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Synthesis of Radiation Patterns of Arrays with
Defined Sidelobe Structure Using Accelerated
Particle Swarm Optimization

P. A. Sunny Dayal, G. S. N. Raju, S. Mishra and V. K. Varma Gottumukkala

Abstract— Pattern synthesis from array antennas has
become a commonly problem to address. Several standard and
conventional techniques are available in the literature for the
above purpose. Depending on the desired shape of the pattern,
the methods are chosen for example, Taylor considered a
continuous line sources and generated narrow beams with the
desired sidelobe levels of equal height close to the main beam.
Elliot has reported a method to generate unsymmetrical
patterns. There are some applications where the restricted
sidelobes in the mid of the sidelobe region are required. To
generate such patterns, no work is available in the literature. In
view, of this intensive investigations are carried out to generate
such patterns. Accelerated Particle Swarm Optimization is
applied to optimize the above patterns. The simulated patterns
are presented for both small and large arrays.

Index Terms— Linear arrays, Accelerated Particle Swarm
Optimization, Pattern synthesis, Sidelobe Level (SLL)

. INTRODUCTION

N antenna design pattern synthesis is one of the important

problems to solve. Each applications starting from
communications, radars, and radiation therapy systems,
demand a specific type of radiation beam shape. For
example, point to point communication requires pencil
beams, ground mapping and airborne surveillance radars
require cosecant patterns, search radars require flat and
sector beams, IFF radars require sum and difference
patterns, and Marine radars require asymmetric patterns.
Some users require low first sidelobe levels. Some other
requires low sidelobes in mid-sidelobe region. It is also often
required to generate patterns with low sidelobes at the far
end of the visible region. Interestingly some applications of
communications require multiple beams with the equal
height of the main beam [1]-[3].

To meet the above requirements and applications, several
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methods are reported in the literature. Some of them are
Dolph-Chebyshev method, standard distributions like
Taylor’s method, Fourier Transform, Laplace Transform,
Woodward method, Modified Taylor’s method, Bayliss
method etc [4]-[7].

The above methods are applied to produce patterns of
different shapes. Taylor reported [8] a method of generation
of sum patterns from continuous line sources. It has been
possible to maintain required number of sidelobes of equal
height by the selection of i . This variable provides (i —1)

number of equal sidelobes close to the main beam. The
remaining sidelobes taper exponentially. Taylor’s modified
method is used to produce symmetric sum patterns. These
patterns are useful in marine radars to overcome roll and
pitch due to turbulent sea.

Sometime, perturbation techniques [9] are also used to
synthesize a few typical shapes. It is difficult to use this
technique to generate complex shaped patterns as it leads to
convergence problems.

However, no work is reported in open literature, to
produce low sidelobes in the middle of sidelobe region. In
view of this, an attempt is made to produce beam using
Accelerated Particle Swarm Optimization. The patterns of
present interest are of symmetric nature. Accelerated Particle
Swarm Optimization algorithm is simultaneously applied to
generate the desired pattern accurately. The data presented
in this paper is entirely useful for the array designers.

Il. OPTIMIZATION TECHNIQUES

Optimization of a specific parameter is very important in
every field of human life. These include agricultural, product
design, product sales, aircraft design, all industrial products,
satellite design, radar and antenna design etc. Specific
parameter is optimized within the given constraints, the
number of constraints vary from parameter to parameter.
Over the last several decades techniques and methods of
optimization are reported in the open literature. Some of the
useful techniques that are frequently used are Gradient,
Random, Perturbation, Iterative, Simplex, Systematic
Search, Genetic Algorithm, Simulated Annealing, Particle
Swarm  Optimization, Accelerated Particle  Swarm
Optimization, etc.

The Gradient technique is a very quick local optimization
technique and it provides local optima rather than global. It
is often used in the applications, where the point is required.
In order to calculate gradient, first step specifies numerical
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approximation of the gradient of the cost function due to the
dynamic range of the variable to be optimized it lies between
0and 1.

Perturbation technique is used when the initial value is
well defined. It involves incremental values till the
parameter is optimized. The time consumed for optimization
depends on incremental value and convergence.

In Iterative technique the time consumed depends on
number of iterations required for the convergence of the
parameter to be optimized.

The Simplex algorithm provides robust local optimized
solution if the initial optimization parameter values exist in
the vicinity of the solution, it provides the best option. It has
initial step between 0 and 1. It is possible to prescribe in this
technique the tolerance for the coordinate (optimization
variable) and tolerance for the cost function [10].

Genetic Algorithm (GA) is frequently used to optimize the
parameters using Darwinian evolution principle [11]. It
provides the survival of the fittest. It is one of the most
robust universal algorithms for optimization. It takes care of
many optimization variables and huge optimization spaces.
It is not preferred local optimization due to its slow
convergence properties. It consists of the following
parameters, they are algorithm type (continuous or binary),
number of bits, pareto genetic algorithm, population size,
number of surviving, crossover probability, mutation
probability, total number of generations, keep from previous
generation, probability of keeping, end calculations,
specified tolerance for function, total number of populations,
swap entities, and probability of swapping.

Simulated Annealing (SA) is used to optimize any
quantity by simulating the annealing process [12]. It is also a
robust universal algorithm, unlike Genetic Algorithm, which
can be used for local optimization also. It has following
parameters, they are starting temperature, cooling scheme,
and number of iterations per generation.

Particle Swarm Optimization (PSO) optimizes any
quantity by simulating the movement of a bird flock, fish
school. It is a very useful technique to address optimization
problems with about 4 to 5 variables [13]. It has the
following parameters, they are number of particles in the
swarm, inertia, cognitive coefficient, social rate, maximal
velocity, end calculations if swarm converged, and relative
tolerance with absolute tolerance for the cost-function.

Accelerated Particle Swarm Optimization (APSO) which
was developed by Yang, etal., [14]-[15]. In accelerated
particle swarm optimization, it is possible to accelerate the
convergence of the algorithm using the global best only
[16]-[23]. Virtual mass is introduced to stabilize the motion
of the particles, and hence convergence occurs quickly.

I1l.  ACCELERATED PARTICLE SWARM OPTIMIZATION APSO
If x, is a position vector and v, is velocity vector of the

th

i" particle, new velocity vector is obtained from the
following

VIt =Vt ag (g - X+ e (X -x)) (2)
Here, ¢ and &, are random vectors each entry takes the

values between 0 and 1. «and S are acceleration

constants, they are approximately ~ 2.
In order to extend particle swarm optimization algorithm,

inertia function y(k) is used. Here v! can be replaced by
y(k)v. That is

k+1

VR = W ag (97— xE )+ Be, (X —x) )

Here, y (0,1). However typically y varies between 0.5
and 0.9. This is equivalent to introducing a virtual mass and
stabilizes the motion of the particles to have fast
convergence.

The current global best, g” and the individual best, x; are

used in particle swarm optimization. Individual best
increases the diversity in the best solution, where the
diversity is simulated with randomness. The individual best
is used only when the parameter to be optimized is non-
linear and multimodal.

However, in accelerated particle swarm optimization, the
global best is only used. Keeping this fact in view, the
velocity vector is generated from

V= Ve v ag, + BgT-x) (3)
Here, &, is taken from M(0,1). As a result, we have
X=X+ vt (4)

Updating the location to improve the convergence, we
have

Xt =1 X +as, + fy° (5)

In most of the application, ¢ =0.1 and #=0.1~0.7. It
is evident that accelerated particle swarm is the simplest and
it has only two parameters instead of having more
parameters like in particle swarm optimization. The
accelerated particle swarm optimization reduces the
randomness when the iterations are taken place. Hence it is
possible to use a monotonically decreasing function like

a=ae™ (6)

Here y is in range 0 and 1. In the above expression k
represents number of iterations. As y is the controlling

parameter o« can be written as o =0.7%,
kelo, k,,. ] and k,, is the maximum of iterations.

where

IV. ARRAY DESIGN USING ACCELERATE PARTICLE SWARM
OPTIMIZATION ALGORITHM

Considering a linear array of N isotropic antennas,
antenna elements are equally spaced at distance d apart
from each other along the x axis. The free space far-field
pattern E(u) is given by.

N
E(u)=2>" An)cosk(n—0.5)du] ©)
n=1
Here,
- -2
k = wave number = %
A =wave length, @ =angle of observer
u=sind d= element spacing
A(n)=excitation of the nth element on either side of
the array, array being symmetric
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Normalized radiation in dB is given by:

E(u)=20 |ogl{%} ©®)

A typical uniform linear array is shown in Fig.1.

Broadside
A
Observer
Isotropic
Elements 0
m ® o - —@>X
N 2 N

1 1 2
[ d>le dle 4]
Fig. 1. Geometry of Linear Array with equal spacing.

In the design of array, amplitude distribution is considered
to be optimized keeping phase and space parameters
constant, for a specified sidelobe level, A(n) is computed

for d = 4 and excitation phase = 0.

Fitness Function = PSLL, — PSLL,
for u e sidelobe region ~ (9)

Casel PSLLy =-30dB 0.4<u<0.6
=-45dB elsewhere
Case2 PSLLy =-35dB 0.4<u<0.6
=-50dB elsewhere
Case 3 PSLLd =-40dB 0.4<u<0.6
=-55dB elsewhere
Here,

PSLL, = Peak Sidelobe level obtained
PSLL, = Peak Sidelobe level desired

V. RESULTS AND DISCUSSION

Using the expression Eq. 3-9, amplitude distributions are
computed for desired sidelobe ranging -30 to -55 dB. The
results are presented in Tables I-1ll and Figs. 2, 4, and 6.
The excitation levels so obtained are introduced for the array
element and their radiation patterns are computed and
presented in Figs. 3,5,and 7. The elements are considered to
be isotropic and the element pattern is uniform. The data
obtained from the patterns, the resultant first sidelobe level,
null to null beam width for different arrays are presented in
Tables IV-VI.

It is well known that uniform amplitude distribution for
the arrays of discrete patterns with first sidelobe level -13.5
dB. There is no control in the sidelobe structure. However, it
is often required to reduce the sidelobes in the mid-region in
EMI environment in order to meet this requirement arrays
are designed using state of art algorithms. The results are
very optimum and significant as the realized patterns will
meet the specifications. Moreover the designed excitation

levels are realistic for practical implementation. As the

designed amplitude distribution is symmetric the number of
sources required are also reduced.
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Fig. 2. Element amplitude weights obtained by APSO method for N=20,
SLL=-30/-45dB, SLL=-35/-50dB, and SLL=-40/-55dB.
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Fig. 3. Optimized Sum Pattern by APSO method for N=20, SLL=-30/-
45dB, SLL=-35/-50dB, and SLL=-40/-55dB.
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Fig. 4. Element amplitude weights obtained by APSO method for N=60,
SLL=-30/-45dB, SLL=-35/-50dB, and SLL=-40/-55dB.
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5&16 0.5805 0.5251 0.4651
or 6&15 0.7270 0.6646 0.6131
----------- SLL=-30/-45 dB 7&14 0.8243 0.7794 0.7423
siesoasas b o SLL=-35/-50 dB 8&13 0.9262 0.8766 0.8620
-Aor SLL=-40/-55 dB 9&12 0.9991 0.9776 0.9581
SLL=-35/-50 dB 10 & 11 1.0000 1.0000 1.0000
@ 20 SL/L:—40/-55 dB TABLE Il
-g OPTIMIZED ELEMENT AMPLITUDE WEIGHTS FOR N = 60
= 30 n A(n) for A(n) for A(n) for
o Element SLL=-30/-45dB  SLL=-35/-50dB  SLL=-40/-55dB
PR Number using APSO using APSO using APSO
il 1 & 60 0.2601 0.1382 0.1421
{|h 2&59 0.2819 0.1626 0.0895
so [ (1% 3&58 0.2880 0.1628 0.1806
' 4 &57 0.3963 0.2797 0.1541
| HH iy : Tl T 5 & 56 0.1551 0.1676 0.1447
0,08 06 04 02 0 02 04 06 08 1 6 & 55 0.2756 0.2246 0.1878
u 7&54 0.3092 0.2854 0.2495
Fig. 5. Optimized Sum Pattern by APSO method for N=60, SLL= -30/- 8&53 0.4037 0.2478 0.2632
45dB, SLL=-35/-50dB, and SLL= -40/-55dB. 1908(; 5521 8-23(1)3 8-2352 8-213?
11 & 50 0.3841 0.4192 0.3633
. 12 & 49 0.4666 0.4624 0.4288
SLL=-30/-45 dB — > AN © SLL=-30/-45dB 13 & 48 0.6600 0.5019 0.4889
0.9F  sL1=-35/-50 dB A S 14847 0.4922 05166 0.5040
£ 0s » 15 & 46 0.7304 0.5916 0.5594
g™ 16 & 45 0.6389 0.6646 0.5951
2 o7 17 & 44 0.6601 0.6603 0.6449
2 18 & 43 0.7194 0.7366 0.6886
g 08 19 & 42 0.7902 0.7095 0.7356
£ o5 20 & 41 0.8149 0.8208 0.7669
£ 21 &40 0.8576 0.7840 0.7899
% 0.4 22&39 0.7992 0.9207 0.8518
X 23&38 0.9665 0.8545 0.8718
g 03 24 & 37 0.8154 0.9152 0.9061
S o2 25&36 1.0000 0.9036 0.9203
o~ 26 &35 0.9663 0.9582 0.9482
0.1 27&34 0.8915 0.9833 0.9667
o 28 &33 0.9873 0.9950 0.9784
0 10 20 30 40 50 60 70 80 90 100 29 & 32 0.9484 1.0000 1.0000
Element Number 30 & 31 0.9829 0.9684 0.9844
Fig. 6. Element amplitude weights obtained by APSO method for N=100,
SLL= -30/-450dB, SLL=-35/-50dB, and SLL= -40/-550B. TasLE NI
OPTIMIZED ELEMENT AMPLITUDE WEIGHTS FOR N =100
n A(n) for A(n) for A(n) for
or n ___________ oLl 5075 Element SLL=-30/-45dB  SLL=-35/-50dB  SLL=-40/-55dB
sl=30-45a8 BV s SLL=-35/-50 dB Number using APSO using APSO using APSO
2ol SLLo40/55 dB 1 & 100 0.1719 0.2124 0.1600
2 &99 0.3008 0.2021 0.1066
SLL-.35/.50 dB 38098 0.3673 0.2485 0.1590
20t ) 4897 0.3255 0.2407 0.1239
o L4055 dB 5& 96 0.2953 0.1114 0.1101
)= \ 6 & 95 0.2394 0.1527 0.1036
= 7&94 0.1513 0.1668 0.1937
o 8 &93 0.2110 0.2762 0.1560
9&92 0.2937 0.2279 0.1913
10 & 91 0.2282 0.2738 0.1845
11 & 90 0.3517 0.2499 0.2169
12 & 89 0.3252 0.2380 0.2234
13 & 88 0.3260 0.3481 0.3175
i 14 & 87 0.3165 0.3556 0.2953
" o8 06 04 02 o0 02 04 06 08 1 15&86 0.3998 0.3505 0.2824
u 16 & 85 0.3357 0.4140 0.3545
Fig. 7. Optimized Sum Pattern by APSO method for N=100, SLL=-30/- 1/ &84 03705 0-8522 03107
4548, SLL=-35/-50dB, and SLL=-40/-550B. & 02 PP oo
OPTIMIZED ELEMENT AI\-/IrPALBI'II:LEJI;E WEIGHTSFOR N =20 32 ggé 8212_1421 82;1; 83§2§
— 22&79 0.3521 0.4802 0.4838
N A(n) for A(n) for A(n) for 23&78 0.5588 0.5802 0.5053
Element SLL=-30/-45dB  SLL=-35/-50dB  SLL=-40/-55dB 24877 0.5817 0.6163 0.5439
Number using APSO using APSO using APSO 25 & 76 0.6656 0.5817 0.5312
1&20 0.2014 0.1173 0.0682 26 &75 0.5411 0.6211 0.5949
2&19 0.2025 0.1496 0.1077 27&74 0.5996 0.6637 0.6181
3&18 0.4252 0.3115 0.2294 28&73 05131 0.6674 0.6476
4&17 0.4700 0.4061 0.3356 29& 72 0.7171 0.6927 0.6949
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30 & 71 0.6057 0.7291 0.6740
31&70 0.7921 0.7225 0.7135
32 & 69 0.6462 0.7695 0.7295
33 & 68 0.5497 0.7897 0.7656
34 & 67 0.8044 0.8338 0.7921
35 & 66 0.7368 0.7966 0.8194
36 & 65 0.7341 0.8893 0.8349
37 & 64 0.8228 0.8246 0.8553
38 & 63 0.7468 0.8792 0.8809
39 & 62 0.6157 0.8935 0.8612
40 & 61 1.0000 0.9023 0.9226
41 & 60 0.6590 0.9320 0.8885
42 & 59 0.9097 0.9563 0.9557
43 & 58 0.8010 0.9120 0.9723
44 & 57 0.7808 0.9883 0.9419
45 & 56 0.8372 0.9533 0.9966
46 & 55 0.8221 0.9679 0.9408
47 & 54 0.9543 0.9842 0.9870
48 & 53 0.7176 0.9623 0.9857
49 & 52 0.9448 1.0000 0.9951
50 & 51 0.1719 0.2124 0.1600
TABLE IV

FIRST NULL BEAMWIDTH FOR OPTIMIZED SUM PATTERN USING
ACCELERATED PARTICLE SWARM OPTIMIZATION (APSO)

N Number of SLL=-30/-45dB SLL=-35/-50dB SLL=-40/-55dB

Elements using APSO using APSO using APSO
20 17.82° 19.89° 22.36°
60 5.71° 6.38° 6.88°
100 3.36° 3.78° 4.17°
TABLE V

FIRST SIDE LOBE LEVEL FOR OPTIMIZED SUM PATTERN USING
ACCELERATED PARTICLE SWARM OPTIMIZATION (APSO)

N Number of  SLL=-30/-45dB SLL=-35/-50dB SLL=-40/-55dB
Elements using APSO using APSO using APSO
20 -30.00 dB -35.00 dB -40.93 dB
60 -30.69 dB -35.23 dB -40.00 dB
100 -30.16 dB -35.82 dB -40.88 dB
TABLE VI

INNER CLOSED SIDE LOBE LEVEL FOR OPTIMIZED SUM PATTERN USING
ACCELERATED PARTICLE SWARM OPTIMIZATION (APSO)

N Number of SLL=-30/-45dB SLL=-35/-50dB  SLL=-40/-55dB

Elements using APSO using APSO using APSO
20 -45.00 dB -50.00 dB -55.10 dB
60 -45.93 dB -50.18 dB -55.01 dB
100 -45.00 dB -50.88 dB -55.17 dB

VI. CONCLUSION

Accelerated Particle Swarm Optimization algorithm is
found to be very useful for the optimization of desired
patterns. The convergence has become simple compared to
Particle Swarm Optimization. From the amplitude
distribution presented, it is found that it exhibits a gradual
taper from the centre to the end with symmetric behavior. As
the number of elements is increased in the array the
beamwidth is found to be decreased without much change in
sidelobe levels. It has been possible with the present work to
synthesis the required patterns using Accelerated Particle
Swarm Optimization successfully.
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