[15], Lei[14],

Fig. 6. Dynamic behaviors of the speciesx(t) in system (5.4)
the initial condition (x(0), y(0)) = (0.2, 0.2), (0.4, 0.4) and
(0.5, 0.5), respectively.b13 = 4.

Han and Chen[11], Chen, Xie and Chen[2], Zhao, Qin and
Chen [7] proposed several kind of May type cooperative sys-
tem, and investigated the dynamic behaviors of the system.
However, all of the works of [2], [7], [11], [12], [14], [15],
[18] were based on the traditional Logistic model, as was
shown in the introduction section. In this paper, stimulated
by recent works of [28]-[30], we argued that the birth rate of
the species maybe density dependent, this leads to the system
(1.1).

Theorem 2.1 shows that under some suitable assumptions,
all of the three boundary equilibria maybe globally asymp-
totically stable. That is, by introducing the density dependent
birth rate, all of the species or part of the species may
be driven to extinction, such kind of dynamic behaviors
is quite different to the system without density dependent
(For example, May[18] showed that the unique positive
equilibrium of the system (1.3) is globally asymptotically
stable).

Theorem 3.1 shows that under some suitable assumption,
the system could be permanent. Also, under the same as-
sumption as that of Theorem 3.1, we could show that system
(1.1) admits a unique positive equilibrium which is globally
asymptotically stable. However, example 5.4 shows that with
the increasing of the parameterb13, the final density of the
first species is decreasing, hence, under the assumption (2.11)
and (2.16), though at first sight the system is permanent,
the chance for the system to be extinct is increasing, the
nonlinear birth rate has negative effect to the persistent
property of the system.

Our study shows that the birth rate is one of the essential
factors to determine the dynamic behaviors of the species.
Density dependent birth rate may lead to the complicated
dynamic behaviors of the system, in some case, may lead to
the collapse of the system.
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