
  

Abstract—In this study, an accurate and effective method is 

proposed to solve fractional variational problems (FVPs). 

Fractional derivative is described in the sense of Caputo. In the 

method, we simplify the fractional variational problems by the 

operational matrices. The operational matrices are based on the 

Chelyshkov polynomials. Using this method, the fractional 

variational problem can be transformed to a set of algebraic 

equations. And using the Lagranger multiplier technique, the 

unkown coefficients can be solved. The numerical solution of 

FVPs is calculated by maple. Through different graphical and 

tables, the numerical results of illustrative evidence show that 

the method is reliable and powerful in solving fractional 

variational problems. 

 
Index Terms—fractional variational problem, caputo 

fractional derivative, chelyshkov polynomials, operational 

matrices 

 

I.  INTRODUCTION 

he fractional calculation has been a popular topic in 

recent years [1]. The academics who first proposed 

fractional differential equations were Leibniz and L’Hopital. 

Fractional differential equations are applied in many different 

fields, such as control science and engineering [2], 

mathematics [3], etc. Many academics have studied different 

theories in fractional differential equations [4]. Many 

different numerical methods are introduced to develop 

approximate solutions to the fractional differential equations 

and systems, such as the Legendre wavelet method [5], the 

finite element method [6], homotopy perturbation method [7] 

and so on. 

Recently, one of the numerical techniques is presented, 

which expands the approximate solution into the elements of 

the Chelyshkov polynomials for calculation. A numerical 

matrix method [8], based on Chelyshkov polynomials, was 

presented to solve the linear functional integro-differential 

equations. Talaei and Asgari [9] proposed the 

Chelyshkov-collocation spectral method to solve multi-order  
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fractional differential equations under the supplementary  

conditions. In [10], a technique to solve two-dimensional 

Fredholm-Volterra integral equations was presented by the 

Chelyshkov poly-nomials. Sezer [11] put forward an 

approach, based on Chelyshkov polynomi-als, to solve the 

linear functional integro-differential equations with variable 

coefficients under the initial-boundary conditions. Talaei [12] 

worked out the weakly singular Volterra integral equations 

by the Chelyshkov polynomials. Jaradat [13] proposed an 

iterative technique based on the generalized Taylor series 

residual power series to obtain an approximate solution of a 

generalized time-fractional Drinfeld-Sokolov-Wilson 

system. 

Many problems in life can be regarded as optimal control 

problems, which have been spotted in all aspects of life. 

Many scholars [14, 15] were devoted to the research of 

optimal control problems. The variational problem is a 

special kind of optimal control problem. The variational 

problem is to determine the maximum or minimum values of 

the functions. Because of the importanceof the variational 

problems in many areas, such as clinical medicine [16], 

physics [17] and so on, researchers are committed to the 

study of these problems. Amini, Weymouth and Jain [18] 

proposed a functional minimization algorithm and its 

implementation, which an iterative constraint satisfies the 

procedures of local surface smoothness properties. Horng 

and Chou [19] solved variational problems by Shifted 

Chebyshev polynomials. The fractional calculus of 

variational was a new field. Riewe [20, 21] was the first who 

discovered derivatives of fractional order using a Lagrangian 

to solve variational problems. Chen [22] proposed a 

symmetric dual problem for a class of multiobjective 

fractional variational problems. The simplest fractional 

variational problem and the fractional variational problem of 

La-grange were considered by Agrawal [23]. And many other 

numerical methods solved fractional variational problems, 

such as M üntz-Legendre polynomials [24], shifted Legendre 

orthonormal polynomials [25], Jacobi polynomials [26] and 

so on. 

In this paper, the operational matrices based on the 

Chelyshkov polynomials are used to solve fractional 

variational problems. These operational matrices are used to 

calculate the approximate solutions of the FVPs. This 

approach reduces the fractional variational problem to a set of 

algebraic equations by operational matrices. With the 

properties of the Chelyshkov polynomials, we can simplify 

the fractional variational problem. Moreover, a new 

numerical technique based on the Chelyshkov polynomials is  
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proposed for the following fractional variational problem, 

0
= ( , ( ), ( ), ( )) ,

1 , 0

ft

MinimunJ F t x t D x t D x t dt 

    −          

         (1) 

With the boundary conditions 

(0) , ( ) ,fx a x t b= =  

Where     is the ceiling function of  . 

The rest of the structure is as follows. In section 2, some 

definitions about fractional calculus and the properties of 

Chelyshkov polynomials are introduced respectively. How to 

solve the fractional variational problem by Chelyshkov 

polynomials is proposed in section 3. In section 4, illustrative 

examples are presented. At last, the conclusion is drawn in 

section 5. 

II. PRELIMINARIES 

In this section, the definitions of fractional calculus are 

introduced systematically. And this section also presents the 

most details of the Chelyshkov polynomials. 

A. Fractional calculus 

Definition 1 [27, 28, 29]. According to Riemann-Liouville, 

the fractional integral operator of order ≥ 0 is defined as 
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Where ( )1 *t f t −
 is the convolution product of 

1t −
 and 

( )f t . 

For the Riemann-Liouville fractional integral we have 
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( ) ( )( ) ( ) ( )2.I f t g t I f t I g t     + = + , 

where   and  are real constants. 

Definition 1 [30, 31]. Let  f(t) : [0, +∞)→R be a function, 

and ⌈⌉ be the upper positive integer of  ( > 0). The Caputo 

fractional derivative is defined by 
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For the Caputo derivative we have 
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4. 0D c = , 
( ) ( )( ) ( ) ( )5.D f t g t D f t D g t     + = + , 

where 1 , 2 and c are real constants. 

 

B. Chelyshkov polynomials 

Chelyshkov [32] has introduced sequences of polynomials 

which are orthogonal in the interval [0, 1] with the weight 

function 1. These polynomials are defined by 
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Then, we can get the following approximate solutions of the 

FVPs by the Chelyshkov polynomials 
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where 

,0

,1

0 1

,

( ) 1

( )
( , ,..., ), ,

( )

N

N

N t t

N
N N

C t

C t t
A a a a C T

C t t

   
   
   = = =
   
    

  

     (6) 

if N is odd, 
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and if N is even, 
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These polynomials satisfy the orthogonality condition 
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Theorem 1 [7].  Assume that Ct be Chelyshkov vector defined 

in (6) and ∈R+. Then 
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III. SOLVING THE FRACTIONAL VARIATIONAL PROBLEMS BY 

CHELYSHKOV POLYNOMIALS 

In this section, a numerical technique is presented to solve 

the fractional variational problems. Some results about the 

Chelyshkov polynomials are proposed in section 2. The 

general form of this problem is 

( ) ( ) ( )( )
0

, , , ,

1 ,0

ft

MinimumJ F t x t D x t D x t dt 
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=

−          

         (14) 

with the boundary conditions 

x(0)=a, x(tf)=b. 
Here F is a linear or nonlinear function. To solve the 

fractional variational problem, we give the following steps， 

Step 1. Expand the function x with the Chelyshkov 

polynomials in (5), as 

( ) ( )
0

. .
N

N n t t

n

x t x t a C AC T
=

= =                 (15) 

and the fractional derivatives of Dx(t), Dx(t) can be 
written as 

( ) ( )( ) ( ) . . . . .N t tD x t D x t A D C A D C T   = =        (16) 

( ) ( )( ) ( ) . . . . .N t tD x t D x t A D C A D C T   = =    (17) 

Step 2. Substitute Eqs.(15)-(17), the general function of 

Eq.(14) can be written in the following approximate form as 

( ) ( ) ( )( )
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, , ,
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N N NMinimumJ F t x t D x t D x t dt =    (18) 

Step 3. Approximate the boundary condition, as 

(0) (0) 0Nx a x a−  − =                      (19) 

( ) ( ) 0f N fx t b x t b−  − =                      (20) 

Step 4. Then let 

G [ (0) , ( ) ]T

N N fx a x t b= − −  

where G is a 2×1 vectors. Consider 
* *

0 1 2 1 2 0 1 2[ , , ,..., , , ] [ , , ,..., ] GT

N NJ c c c c J c c c c  = +    (21) 

where 

1 2[ , ]T  =  

is the Lagrange multiplier vector. 

Step 5. The fractional variational problem of Eq.(14) can 

be transformed to the unconstrained problems, as 
* *

0, 1,2,..., , 0, 1,2
n i

J J
n N i

c 

 
= = = =

 
          (22) 

Step 6. Solving the Eq.(14), we can obtain the coefficients 

of cn and i. Then the approximate solution of Eq.(7) is 

( ) . . .tx t AC T  

IV. ILLUSTRATIVE EXAMPLES 

In this section, some fractional variational problems are 

analysed by Maple in Windows (64bit). Using the operational  

 

matrices based on the Chelyshkov polynomials and the 

Lagrange multiplier method, FVPs can be transformed to the 

unconstrained problems. The approximate solutions of the 

FVPs are calculated. And the results are presented by charts 

and graphics.  

Example 1 As the first example, we consider the following 

fractional variational problem, 
1

0.5 1.5 2

0

2
( ( ) )

(2.5)
MinimumJ D x t t dt= −

  

with the boundary conditions, 

x(0) = 0, x(1) = 1. 

The exact solution of this fractional variational problem is 

x(t) = t2. We present the absolute errors for different values of 

N in TABLE I. The different solutions of x(t) are plotted in 

Figure.1 for different N. We can find that our method can 

have a good approximate solution to this fractional 

variational problem. 
TABLE I 

THE ABSOLUTE ERRORS FOR DIFFERENT VALUES OF N 

t N=3 N=4 N=5 

0.1 1.2189 × 10−10 1.0423 × 10−10 4.4557 × 10−10 

0.3 1.9168 × 10−10 1.2548 × 10−10 5.5492 × 10−10 

0.5 1.0947 × 10−10 2.3313 × 10−10 9.3147 × 10−10 

0.7 2.8739 × 10−11 3.5998 × 10−10 1.1240 × 10−10 

0.9 1.2695 × 10−10 9.8768 × 10−11 1.0654 × 10−10 

 

 
Fig. 1.  Approximate solutions about m = 3, 4, 5 and the exact solution 

 

Example 2 We consider the following fractional 

variational problem, 
1

2 2

0

(2 3)
( ( ) ( 2) )

( 3)
MinimumJ D x t t t dt 




+ +
= − −  +

 + , 

with the boundary conditions, 

x(0)=0, x(1)=3. 

The exact solution about this problem is y(t) = t2 +2 + 

t+1 + 1. The absolute errors are proposed for different values 

of  when N = 7 in table 2. From TABLE II, we can find that 

if the value of t is fixed, the larger the value of , the smaller 

the absolute errors. 
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In Figure.2, the approximate solutions when N=3, 4, 5, 

6,7 for =1 and the exact solutions are plotted. From Figure.2, 

it is shown that the errors decay as N increase. 

 

 
TABLE II 

THE ABSOLUTE ERRORS WHEN N = 7 FOR DIFFERENT VALUES OF  

t =0.3 =0.6 =0.9 =1 

0.2 9.4066 × 10−5 9.3011 × 10−5 1.4114 × 10−5 1.5343 × 10−9 

0.4 4.8693 × 10−5 2.1125 × 10−5 1.1682 × 10−5 3.8318 × 10−9 

0.6 1.0568 × 10−4 8.5799 × 10−5 8.4150 × 10−6 3.5262 × 10−9 

0.8 5.7636 × 10−5 1.1878 × 10−5 6.2915 × 10−6 2.7671 × 10−7 

1 1.1120 × 10−6 1.1530 × 10−6 1.7850 × 10−6 1.1300 × 10−6 

 

 
Fig. 2.   Approximate solutions about N= 3, 4, 5, 6, 7 when = 1 and the exact 

solution 

 

Example 3 We consider the following fractional 

variational problem, 

22

0
( ( ) cos( ))MinimumJ D x t t dt


= −  

subjected to 

x(0)=0, x(π/2) =1, 

with the exact solution x(t) = sin(t) for = 1. 

In TABLE Ⅲ, the maximum absolute errors (MAEs) 

between our method and Shifted Legendre Orthonormal 

Polynomials (SLOP) [25] are presented at =1 with various 

choices of N. We can find our method can deduce a good 

approximate solution. 

In Figure.3, the absolute error of x(t) when N=6, = 1 

are plotted. In addition, Figure.4 plots the approximate 

solutions of x(t) when N=5 for = 0.6,0.7,0.8, 0.9,1. From 

Figure.4, we can find that as approaching to 1, the solution 

for the integer order equation is recovered. 
TABLE Ⅲ 

 COMPARISON BETWEEN OUR METHOD AND SLOP WITH THE MAES FOR = 1 

m MAEsourmethod Jourmethod MAEsSLOP JSLOP 

3 2.180 × 10−3 1.218 × 10−8 2.646 × 10−3 6.795 × 10−6 

4 1.647 × 10−4 1.090 × 10−6 2.317 × 10−4 1.022 × 10−7 

5 1.073 × 10−5 6.724 × 10−9 1.608 × 10−5 2.993 × 10−10 

6 7.995 × 10−7 −3.009 × 10−8 9.912 × 10−7 2.482 × 10−12 

 
Fig. 3. The absolute error of x(t) when N = 6 

 

 
Fig. 4. The approximate solution of x(t) when N= 5 for= 0.6, 0.7, 0.8, 0.9, 1 

 

Example 4 We consider the following fractional variational 

problem, 
1

2

0

1
( ( ))

2
MinimumJ D x t dt=   

with the boundary conditions, 

x(0)=0,x(1) =1. 

The exact solution about this fractional variational 

problem is x(t)=t for =1. 

We compare the approximate solution of x(t) when N = 

3 for various values of those in Figure.5. From these figures, 

we can find the approximate solution is more accurate for the 

value of  is close to 1. In Figure.6, the absolute error is 

plotted for N=4 and =1. From Figure.6, we obtain the 

absolute error is close to 0. 
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(a) Comparison of x(t) when N=3 for = 0.6, 0.7, 0.8,0.9 

 
(b) Comparison of x(t) when N=3 and the exact solution 

Fig. 5. The comparison between approximate solutions and exact solution 

 
Fig. 6. The absolute error of x(t) when N=4 for = 1 

Example 4 We consider the following fractional variational 

problem, 
1

2 2

0
(( ( )) ( ) ( ))MinimumJ D x t tD x t x t dt = + +  

with the boundary conditions 

x(0)=0, x(1)=1/4 

In TABLE Ⅳ, the exact solution about this fractional 

problem is proposed. We compare the approximate solution 

of xm(t) for N=5 and the Legendre wavelet [33] method for  

 

k=3, M=5. The approximate solution of x5(t) is plotted for 

various values of  in Figure.7. 
TABLE Ⅳ COMPARISON BETWEEN OUR METHOD AND THE LEGENDRE 

WAVELET METHOD FOR =1 

t 
Legendre wavelet 

k=3,M=5 
Our method exact solution 

0 0.000000 0.000000 0.000000 
0.1 0.041949 0.041951 0.041950 
0.2 0.079315 0.079317 0.079316 
0.3 0.112471 0.112473 0.112472 
0.4 0.141749 0.141751 0.141750 

0.5 0.167443 0.167443 0.167442 

0.6 0.189807 0.189807 0.189806 

0.7 0.209064 0.209066 0.209065 

0.8 0.225411 0.225414 0.225412 

0.9 0.239010 0.239013 0.239011 

1.0 0.249999 0.250000 0.250000 

J  0.19759399 0.19759399 

 

 
Fig. 7. The approximate solution of x(t) when N=5 for = 0.6, 0.7, 0.8, 0.9, 1 

V. CONCLUSION 

In this paper, we discuss a numerical method to solve 

fractional variational problems. Using the operational 

matrices based on the Chelyshkov polynomials, the fractional 

variational problems can be transformed to a set of algebraic 

equations. Then we can determine the unknown coefficients. 

The illustrative examples are presented by graphics and 

datum. Results show that our numerical method is an 

applicable and active method in finding solutions to 

fractional variational problems. 
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