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Abstract— Pattern synthesis from array antennas has 

become a commonly problem to address. Several standard and 

conventional techniques are available in the literature for the 

above purpose. Depending on the desired shape of the pattern, 

the methods are chosen for example, Taylor considered a 

continuous line sources and generated narrow beams with the 

desired sidelobe levels of equal height close to the main beam. 

Elliot has reported a method to generate unsymmetrical 

patterns. There are some applications where the restricted 

sidelobes in the mid of the sidelobe region are required. To 

generate such patterns, no work is available in the literature. In 

view, of this intensive investigations are carried out to generate 

such patterns. Accelerated Particle Swarm Optimization is 

applied to optimize the above patterns. The simulated patterns 

are presented for both small and large arrays. 

 
Index Terms— Linear arrays, Accelerated Particle Swarm 

Optimization, Pattern synthesis, Sidelobe Level (SLL) 

 

I. INTRODUCTION 

N antenna design pattern synthesis is one of the important 

problems to solve. Each applications starting from 

communications, radars, and radiation therapy systems, 

demand a specific type of radiation beam shape. For 

example, point to point communication requires pencil 

beams, ground mapping and airborne surveillance radars 

require cosecant patterns, search radars require flat and 

sector beams, IFF radars require sum and difference 

patterns, and Marine radars require asymmetric patterns. 

Some users require low first sidelobe levels. Some other 

requires low sidelobes in mid-sidelobe region. It is also often 

required to generate patterns with low sidelobes at the far 

end of the visible region. Interestingly some applications of 

communications require multiple beams with the equal 

height of the main beam [1]-[3]. 

To meet the above requirements and applications, several 
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methods are reported in the literature. Some of them are 

Dolph-Chebyshev method, standard distributions like 

Taylor’s method, Fourier Transform, Laplace Transform, 

Woodward method, Modified Taylor’s method, Bayliss 

method etc [4]-[7]. 

The above methods are applied to produce patterns of 

different shapes. Taylor reported [8] a method of generation 

of sum patterns from continuous line sources. It has been 

possible to maintain required number of sidelobes of equal 

height by the selection of n . This variable provides  1n  

number of equal sidelobes close to the main beam. The 

remaining sidelobes taper exponentially. Taylor’s modified 

method is used to produce symmetric sum patterns. These 

patterns are useful in marine radars to overcome roll and 

pitch due to turbulent sea. 

Sometime, perturbation techniques [9] are also used to 

synthesize a few typical shapes. It is difficult to use this 

technique to generate complex shaped patterns as it leads to 

convergence problems. 

However, no work is reported in open literature, to 

produce low sidelobes in the middle of sidelobe region. In 

view of this, an attempt is made to produce beam using 

Accelerated Particle Swarm Optimization. The patterns of 

present interest are of symmetric nature. Accelerated Particle 

Swarm Optimization algorithm is simultaneously applied to 

generate the desired pattern accurately. The data presented 

in this paper is entirely useful for the array designers. 

  

II. OPTIMIZATION TECHNIQUES 

Optimization of a specific parameter is very important in 

every field of human life. These include agricultural, product 

design, product sales, aircraft design, all industrial products, 

satellite design, radar and antenna design etc. Specific 

parameter is optimized within the given constraints, the 

number of constraints vary from parameter to parameter. 

Over the last several decades techniques and methods of 

optimization are reported in the open literature. Some of the 

useful techniques that are frequently used are Gradient, 

Random, Perturbation, Iterative, Simplex, Systematic 

Search, Genetic Algorithm, Simulated Annealing, Particle 

Swarm Optimization, Accelerated Particle Swarm 

Optimization, etc. 

The Gradient technique is a very quick local optimization 

technique and it provides local optima rather than global. It 

is often used in the applications, where the point is required. 

In order to calculate gradient, first step specifies numerical 

Synthesis of Radiation Patterns of Arrays with 

Defined Sidelobe Structure Using Accelerated 

Particle Swarm Optimization 

P. A. Sunny Dayal, G. S. N. Raju, S. Mishra and V. K. Varma Gottumukkala 

I 

Engineering Letters, 28:2, EL_28_2_33

Volume 28, Issue 2: June 2020

 
______________________________________________________________________________________ 



 

approximation of the gradient of the cost function due to the 

dynamic range of the variable to be optimized it lies between 

0 and 1. 

Perturbation technique is used when the initial value is 

well defined. It involves incremental values till the 

parameter is optimized. The time consumed for optimization 

depends on incremental value and convergence. 

In Iterative technique the time consumed depends on 

number of iterations required for the convergence of the 

parameter to be optimized. 

The Simplex algorithm provides robust local optimized 

solution if the initial optimization parameter values exist in 

the vicinity of the solution, it provides the best option. It has 

initial step between 0 and 1. It is possible to prescribe in this 

technique the tolerance for the coordinate (optimization 

variable) and tolerance for the cost function [10]. 

Genetic Algorithm (GA) is frequently used to optimize the 

parameters using Darwinian evolution principle [11]. It 

provides the survival of the fittest. It is one of the most 

robust universal algorithms for optimization. It takes care of 

many optimization variables and huge optimization spaces. 

It is not preferred local optimization due to its slow 

convergence properties. It consists of the following 

parameters, they are algorithm type (continuous or binary), 

number of bits, pareto genetic algorithm, population size, 

number of surviving, crossover probability, mutation 

probability, total number of generations, keep from previous 

generation, probability of keeping, end calculations, 

specified tolerance for function, total number of populations, 

swap entities, and probability of swapping. 

Simulated Annealing (SA) is used to optimize any 

quantity by simulating the annealing process [12]. It is also a 

robust universal algorithm, unlike Genetic Algorithm, which 

can be used for local optimization also. It has following 

parameters, they are starting temperature, cooling scheme, 

and number of iterations per generation. 

Particle Swarm Optimization (PSO) optimizes any 

quantity by simulating the movement of a bird flock, fish 

school. It is a very useful technique to address optimization 

problems with about 4 to 5 variables [13]. It has the 

following parameters, they are number of particles in the 

swarm, inertia, cognitive coefficient, social rate, maximal 

velocity, end calculations if swarm converged, and relative 

tolerance with absolute tolerance for the cost-function. 

Accelerated Particle Swarm Optimization (APSO) which 

was developed by Yang, et.al., [14]-[15]. In accelerated 

particle swarm optimization, it is possible to accelerate the 

convergence of the algorithm using the global best only 

[16]-[23]. Virtual mass is introduced to stabilize the motion 

of the particles, and hence convergence occurs quickly. 

III. ACCELERATED PARTICLE SWARM OPTIMIZATION APSO 

If 
i

x  is a position vector and 
i

v  is velocity vector of the 

thi  particle, new velocity vector is obtained from the 

following 
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Here, 
1
  and 

2
  are random vectors each entry takes the 

values between 0 and 1.  and   are acceleration 

constants, they are approximately   2. 

In order to extend particle swarm optimization algorithm, 

inertia function  ky  is used. Here k

i
v  can be replaced by 

  k

i
ky v . That is 
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Here,  1,0y . However typically y  varies between 0.5 

and 0.9. This is equivalent to introducing a virtual mass and 

stabilizes the motion of the particles to have fast 

convergence. 

The current global best, *
g  and the individual best, *

i
x  are 

used in particle swarm optimization. Individual best 

increases the diversity in the best solution, where the 

diversity is simulated with randomness. The individual best 

is used only when the parameter to be optimized is non-

linear and multimodal. 

However, in accelerated particle swarm optimization, the 

global best is only used. Keeping this fact in view, the 

velocity vector is generated from 

 k

in

k

i

k

i
xgvv  *1             (3) 

Here, 
n
  is taken from  1,0M . As a result, we have 

11   k

i
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i
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i
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Updating the location to improve the convergence, we 

have 

  *1 1 gxx  

n

k

i

k

i
            (5) 

In most of the application, 1.0  and 7.0~1.0 . It 

is evident that accelerated particle swarm is the simplest and 

it has only two parameters instead of having more 

parameters like in particle swarm optimization. The 

accelerated particle swarm optimization reduces the 

randomness when the iterations are taken place. Hence it is 

possible to use a monotonically decreasing function like 
te  

0
                  (6) 

Here   is in range 0 and 1. In the above expression k  

represents number of iterations. As   is the controlling 

parameter   can be written as k7.0 , where 

 
max

,0 kk  and 
max

k  is the maximum of iterations. 

IV. ARRAY DESIGN USING ACCELERATE PARTICLE SWARM 

OPTIMIZATION ALGORITHM 

Considering a linear array of N  isotropic antennas, 

antenna elements are equally spaced at distance d  apart 

from each other along the x  axis. The free space far-field 

pattern  uE  is given by. 

      dunknAuE
N

n

5.0cos2
1

 


         (7) 

Here, 

k  wave number


2  

 wave length ,  angle of observer 

sinu  d  element spacing 

 nA  excitation of the nth element on either side of 

the array, array being symmetric 
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Normalized radiation in dB is given by: 

 
 
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






max

10
log20

uE

uE
uE             (8) 

A typical uniform linear array is shown in Fig.1. 

 

 
Fig. 1. Geometry of Linear Array with equal spacing. 

 

In the design of array, amplitude distribution is considered 

to be optimized keeping phase and space parameters 

constant, for a specified sidelobe level,  nA  is computed 

for 
2


d  and excitation phase = 0. 

do
PSLLPSLLFunctionFitness      

for u  sidelobe región    (9) 

elsewheredB55

0.6u0.4dB40
d

PSLL3Case

elsewheredB50

0.6u0.4dB35
d

PSLL2Case

elsewheredB45

0.6u0.4dB30
d

PSLL1Case













 

Here,   


o

PSLL  Peak Sidelobe level obtained 

 
d

PSLL  Peak Sidelobe level desired 

 

V. RESULTS AND DISCUSSION 

Using the expression Eq. 3-9, amplitude distributions are 

computed for desired sidelobe ranging -30 to -55 dB. The 

results are presented in Tables I-III and  Figs. 2, 4, and 6. 

The excitation levels so obtained are introduced for the array 

element and their radiation patterns are computed and 

presented in Figs. 3,5,and 7. The elements are considered to 

be isotropic and the element pattern is uniform. The data 

obtained from the patterns, the resultant first sidelobe level, 

null to null beam width for different arrays are presented in 

Tables IV-VI. 

It is well known that uniform amplitude distribution for 

the arrays of discrete patterns with first sidelobe level -13.5 

dB. There is no control in the sidelobe structure. However, it 

is often required to reduce the sidelobes in the mid-region in 

EMI environment in order to meet this requirement arrays 

are designed using state of art algorithms. The results are 

very optimum and significant as the realized patterns will 

meet the specifications. Moreover the designed excitation 

levels are realistic for practical implementation. As the 

designed amplitude distribution is symmetric the number of 

sources required are also reduced.  
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Fig. 2. Element amplitude weights obtained by APSO method for N=20, 

SLL=-30/-45dB, SLL=-35/-50dB, and SLL=-40/-55dB. 
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Fig. 3. Optimized Sum Pattern by APSO method for N=20, SLL=-30/-

45dB, SLL=-35/-50dB, and SLL=-40/-55dB. 
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Fig. 4. Element amplitude weights obtained by APSO method for N=60, 

SLL=-30/-45dB, SLL=-35/-50dB, and SLL=-40/-55dB.   
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 Fig. 5. Optimized Sum Pattern by APSO method for N=60, SLL= -30/-

45dB, SLL=-35/-50dB, and SLL= -40/-55dB. 
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Fig. 6. Element amplitude weights obtained by APSO method for N=100, 

SLL= -30/-45dB, SLL=-35/-50dB, and SLL= -40/-55dB. 
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Fig. 7. Optimized Sum Pattern by APSO method for N=100, SLL=-30/-

45dB, SLL=-35/-50dB, and SLL=-40/-55dB. 

 

TABLE I 

OPTIMIZED ELEMENT AMPLITUDE WEIGHTS FOR  N = 20 

N 

Element 

Number 

A(n) for 

SLL=-30/-45dB 

using APSO 

A(n) for 

SLL=-35/-50dB 

using APSO 

A(n) for 

SLL=-40/-55dB 

using APSO 

1 & 20 0.2014 0.1173 0.0682 

2 & 19 0.2025 0.1496 0.1077 

3 & 18 0.4252 0.3115 0.2294 

4 & 17 0.4700 0.4061 0.3356 

5 & 16 0.5805 0.5251 0.4651 

6 & 15 0.7270 0.6646 0.6131 

7 & 14 0.8243 0.7794 0.7423 

8 & 13 0.9262 0.8766 0.8620 

9 & 12 0.9991 0.9776 0.9581 

10 & 11 1.0000 1.0000 1.0000 

 

TABLE II 

OPTIMIZED ELEMENT AMPLITUDE WEIGHTS FOR  N = 60 

n 

Element 

Number 

A(n) for 

SLL=-30/-45dB 

using APSO 

A(n) for 

SLL=-35/-50dB 

using APSO 

A(n) for 

SLL=-40/-55dB 

using APSO 

1 & 60 0.2601 0.1382 0.1421 

2 & 59 0.2819 0.1626 0.0895 

3 & 58 0.2880 0.1628 0.1806 

4 & 57 0.3963 0.2797 0.1541 

5 & 56 0.1551 0.1676 0.1447 

6 & 55 0.2756 0.2246 0.1878 

7 & 54 0.3092 0.2854 0.2495 

8 & 53 0.4037 0.2478 0.2632 

9 & 52 0.3914 0.3829 0.3185 

10 & 51 0.5704 0.4085 0.3481 

11 & 50 0.3841 0.4192 0.3633 

12 & 49 0.4666 0.4624 0.4288 

13 & 48 0.6600 0.5019 0.4889 

14 & 47 0.4922 0.5166 0.5040 

15 & 46 0.7304 0.5916 0.5594 

16 & 45 0.6389 0.6646 0.5951 

17 & 44 0.6601 0.6603 0.6449 

18 & 43 0.7194 0.7366 0.6886 

19 & 42 0.7902 0.7095 0.7356 

20 & 41 0.8149 0.8208 0.7669 

21 & 40 0.8576 0.7840 0.7899 

22 & 39 0.7992 0.9207 0.8518 

23 & 38 0.9665 0.8545 0.8718 

24 & 37 0.8154 0.9152 0.9061 

25 & 36 1.0000 0.9036 0.9203 

26 & 35 0.9663 0.9582 0.9482 

27 & 34 0.8915 0.9833 0.9667 

28 & 33 0.9873 0.9950 0.9784 

29 & 32 0.9484 1.0000 1.0000 

30 & 31 0.9829 0.9684 0.9844 

 

TABLE III 

OPTIMIZED ELEMENT AMPLITUDE WEIGHTS FOR  N = 100 

n 

Element 

Number 

A(n) for 

SLL=-30/-45dB 

using APSO 

A(n) for 

SLL=-35/-50dB 

using APSO 

A(n) for 

SLL=-40/-55dB 

using APSO 

1 & 100 0.1719 0.2124 0.1600 

2 & 99 0.3008 0.2021 0.1066 

3 & 98 0.3673 0.2485 0.1590 

4 & 97 0.3255 0.2407 0.1239 

5 & 96 0.2953 0.1114 0.1101 

6 & 95 0.2394 0.1527 0.1036 

7 & 94 0.1513 0.1668 0.1937 

8 & 93 0.2110 0.2762 0.1560 

9 & 92 0.2937 0.2279 0.1913 

10 & 91 0.2282 0.2738 0.1845 

11 & 90 0.3517 0.2499 0.2169 

12 & 89 0.3252 0.2380 0.2234 

13 & 88 0.3260 0.3481 0.3175 

14 & 87 0.3165 0.3556 0.2953 

15 & 86 0.3998 0.3505 0.2824 

16 & 85 0.3357 0.4140 0.3545 

17 & 84 0.3705 0.3522 0.3107 

18 & 83 0.4926 0.5049 0.3927 

19 & 82 0.4961 0.3940 0.4229 

20 & 81 0.4212 0.5171 0.4202 

21 & 80 0.5114 0.4942 0.4742 

22 & 79 0.3521 0.4802 0.4838 

23 & 78 0.5588 0.5802 0.5053 

24 & 77 0.5817 0.6163 0.5439 

25 & 76 0.6656 0.5817 0.5312 

26 & 75 0.5411 0.6211 0.5949 

27 & 74 0.5996 0.6637 0.6181 

28 & 73 0.5131 0.6674 0.6476 

29 & 72 0.7171 0.6927 0.6949 
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