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Dynamic Behaviors of May Cooperative Model
with Density Dependent Birth Rate

Zhenliang Zhu, Fengde Chen, Liyun Lai and Zhong Li

Abstract—By incorporating the density dependent birth rate  persistent property of the system, some scholars ([20], [21],
to the traditional May type cooperative system, we propose the [23], [24]) investigated the positive periodic solution of the
following cooperative system system. Other topics such as the extinction of the species ([5],

do x( b11 b — i 12T ) [25], [28]), the influence of harvesting([11], [13], [14], [26],
dt biot+bisz T Yk ) [29]), the influence of feedback control variables([1], [5], [6],
dy bt a1y [8], [9], [10], [22]) and the influence of stage structure([2],
a y(b22 T by bas — azey — = ) [4]) were also extensively investigated. Among those works,

May cooperative system, as one of the basic cooperative
where bij,i = 1,2,j = 1,2,3,4,&11,&12, a1, a22, k1 and ko y p y p

are all positive constants. By applying the comparison principle, SYSt€m, was studied by many scholars ([2], [7], [11], [12],
sufficient conditions which ensure the extinction, partial sur- [14], [15], [18]).

vival and permanence of the system are obtained, respectively. . .
By applying the Dulac criterion, a set of sufficient conditions May [19] suggested the following set of equations to

which ensure the existence of a unique globally asymptotically describe a pair of mutualist:
stable equilibrium is obtained. Numeric simulations are carried

out to show the feasibility of the main results. dxy {1 T }
— = raxy |l - =1,
Index Terms—Global attractivity;Cooperative model; Density dt K+ axs 1.9
dependent birth rate. dis Zo (1.2)
L
dt 2 [ Ko+ ﬁxl

I. INTRODUCTION - _ _
HE ai f thi . . . he d .wherez;, o are the densities of the species, respectively.
aim of this paper Is to investigate the dynamic K;, o, 8, 1 = 1,2 are positive constants. The system

. beha\_/iorz of _thed folloging bMahy cooperative mode(Ni" “run away”, in the sense that both populations growing
Incorporating density dependent birth rate unboundedly large ity > 1. To overcome this drawback,

dx bi11 a12T May further considered the density restriction of the species
117( — by —anz — ),

dt b1 + bisx Y+ k1 and proposed the following system:

dy y( ba1 bos — azsy asy ) T

- = T3 —Ug—axxy— —— |, L 1 _ }

dt bao + basy x + ko x 7’136{ oy 1z, w
Wherebij,i = 1,2,j = 1,2,3,4,0,11,(112,0,21, a9, k1 and y _ sz[l . Yy 7€2y:| .
ko are all positive constants(t), y(t) are the density of the Ky + azz ’

first and second species at timeespectively. Here we make N
the following assumptions: wherer;, K;, o, €4, i = 1,2 are positive constants. May

bi1 . . , . .. showed that system (1.3) has a unique positive equilibrium
€) [ is the b-ll‘th rate of the first speCfes, wh|c_h IRyhich is globally stable.
density dependenb; 4 is the death rate of the first species; Xie, Chen and Xue[12] further studied the influence of
(c b is the birth rate of the second speciés, is harvesting to the above system, indeed, they studied the

b . . .
the d2ath Qr?ég{e of the second species: dynamic behaviors of the following system

(e) The relationship between two species is cooperative, i. e.,

. a1x
both species has positive effect to the other species, and this % = »”U(Tl —biw — v+ k1) - Eqz,
effect is described by increasing the environment carrying . asy (1.4)
capacity of the corresponding species. y = y(r2 —bay — T+ k:g)'

During the last decade, many scholars investigated the ,
dynamic behaviors of the mutualism model([1]-{36]). Som&"€Y showed that, > Eq is enough to ensure the system
scholars ([1], [2], [3], [4], [10], [11], [12], [13], [14], (1.4) admits a unique gIobaIIy attractive positive e_qwllbrlu_m.
[16], [17], [18], [20], [22], [26], [32], [33]) investigated the Recently, Chen, Wu anq Xie[15] argueq that the discrete time
stability property of the positive equilibrium, some scholar®0dels governed by difference equations are more appro-

(5], 6], [7], [8], [], [15]) focused their attention to the thePriate than the continuous ones. Corresponding .to system
(1.4), they further proposed a discrete cooperative model
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populations It brings to our attention that in system (1.2)-(1.6), if we
do not consider the relationship of the two species, then the

. a1x
o= m(” —biw— v+ kl) - Eqma, equations for both species reduces to the traditional Logistic
. asy (1.5) equation. For example, the first species in (1.3) takes the
Yy o= y(rg — boy — ) — Eqamy. form
X + kQ T
Han and Chen[11] incorporated the feedback control vari- T = 7"193[1 TR 511’}7 (1.9)

ables to May cooperative system, this leads to , L .
wherer; is the intrinsic growth rate, which is equal to the

doy - _ T {1 by — — clu1}7 birth rate minus death rate of the specieRRecently, several
dt ary + ki scholars ([28]-[30]) argued that the density dependent birth
dxy , {1 by — — 2 } rate of the species is more suitable. For example, Chen,
= T222 202 Couz |, . . . .
dt Bz + ko (1.6) Xue, Lin and Xie[28] proposed the following commensalism
duy model with density dependent birth rate:
- hw +e1xy,
d:l? b11
B2yt @ = e~ ene r ),
Uzt ead. dy boy 3 , (1.10)
For the casé; # 0, i = 1,2, they showed that the feedback g ~ y(b22 by AT a22y)'

control variables have no influence on the global stabili
of the unique positive equilibrium of the system. For th
caseb; = 0, they showed that the system admits a uniq

gheir study showed that the system may admit four nonneg-
tive equilibria, and under some suitable assumptions, all of

globally attractive positive equilibrium, which means that th e four eql_““b“‘? ma_ybe globally asym_p_totlcally stable, such
unbounded system becomes bounded, and feedback corfirBroperty is quite different to the traditional Lotka-Volterra
variables have the stable effect to the 'system commensalism model. Noting that all of the three papers

Chen, Xie and Chen[2] proposed the following stagngr]]'[sgl) f\ref conckerne? (\;V'th Ehethc_orr(;mens?llllsm mohdell,
structured May cooperative system 0 the best o our knowledge, 1o this day, still no schol-

ars propose and study the cooperative system with density
@1(t) = biem Mgy (t — 1) — digaa(t) dependent birth rate. This motivated us to propose and study
the dynamic behaviors of the system (1.1). We must point

_ anzi(t) ~ ara(t) out that there are some essential difference between system
o+ fime(t) PR (1.7) and (1.1). In system (1.7), since the second and fourth
nt) = bai(t) — duy () equations are independent of the other species, its dynamic
behaviors is easily to investigate. One could refer to [29],[30]
—bre~ g (t — 1), for more detail analysis on this aspect. However, in system
(1.7) (1.1), since both equations are dependent @mdy, it's not
io(t) = boe®272py(t — 75) — doyywa(t) an easy thing to deal with the stability property of the positive
equilibrium. We also point out that Chen, Xie and Chen[2],
azx3(t) ) Xie Chen and Xue[12], Xie, Chen, Yang and Xue[13] had
_m — an3(t), used the iterative method to investigate the stability property
) of the mutualism model, however, this method could not be
Ga(t) = bawa(l) — da2y2(t) applied to system (1.1), since here we could not express the

upper bound or lower bound of the solution clearly, and could
not use the method of [2], [12], [13] directly.
Their study showed that the stage structure and the deatfThe aim of this paper is to investigate the dynamic
rate of mature species are two of the most important reasdrehaviors of the system (1.1) and to find out the influence of
that cause global attractivity and extinction of the speciethe nonlinear density birth rate. The rest of the paper is ar-
however cooperate has no influence on the persistent propeatyged as follows. In section 2, we investigate the extinction
of the model. or partial survival of the system; We then investigate the
Zhao, Qin and Chen [7] proposed a May cooperatiygersistent property in section 3; In section 4, by applying
system with strong and weak cooperative partners as follovilse Dulac criterion, we obtain a set of sufficient conditions

7b2€7d22‘r2$2 (t — 7'2).

dH, H, aH, which ensure the global asymptotic stability of the positive
T r1Hy (1 T o F P c1Hy — . ), equilibrium. Section 5 presents some numerical simulations
Al tra ! to show the feasibility of the main results. We end this paper
d—152 = Hy(aH; +d — eH>), (1.8) by a briefly discussion.
P _ Pl1 L P II. E 1.1
pra s T had caP |, . EXTINCTION OF SYSTEM(1.1)

where ri,a;,b;,¢i,d,alpha,i — 1,2 are positive con- We first introduce a lemma, which is useful in the prove

stants. The authors investigated the permanence and n‘i?)‘cnt-he main result. , ,
)pon5|der the following equation

permanence of the system, the existence and global stabilit
of the positive equilibrium point and boundary equilibrium dy ( ag1

point, respectively. Y — a2 — b2y) (2.1)

Q22 + 23y
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with y(0) = yo > 0 € [0, +00). (1.1). The equilibrium of system (1.1) is determined by the
Lemma 2.1[29] The following statements on (2.1) hold. equation
(1) Assume thatie; > ag2a24, then the unique positive w( b11 by — g 227 ) - 0
equilibrium y* of system (2.1) is globally attractive in bio + bygz M y+k/
o y($ — bog — agey — 21y ) 0.
(2)Assume thatio; < asgsas4, then the equilibriumy = 0 of bag + basy T+ ko
system (2.1) is globally attractive if, +-o0). The system (1.1) always admits a boundary equilibrium
Consider the following equation A;(0,0). Assume that
du b11 aiol b11
o ——— by — — 2.2 — >b 2.11
dt u(b12 + b13u 14 an €+ kl) ( ) b12 " ( )
with u(0) = ug > 0 € [0, +00). holds, then
Lemma 2.2. Assume thath;; > biobyy hold, then the b by — apyw — 222 _ (2.12)
unique positive equilibriuna*(¢) of system (2.2) is globally bi2 + bi3x k1
attractive in (0, +o00), where admits a unique positive solutiori*, where
—AQ(E) + \/(AQ(E))Q — 4141(6)143(8) —A2 + Ag — 4141143
*(g) = . (2.3 * = , 2.13
(©) > A (2.3) z o (2.13)
here here
Ai1(e) = a11bisks + a12b13 + ar1bize, A1 = ai1bizki + anbis,
As(e) = ai1bioks + a11bi2e + bisbiaky (2.4) Ay = aiitbigk: + bi2bisky + ai12bia, (2.14)
+b13b14€ + a12b12, - Az = bigbiakr — biiks.
Ag(E) = biobigkr — b11k1 + biabase — byqe. Assume that (211) and
Obviously,u*(g) is the continuous function ef and bﬂ < boy (2.15)
22
* * 2. . .
wi(e) 72" as e =0, (2:5) hold, then system (1.1) admits the nonnegative boundary
wherez* is defined by (2.12). equilibrium Ay (z*,0). Assume that
Consider the following equation bay > boy (2.16)
bao
dv ( bgl b as21v ) (2 6)
— =V — — a2V — .
dt bog + bosv 24 22 et ko)’ hold, then
i - b
with v(0) = v9 > 0 € [0, +00). : +21b by — azey — azﬂ/ —0
Lemma 2.3. Assume thathy; > be2bes hold, then the ) _22 ng. ) ) 2
unique positive equilibrium* () of system (2.6) is globally amits & unique positive solutiog”, where
attractive in (0, +00), where . — By + /B2 — 4B, B; 217
U*(E) _ 7B2(€) + \/(BQ(‘C:))2 B 4B1(€)B3(€) (2 7) 231 ,
2B (¢) ’ ' here
here By = aazbazks + agibas,
Bi(e) = agebazka + a21bas + azabase, By = azzbazks + bazbasks + az1ba2, (2.18)
Ba(e) = agabasks + bagbasks + az1baa (2.8) B3 = boobosksy — borko.
+agabase + bazbase, ' Assume that (2.16) and
= - - . b
Bs(e) baobasks — bat1ka + baobose — bare bi < by (2.19)
Also, v*(g) is the continuous function ef and 12
. . hold, then system (1.1) admits the nonnegative boundary
vi(e) >y as e =0, (2.9)  equilibrium A;(0, y*).
wherey* is defined by (2.17). Concerned with the extinction of the species in system
The proof of Lemma 2.2 and 2.3 is similarly to that of thél'l)’ we have the following result.
proof of Lemma 2.1, one could refer to [29] for more detailTheorem 2.1.
h it it.
ere we omit it (1) Assume that (2.15) and (2.19) hold, then
Now we are in the position of considering the existence i i 59
and stability property of the boundary equilibria of system tJIﬁloo‘r(t) =0, ti?my(t) =0 (2.20)
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i.e., the boundary equilibriurd; (0, 0) is globally asymptot- From the continuity theorem of solution on parameters, one

ically stable; could see that
(2) Assume that (2.11) and (2.15) hold, then WHE) 3" as £ = 0
Jim at) =27, lim y(t) =0, (221) 51 the other hand, from the first equation of system (1.1),

we also have

i.e., the boundary equilibriunds(z*,0) is globally asymp-
totically stable; dz x(ib” — by —anw — —am)- (2.33)
(3) Assume that (2.16) and (2.19) hold, then e — b2 + b1z k1
lim 2() =0, lim y(t) = y", (2.22) Now let us consider the equation

t——+oo t—+o0 du B bll . a12u 534
i.e., the boundary equilibriumis(0, y*) is globally asymp-  gr u(b12 T bpgu T T ) (2:34)
totically stable. It follows from Lemma 2.2 that system (2.34) admits a
Proof. unigue positive equilibriunx*, which is globally asymptot-

(1) It follows from the first equation of system (1.1) that ically stable. Hence, from (2.33), (2.34) and the comparison
principle, one has

d_ac = ac(ibn — b4 —aj1r — a1z )
dt bia + bisz 14 H y+ k1 %i:n_&nf x(t) > a*. (2.35)
< x(L by — aux). (2.32) together with (2.35) leads to
- bi2 + bisz
(2.23) ¥ <liminfz(t) < limsupz(t) < u*(e). (2.36)
Now let us consider the equation tteo i=4oo
du u( b1y . u) (2.2 Settinge — 0 in (2.36) leads to
dt o b12 + b13u 14 1 ' ' . hgl x(t) =z*. (237)
—+o0

It follows from (2.19) and Lemma 2.1 that= 0 of system

(2.24) is globally attractive, i.e. (3) From (2.19) and the first equation of (1.1), by using

the comparison principle, similarly to the analysis of (2.23)-

lim u(t) =0. (2.25) (2.26), we have
. T . . . lim z(t) = 0. (2.38)
Applying the caparison principle of differential equation to i=+00
(2.23) and (2.24) leads to For e > 0 enough small, it follows from (2.38) that there
) exists aT > 0 such that
lim «(¢) = 0. (2.26)

free z(t) < e forall t>Tp. (2.39)
Similarly, by using (2.15) and the comparison principle, from ) .
the second equation we could draw the conclusion From (2.39) and the first equation of system (1.1) tfor 75,

we have
lim y(t) =0. (2.27) d b a
e d_gt/ < y(ﬁ — bay — azy — fz )7
(2) From (2.15) and the second equation of (1.1), by using 2277 02y =T (2.40)
the comparison principle, we have Now let us consider the equation
li t) =0. 2.28
t—}g-noo y( ) ( ) % = (7[) le — b24 — a2V — aj}: )
For ¢ > 0 enough small, it follows from (2.28) that there 22 7T P2y e (2.41)
exists a7} > 0 such that It follows from Lemma 2.2 that system (2.41) admits a u-
y
y(t) < e forall t>T. (2.29) nique positive equilibrium*(g), which is globally asymptot-

ically stable. Hence, from (2.40), (2.41) and the comparison
From (2.29) and the first equation of system (1.1)tfor 71, principle, one has

we have . .
du by - limsup y(t) < v*(e). (2.42)
—_ 11(7 — b14 — a11T — ) t=+oo
dt big + b1z €+ k1 (2.30) From the continuity theorem of solution on parameters, one
Now let us consider the equation could see that
du b11 a1ou v*(e) = y* as € = 0.
- = u(i—bm—an?ﬁ— ) i
dt bi2 + bizu €+ k1 (2.31) On the other hand, from the second equation of system (1.1),
: we also have
It follows from Lemma 2.2 that system (2.31) admits a u- b “
nique positive equilibriumu* (<), which is globally asymptot- g > y(ﬁ — bog — Aoy — z—ly) (2.43)
ically stable. Hence, from (2.30), (2.31) and the comparison t 22 + 023y 2
principle, one has Now let us consider the equation
. * dv bo1 a21v
limsup z(t) < u*(e). 2.32 v (7_19 . ——). 2.44
t%JrooP (t) (€) ( ) I v Doy + bt 24 — G220V T ( )
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It follows from Lemma 2.2 that system (2.44) admits &pplying the caparison principle of differential equation to
unique positive equilibriumy*, which is globally asymptot- (3.1) and (3.2) leads to
ically stable. Hence, from (2.43), (2.44) and the comparison

principle, one has 1?3&2%”"(’5) <t (3.4)
liminf y(t) > y*. (2.45)  Similarly, by using (2.16) and the comparison principle, from

t——+o0

, the second equation we could draw the conclusion
(2.42) together with (2.45) leads to

limsupy(t) < v, 3.5
y* <liminf y(¢) < limsupy(t) < v*(e). (2.46) t—>+oopy( ) < (3.5)
t

t——+o0 —+o00

Settingz — 0 in (2.46) leads to wherev* is the positive solution of the equation

b21

: — o ——— —byy —aggv=0. 3.6
t_1>1+mooy(t) v (2.47) by + bpgy 24 922 (3.6)
This ends the proof of Theorem 2.1. On the other hand, from the first equation of system (1.1),

. : . . . we also have
Remark 2.1. As was pointed out in the introduction section,

for the t(aditiona}l May cgpperati\{g ;ystem .(1.3_), the sys- dz > x( b — by —apx — “125‘7). (3.7)
tem admits a unique positive equilibrium which is globally ~ d? biz + bigz k1
asymptotically stable. That is, for system (1.3), two speci@milarly to the analysis of (2.33)-(2.35), we have

could be coexist in a stable state. None of the species will o i

be driven to extinction. Our result (Theorem 2.1) shows that 115131+1£10f x(t) = 2" (3.8)
by introducing the density dependent birth rate, the system .

may become extinct in the sense that both speciemd From the second equation of system (1.1), we also have

y will be driven to extinction or the system maybe partial dy b2y a1y
9(7 — boa — azy — —) (3.9)
bas + ba3y k2

‘renilarly to the analysis of (2.43)-(2.35), we have

survival, in the sense that one of the species will be drivento ¢
extinction while the other species will be survival in the Ion%.

. : i
run. Therefore, the dynamic behaviors of the system becom

complicated. 1tim+inf y(t) > y*. (3.10)
—+o0
[1l. PERMANENCE Noting thatz*,y*,u*,v* are all can be expressed by the

Previously, we had discussed the extinction property Spefﬁcients of the system (1.1), and independent of the

the system (1.1). This section we will discuss the persisteﬁﬁlu“?ﬁst()f s(;/st(?[rr]n (1.1). Hetr_1ce, (fs_l‘_[;'])’ (3.5), 3531‘8) antd (3‘101)
property of the system. show that under the assumption of Theorem 3.1, system (1.1)

is permanent.
Definition 3.1. Let (x(t),y(t)) be any positive solution of

system (1.1), if there exist positive constan{sM;,i = 1,2 |y G| oBAL STABILITY OF THE POSITIVE EQUILIBRIUM

such that _ _ - o
Concerned with the existence of the positive equilibrium
my < {siggrinf z(t) < limiup x(t) < My, of the system (1.1), we have the following result.
o — 400
ms < liminfy(t) < limsupy(t) < M. Lemma 4.1.A§sume th:_;\t (2.11) _qnd (2.1_(?) holds, then sys-
t—+00 t—>+00 tem (1.1) admits the unique positive equilibrivdn(z1, y1).
Then system (1.1) is permanent. Proof. The positive equilibrium is the solution of the equa-
By means of permanence, two species could be coexistitNS
the long run. b1 apx
o+ biaz bia —anz — b 0,
Theorem 3.1Assume that (2.11) and (2.16) hold, then system 12+ 0132 y+m
(1.1) is permanent. bar b _ Lty _
, : bos + bosy S + ko
Proof. It follows from the first equation of system (1.1) that
Set
dx N .I'( b11 b i a2 b
dt b+ bigz M _erk) F S« S N _ _M12? 4.1
v b v ' (3.1) 1(@y) bio +bizz e y+ki’ (“.1)
< 1’($ —bus—a ac)
bia+bisz Fy(z,y) = _ b bos — amy — —20— (4.2)
Now let us consider the equation b2z + basy  + ko
du by Obviously, F (z,y) = 0 and F5(z,y) = 0 define two lines,
- U(m — b *auu) 32) we denote them by, : y = yi(z) andlz : = = a3(z),
respectively.
It follows from (2.11) and Lemma 2.1 that= u* of system Noting that
(3.2) is globally attractive, i.e.,
I . @:*&*011* a12 <0 (4.3)
t;ﬁnmu(t) =u". (3.3) d (bis 2 + b1a)? Tty )
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dF’
2 % > 0. (4.4)
dy (k1 +y)
Hence, J ”
Y1 1z
— =——>0. 4.5
dx Fly > ( )

The characteristic equation of the variational matrix is
N —tr(J)X\ + det(J) = 0. (4.12)

For a continuous-time system, asymptotic stability of an
equilibrium solution is satisfied as long as(J) < 0 and

That is,!; is the strictly increasing function, also, one couldet(.J) > 0. Now, at the positive equilibriumi,(z1,y1),

easily see thal; pass throughis(2*,0), andy; (x) — 400
asz — z7, wherex; is the unique positive solution of the
equation

bll
—— — b1y — =0. 4.6
bio +bizz nt (4.6)
On the other hand, by computing, ftr, we also have
dF:
by _ _amy (4.7)
dF: ba1 b
afe _ 21 923 S —ag — a21 <0. (4.8)
dy (b23 y + ba2) ko +
Hence, p .
Y2 2
— =—-——=>0. 4.9
dx F2y - ( )

That is, [, is the strictly increasing function, also, one could

easily see thal, pass throug;(0,y*), andzz(y) — +o0
asy — yi, whereyy is the unigue positive solution of the

equation
bo1

bao + basy
Above analysis shows that andl, must intersect at least

— b24 — a2y = 0. (410)

one point, and the two lines could intersect at most one point.

Denote this point byd,(z1,y1). Then, system (1.1) admits
the unique positive equilibriumi,. This ends the proof of
Lemma 4.1.

>
Lemma 4.2. Assume that (2.11) and (2.16) hold, then the

system (1.1) admits a unique positive equilibridat(z1, y1 ),
which is locally asymptotically stable.

Proof. The existence and uniqueness of the positive equi-

one has
tr(J)

. < by biz
(

biz 1 + b12)2

+y ba1 bag as1
[ ——== a0 —
(baz y1 + b22)2 ko + a1
< 0,
det(J)
bll b13 aio
= 7 — t a1+ —
i <(b13 1+ ba)” T (4.13)
bo1 b
X % ¥ ass + as1
(b23 y1 + b22) ky + 21
_ 1%ar y12as
(k1 + y1)2 (ko + x1)2
bi11 b
> T1Y1 Lx +a11
(biz 1 + bi2)
bo1 b
x L?’Q T as
(ba3 y1 + ba2)
0

Hence the positive steady-state solution is locally asymptot-
ically stable. This ends the proof of Lemma 4.2.

Concerned with the stability property of the positive

librium is ensured by Lemma 4.1. To end the proof gfauilibrium, we have the following result.

Lemma 4.2, it is enough to show that (z,y:) is locally Theorem 4.1.Assume that (2.11) and (2.16) hold, then the
asymptotically stable. system (1.1) admits a unique positive equilibrida(z;, y1 ),
The variational matrix of the continuous-time system (1.1yhich is globally asymptotically stable.

at an equilibrium solutior{z, y) is

Proof. Under the assumption of Theorem 4.1, it follows from

Gu(z,y) Gia(z,y) Theorem 3.1 that system (1.1) is uniformly bounded. Let
J(,y) = SENCEE 5
G21($;y) G22($7y) D = {(:L.,y) c Ri < —'LL*, Yy < _’U*}.
where 2 2
b1y a1 T Then every solution of system (1.1) startsiq is uniformly
Gul(z,y) = bzt bia —anz— Tty bounded onD. Also, from the permanence of the system,
one could see that the boundary equilibdig, A, A, are all
. b11 b13 _ a1 unstable. Lemma 4.2 shows that there is a unique local stable
(bisa+bi2)® = kit+y)  positive equilibriumAs(zy,y1). To show thatds (e, 41) is
220 globally stable, it's enough to show that the system admits
Gia(z,y) = 7122, no limit cycle in the areaD. To this end, let's consider the
(k1 +v) Dulac functionB(z,y) = 2~y ', then
2
a
Gn(ry) = -2, 0(BP) | 9(BQ)
(kg + ) Ox Oy
bo1 a1y
Gaa(z, = — by — - 1 b11 b13 a12
(&) b23y + b2z oy ke + - 7§<(b13x+b12)2 an k1 +y) (4.14)
ba1 b
(- 21 b23 am— a1 . 71( ba1 bas tam+ a1 ),
(b23 y + ba2) ko +x T\ (bazy + ba2) ky +x
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where In this system, corresponding to system (1.1), we take
bi1 a12T bio = b1z = by = a1 = a12 = bz = bag = byy =
P(CE,y) = x(m7b14*a111'*y+k1), a22:a12:a21:1,b11:b21:2,k’1:k2=1. Since
b a b11 > b12b14, b1 > bagboy, it follows from Theorem 3.1 and
Qz,y) = y($ — boy — a0y — 21Y ) 4.1 that the system is permanent, and the unique positive
b2z + b23y T+ ko equilibrium A,4(0.3050995891,0.3419788843) is globally

By Dulac Theorem([33], there is no closed orbit in al®a asymptotically stable. Fig. 2 supports this assertion.

ConsequentlyA4(x1,y1) is globally asymptotically stable.
This completes the proof of Theorem 4.1.

Remark 4.1 Noting that inequalities (2.11) and (2.16) are
independent of the parametérs, bo3, hence, from the first
sight, it seems that nonlinear density dependent birth rate
has no influence to the persistent and stability of the positive
equilibrium, consequently, it has no influence to the dynamic
behaviors of the system, however, Example 5.4 in the next
section shows that with the increasinghef, the final density

of the first species is decreasing, and this may increasing
the extinct chance of the first species, it's in this sense that
the nonlinear birth rate has negative effect on the persistent
property of the species.

V. NUMERIC SIMULATIONS
Now let's consider the following three examples.

0.40

0.35

y(7) 0.30

0.25-

0.20

Fig. 2.  Dynamic behaviors of the system (5.2) the initial con-

Example 5.1 dition (x(0), y(0)) = (0.2,0.4), (0.2,0.2), (0.4,0.3) (0.4,0.2),
(0.2,0.3) and (0.4, 0.4), respectively.

dx 1 T

— = :c( —1—-2x— —),

dt 24z 1+y

d 1 (5.1)

a9 _ y(_,l,y, Y ) Example 5.3

dt 4+vy 2+z
In this system, corresponding to system (1.1), we take= dx 1 2
biz = by = a1z = ba1 = bag = bay = azge = a1 = a x(2+x—1—2$— 1+y)’
1,a11 = 2,b1a = 2,bag = 4,k1 = 1,ky = 2. Sinceby; < (5.3)
biobia, by < bagbay, it follows from Theorem 2.1(1) that dy  _ y( 4 _y— Y )

dt 14y 2+

the boundary equilibriund; (0, 0) is globally asymptotically
stable. Fig. 1 supports this assertion.

In this system, corresponding to system (1.1), we take
bin = b1z = bia = a1z = bao = boz = b = az =
’ k t t f f RN Zggiﬁiii as1 = l,a11 = 2,b1a = 2,by1 = 4,k; = 1,k = 2. Since
S S L .
{ E i g g é é 2 2 2 2 s bi1 < biabia, bay > baoboy, it follows from Theorem 2.1(3)
S S S L s s T .
BN IR s tk;a;) Itlhe bour:d?ry”eq;ulkl)?rluFm_Ag?()O,0.8081t42t$r9]_670) |st_
B e
2 Vil = globally asymptotically stable. FIg. o supports tnis assertion.
Lo | | /)L
»() V' VL L LSS e ——
VLWl S —
e T — — —
N R B st — RS APy
/A VA A A A
VY S — e — - _—— VLV YL L S S S
WS, — ammrr=— — — — ————————— V' VLY LSS S —
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ V' VL LS e —
= sy VLY LS —
o 0.5 1 1.5 2 VLI S —
x(4) VLo s S —
V(1) [ /| LS e —— ——
. [ L L e — — —
b4 f -
Fig. 1. Dynamic behaviors of the system (5.1) the initial ctindi 1 f / T T T T T T T T —
(z(0),5(0)) = (2,0.5), (2,2) and (0.5, 3), respectively. WL T T T
NS T
Q ‘Qi\ _____________
N T e —————~—
Example 5.2 054 4 A N N — e ———— -
dx 2 T 0.5 x(lt) 1.5 >
b (2,2,
dt 1+2 1+y
dy 2 Yy (5'2) Fig. 3. Dynamic behaviors of the system (5.3) the initial gtad
— = ——1—y - ) x(0),7(0)) = (2,0.5), (2,2) and (0.5, 2), respectively.
at y(1+y T4 (2(0),4(0)) = (2,0.5), (2,2) and (0.5, 2), respectively
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Example 5.4
dx 2 T
A T
dt 1+ bizz 14y 0.4l
@ - (iflf Ly ) (5.4)
dt y 1+y Y 14+z/° x(1)

0.3 1

In this system, corresponding to system (1.1), we take
bia = by = a11 = a2 = by = bz = bay = aox =
alp = Q91 = 1,b11 = by = Q,k/’l = ky = 1, since
b1 > 512b14,b21 > booboy, it follows from Theorem 3.1 —
and 4.1 that for any positive constahts;, the system ° E 1o s 20
is permanent, and the unique positive equilibrium which
is globally asymptotically stable. Fdrs = 1,2 and 3,
respectively, Fig. 4-6 shows the dynamic behaviors:@j.
From Fig.4-6, one could see that with the increasing,gf
the final density of the first species is decreasing.

Fig. 6. Dynamic behaviors of the specie$t) in system (5.4)
the initial condition (z(0),y(0)) = (0.2,0.2),(0.4,0.4) and
(0.5,0.5), respectivelybi3 = 4.

Han and Chen[11], Chen, Xie and Chen[2], Zhao, Qin and
Chen [7] proposed several kind of May type cooperative sys-
tem, and investigated the dynamic behaviors of the system.
However, all of the works of [2], [7], [11], [12], [14], [15],

[18] were based on the traditional Logistic model, as was
shown in the introduction section. In this paper, stimulated
by recent works of [28]-[30], we argued that the birth rate of
the species maybe density dependent, this leads to the system

0.4

x(1)

03 > ——— e —— (1.2).
Theorem 2.1 shows that under some suitable assumptions,
/ all of the three boundary equilibria maybe globally asymp-
on totically stable. That is, by introducing the density dependent

; birth rate, all of the species or part of the species may
be driven to extinction, such kind of dynamic behaviors
is quite different to the system without density dependent
(For example, May[18] showed that the unique positive
equilibrium of the system (1.3) is globally asymptotically
stable).

Theorem 3.1 shows that under some suitable assumption,
the system could be permanent. Also, under the same as-
sumption as that of Theorem 3.1, we could show that system
(1.1) admits a unique positive equilibrium which is globally
asymptotically stable. However, example 5.4 shows that with
the increasing of the parametes;, the final density of the
first species is decreasing, hence, under the assumption (2.11)
and (2.16), though at first sight the system is permanent,
the chance for the system to be extinct is increasing, the
nonlinear birth rate has negative effect to the persistent
property of the system.

Our study shows that the birth rate is one of the essential
factors to determine the dynamic behaviors of the species.
Density dependent birth rate may lead to the complicated
dynamic behaviors of the system, in some case, may lead to
the collapse of the system.

Fig. 4. Dynamic behaviors of the specie$t) in system (5.4)
the initial condition (z(0),y(0)) = (0.2,0.2),(0.4,0.4) and
(0.5,0.5), respectivelybi3 = 1.

0.5

x(2)

0.3

Fig. 5. Dynamic behaviors of the specie$t) in system (5.4)
the initial condition (z(0),y(0)) = (0.2,0.2),(0.4,0.4) and
(0.5,0.5), respectivelybiz = 2.
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