
 

 

Abstract—Computer technology provides new possibilities 

for handling the many-objective optimal power flow (MOOPF) 

problems with high-dimension and non-differentiability. As one 

of typical intelligent algorithms, the novel multi-objective 

artificial fish swarm algorithm (NMAFSA) is proposed to solve 

the MOOPF problems and realize the economical operation of 

power systems. The NMAFSA algorithm, which combines with 

optimal solution guidance (OSG) principle and non-inferior 

retention (NIR) mechanism, is effective to reduce the fuel cost, 

emission and power loss. Compared with the representative 

many-objective particle swarm optimization (MPSO) and 

non-dominated sorting genetic algorithm-Ⅱ (NSGA-Ⅱ), the 

superiority and adaptability of presented NMAFSA algorithm 

are validated. Six simulation trials are carried out on MATLAB 

software, including the dual-objective and triple-objective 

optimizations on three different scale power systems. Detailed 

results demonstrate that the suggested NMAFSA algorithm with 

stable-operation and fast-convergence has great potential to deal 

with the MOOPF problems more efficiently. Furthermore, the 

generation distance (GD) index also quantitatively proves that 

the NMAFSA algorithm can obtain the well-distributed Pareto 

front (PF). 

 
Index Terms—Artificial fish swarm algorithm, Optimal 

power flow, Computer technology, Generation distance 

 

I. INTRODUCTION 

HE reasonable adjustment of controllable variables can 

optimize the running state of power system, which is 

helpful to achieve the operational safety and economical 

efficiency. As an essential method, the optimal power flow 

(OPF) is widely used in the economic dispatch of power 

system [1-3]. Besides, the many-objective OPF (MOOPF) 

problems, which consider the power loss, fuel cost and 

exhaust emission simultaneously, can evaluate the operation 

state of electric system more comprehensively. 

However, traditional methods are unsuitable for solving 

MOOPF problems due to the non-convexity and non-linearity 

 
Manuscript received November 28, 2019; revised April 3, 2020. This 

work was supported the National Natural Science Foundation Project of 

China (No.61703066), Natural Science Foundation Project of Chongqing 

(No.cstc2018jcyjAX0536). 

Gang Guo is with the School of Information Technology, Luoyang 

Normal University, Luoyang, Henan 471934, China (e-mail: guogangchina 

@sina.cn). 

Jie Qian is with the Key Laboratory of Complex Systems and Bionic 

Control, Chongqing University of Posts and Telecommunications, 

Chongqing 400065, China (corresponding author, Tel: 13618344186; 

e-mail: qianjie@126.com). 

Shuaiyong Li is with the Key Laboratory of Industrial Internet of Things 

& Networked Control, Ministry of Education, Chongqing University of 

Posts and Telecommunications, Chongqing 400065, China (e-mail: 

lishuaiyong@cqupt.edu.cn). 

characteristics. Intelligent algorithm, a widely-applied 

computer technology, plays an important role in handling the 

high-dimensional MOOPF problems. For example, the 

efficient meta-heuristic algorithm [4], the quasi-oppositional 

cuckoo search algorithm [5] and the improved strength Pareto 

evolutionary algorithm [6] have successfully solved the 

MOOPF problems. 

Artificial fish swarm algorithm (AFSA) with parallel 

processing capabilities can handle various practical problems 

such as the industrial problems [7] and the well trajectory 

optimization [8]. In this paper, taking the AFSA algorithm as 

main body and integrating the classification processing 

strategy to generate the proposed novel multi-objective AFSA 

(NMAFSA) algorithm. To escape from the local optimal 

solution and improve the optimization efficiency, the optimal 

solution guidance (OSG) principle and non-inferior retention 

(NIR) mechanism are integrated into the presented NMAFSA 

algorithm. 

Based on MATLAB software, six MOOPF trials which aim 

to reduce the fuel cost, emission and power loss are solved by 

the suggested NMAFSA algorithm. In detail, the significant 

advantages of NMAFSA algorithm in dealing with MOOPF 

problems are powerfully validated by comparing with the 

many-objective particle swarm optimization (MPSO) which 

is one of the most popular algorithms and the non-dominated 

sorting genetic algorithm-Ⅱ (NSGA-Ⅱ) which is usually 

adopted as the performance evaluation benchmark. 

II. MOOPF MODEL 

The model of security-constrained MOOPF problem 

shown as (1) ~ (3) is formed by the optimization goals (OGs), 

equality restrictions (ERs) and inequality ones (IRs). 

 
1( , , , , )OG i WF OG OG OG   (1) 

 ( ) 0,   1,2, ,kER k h    (2) 

 ( ) 0,    1,2, ,jIR j g    (3) 

where OGi is the ith goal and W is the number of 

simultaneously-optimized objectives. h and g, respectively, 

indicate the numbers of ERs and IRs. 

A. OGs 

The exhaust emissions (FEM), quadratic fuel cost (FBF) and 

active power loss (FAP) are studied in this paper. Besides, the 

fuel cost with valve-point effect (FFV) is also considered to 

further evaluate the performance of NMAFSA algorithm. 
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► FFV ($/h) 
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where NG and NL are the numbers of generators and 

transmission lines. The other mentioned symbols can refer to 

references [9-11]. 

B. ERs 

The active power balance equation (8) and the reactive one 

(9) constitute two ERs of MOOPF problems [9, 12-14]. 
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where N and NPQ indicate the amount of system-nodes (except 

the slack one) and PQ nodes. 

The ERs are used as the termination condition of Newton 

Raphson method. The acquisition of power flow solutions that 

do not violate any constraints naturally indicates that the ERs 

are satisfied. 

C. IRs 

Macroscopically, IRs can be divided into the constraints on 

independent variables and dependent ones. 

1) IRs on Independent Variables 

The independent variables include: 1) generator node 

voltage VG, 2) generator active power output at PV node PG, 3) 

tap ratios of transformer T, 4) reactive power injection QC [9, 

14, 15]. The IRs on VG, PG, T and QC are shown as (10) ~ (13). 

 min max ,Gi Gi Gi GV V V i N     (10) 

 min max , 1Gi Gi Gi GP P P i N i   （ ）  (11) 

 min max ,  i i i TT T T i N     (12) 

 min max ,  Ci Ci Ci CQ Q Q i N     (13) 

where NT and NC are the numbers of transformers and 

compensators. 

2) IRs on Dependent Variables 

The dependent variables include: 1) load node voltage VL, 

2) generator active power at slack node PG1, 3) generator 

reactive power QG, 4) apparent power of transmission line S 

[9, 14]. The IRs on VL, PG1, QG and S are shown as (14) ~ (17). 

 
min max ,  Li Li Li PQV V V i N     (14) 

 min max
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 min max ,  Gi Gi Gi GQ Q Q i N     (16) 

 max 0,  l l LS S l N     (17) 

D. IRs Processing 

The practicable power flow solutions obtained by 

NMAFSA algorithm should meet all system restrictions. 

Therefore, adopting the appropriate treatment of IRs is very 

important to solve the MOOPF problems. In this paper, the 

elite dominant strategy with violation-consideration (EDSV) 

is proposed to pick out high-quality Pareto optimal set (POS). 

Firstly, the dominant relationship of two different solutions 

is clarified based on the IR violation (IRvio) and OG values. It 

can be determined that the S1 solution is better than S2 whether 

condition (18) or (19) is satisfied. 
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Besides the Rank index which can be determined by (18) and 

(19), the crowding distance (Cdis) index is also used to judge 

the quality of two solutions with the same Rank index. The Cdis 

is defined as formula (20) [9, 16-18]. 
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where N is the size of POS. The OG
max 

j  and OG
min 

j  indicate the 

largest and smallest values of the jth goal. 

The ranking strategy in this paper is inspired by the 

non-inferior ranking method [16, 19, 20]. When determining 

the final POS set, the solutions with smaller Rank are preferred, 

followed by the solutions with larger Cdis. The selection 

principle can be summed up as formulas (21) and (22). 
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Based on Rank and Cdis indicators, the flowchart of seeking 

satisfactory POS by proposed EDSV strategy is summarized 

as Fig. 1. Worthy of note is that, the candidate solution 

(CANS) set consists of the N solutions from the previous 

iteration and the N randomly-generated solutions. 
 

Start

Delete the duplicate solutions in CANS  set. 
For now, the size of CANS set is Ncan (N≤Ncan≤2N).

Based on Formulas (18) and (19) , Rank=1 is assigned to these elitist 
solutions which are not dominated by the rest solutions of CANS set.

Ignore these solutions with hierarchy Rank value and determine the current 
non-inferior solutions (Rank=Rank+1) according to the same dominant rule.

Ncan solutions of  CANS set have their 
corresponding Rank values

Calculate Cdis values of Ncan solutions in  CANS  set according to 
formula (20).

Determine N solutions of final POS set from Ncan solutions according to 
formulas (21) and (22).

End

Yes

No

 
Fig.1 Flowchart of seeking POS set 
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III. NMAFSA ALGORITHM 

The preponderance of NMAFSA algorithm on MOOPF 

problems is verified by taking the MPSO and NSGA-Ⅱ as two 

comparing algorithms. The applications of MPSO method on 

MOOPF problems can refer to literatures [9, 11] while the 

NSGA-Ⅱ method can refer to literatures [21, 22]. 

The artificial fish swarm (AFSA) algorithm has good 

randomness, which has been widely concerned by many 

scholars [23-25]. However, when solving the MOOPF 

problems with non-convex feature, the basic AFSA algorithm 

with poor-performance is easy to be trapped by local 

optimums. Therefore, the OSG guidance and NIR retention 

strategies are proposed to generate the novel NMAFSA 

algorithm with better performance. 

A. OSG Guidance Strategy 

Different from the traditional AFSA algorithm, the 

foraging, clustering and random behavior of the proposed 

NMAFSA algorithm are based on the non-inferior layering 

mechanism. In this paper, the non-inferior layering 

mechanism defines the top ζ1% of POS set as the superior fish 

population and the bottom ζ2% as the inferior one. 

Specifically, the superior fish population engaged in foraging 

behavior while and the inferior population engaged in 

clustering behavior. The rest fish population adopts the 

randomly-updated way. Besides, both random and clustering 

behaviors are modified by OSG guidance strategy. 

► Foraging 

 

1

1

* ( ( ) ( ))
( ) ( )

|| ( ) ( ) ||

1, 2, , %*

step Pos j Pos i
YPos i Pos i

Pos j Pos i

i N

 




 





 (23) 

► Random behavior 
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► Clustering 
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where Pos(i) represents the position of the ith fish, that is, the 

control variable set of the ith power flow solution. The δstep 

indicates the moving step parameter while ω (ω∈(0,1)) is the 

weight coefficient of random behavior. The β1 and β2 (β1, β2

∈ (0,1)) are two random-number arrays while Posbest 

represents the position of current optimal fish. 

The clustering and random behaviors based on OSG 

guidance mechanism can accelerate the speed of fish 

population approaching the best solution and improve the 

efficiency of NMAFSA algorithm. 

B. NIR Retention Strategy 

After each location-updating based on foraging, random 

and clustering operations, the presented NIR retention 

strategy is used to verify the validity of current update. The 

proposed NMAFSA algorithm only keeps the better position 

which is superior to the current one. Otherwise, the current 

position remains unchanged. The NIR strategy is summarized 

as formula (26) and the dominant relationship of two fish 

individuals is clarified according to formulas (18) and (19). 
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C. NMAFSA Algorithm on MOOPF Problem 

The NMAFSA algorithm, which extends single-objective 

optimization to multi-objective one, has great potential to 

solve the MOOPF problems. Table Ⅰ shows the main steps for 

handling MOOPF problems by the suggested NMAFSA 

algorithm. 

IV. PARAMETERS AND SYSTEMS 

The effects of maximum iteration number (itemax) and 

different population size on the performance of NMAFSA 

algorithm are studied. This section also gives the detailed 

parameters of NMAFSA algorithm and three involved 

standard systems. 

A. Parameters 

The simulation case which simultaneously minimizes FEM 

and FBF on IEEE 30-bus system is used to determine a feasible 

parameter-combination set. Fig. 2 gives the Pareto fronts (PFs) 

obtained by NMAFSA method with different itemax, which 

states that itemax=300 and 400 find the uniformly-distributed 

PFs. Due to their similar optimization performance, itemax 

=300 is adopted in these cases on IEEE 30-bus system 

considering the reduction of running time.  

 
TABLE I 

MAIN STEPS OF NMAFSA METHOD ON MOOPF PROBLEMS 

input: the parameters of NMAFSA algorithm and the initial CANS set 

begin 

ite=1 

while ite＜itemax 

Perform the power flow calculation on the initial fish population and 

determine the current POS according to Fig. 1. 

for i=1,2,…,0.01*ζ1*N 

Update the position of superior population based on formula (23); 

Retain the non-inferior individuals according to NIR strategy; 

end for 

for i=0.01*ζ1*N+1, 0.01*ζ1*N+2,…,(1-ζ2%)*N 

Perform the random update operation based on formula (24); 

Retain the non-inferior individuals according to NIR strategy; 

end for 

for i=(1-ζ2%)*N+1, (1-ζ2%)*N+2,…,N 

Update the position of inferior fish population based on formula (25); 

Retain the non-inferior individuals according to NIR strategy; 

end for 

Determine the current POS; 

ite=ite+1; 

Generate new CANS set; 

end while 

end 

output: the ultimate POS 
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Besides, Fig. 3 gives the PFs determined by NMAFSA 

method and it clearly indicates that NMAFSA algorithm can 

obtain the satisfactory PFs with different population size. 

The other parameters of NMAFSA method are set as: 

ζ1=ζ2=20, N=50, δstep=0.3, itemax=300 (IEEE 30-bus system), 

itemax=500 (IEEE 57-bus and 118-bus systems). In addition, 

each objective-combination trial is carried out 30 times 

independently. 

B. Systems 

Three power systems with different scales are used to 

validate the applicability of MPSO, NSGA-Ⅱ and NMAFSA 

algorithms in dealing with the dual-objective and tri-objective 

MOOPF problems. 

The structures of IEEE 30-bus and 57-bus systems are 

given in literatures [9, 18, 26]. The IEEE 30-bus system 

includes 24-dimensional control variables and IEEE 57-bus 

system includes 33-dimensional ones. The transformer taps 

are both limited within [0.9 1.1] p.u.. The shunt capacitors of 

30-bus and 57-bus system, respectively, are limited within [0 

0.05] p.u and [0 0.3] p.u.. The emission coefficients and other 

details are clarified in [6, 9, 27]. 

The MOOPF problem on complex IEEE 118-bus system 

with 128-dimensional control variables is also discussed to 

comprehensively evaluate the performance of NMAFSA 

algorithm. The structure and details can be found in [11, 18]. 
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Fig.2 PFs with different itemax 
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Fig.3 PFs with different population-size 

V. CASES AND RESULTS 

Six simulation cases on three different-scale systems are 

studied in this paper. 

A. Trials on IEEE 30-bus System 

Two dual-goal and one triple-goal MOOPF cases are 

performed on the standard 30-bus system. In detail, Exp 1 

aims to optimize FBF and FEM, Exp 2 aims to optimize FFV and 

FEM, Exp 3 aims to optimize FBF, FEM and FAP concurrently. 

1) Exp 1 

Fig. 4 shows the PFs obtained by NMAFSA and two 

comparison algorithms while TABLE Ⅱ gives the details of 

best compromise solutions (BCSs). Fig.4 clearly indicates 

that MPSO method finds the worst PF while NMAFSA 

algorithm achieves the more advantageous one. The BCS of 

presented NMAFSA algorithm is composed of 0.2351 of FEM 

and 830.79 of FBF, which dominates the ones of MPSO and 

NSGA-Ⅱ methods. TABLE Ⅱ also gives the comparative 

result of other literature and it shows that the BCS of 

NMAFSA is better than the one of NHBA algorithm which 

includes 0.2375 of FEM and 832.65 of FBF. 

2) Exp 2 

Fig. 5 and TABLE Ⅲ, respectively, give the PFs found by 

three mentioned algorithms and the details of obtained BCSs. 

Fig. 5 states that NMAFSA algorithm obtains the superior PF 

with better distribution although three methods have similar 

solution-diversity. TABLE Ⅲ shows that the BCS of 

NMAFSA algorithm which consists of 0.2579 of FEM and 

855.83 of FFV is more preferable than the ones of MOPSO and 

NSGA-Ⅱ approaches. 

 
TABLE Ⅱ 

BCS SOLUTIONS OF EXP 1 

independent 

variables 
NSGA-Ⅱ MPSO NMAFSA NHBA [11] 

PG2(MW) 59.9725 61.0325 55.3090 58.1990 

PG5(MW) 22.9205 26.1819 26.9629 25.6741 

PG8(MW) 34.5538 34.9571 34.1204 27.0218 

PG11(MW) 28.1903 25.5818 26.1740 26.3626 

PG13(MW) 24.7072 24.3085 27.6256 31.3704 

VG1(p.u.) 1.0054 1.0875 1.0992 1.1000 

VG2(p.u.) 0.9930 1.0786 1.0910 1.0890 

VG5(p.u.) 0.9738 1.0560 1.0578 1.0537 

VG8(p.u.) 0.9973 1.0621 1.0762 1.0639 

VG11(p.u.) 1.0553 1.0841 1.0984 1.0880 

VG13(p.u.) 1.0882 1.0734 1.0791 1.0517 

T11(p.u.) 0.9834 1.0215 1.0686 1.0711 

T12(p.u.) 0.9376 1.0518 0.9160 0.9304 

T15(p.u.) 0.9677 0.9435 1.0299 1.1000 

T36(p.u.) 0.9430 1.0428 0.9864 1.0097 

QC10(p.u.) 0.0234 0.0082 0.0387 0.0299 

QC12(p.u.) 0.0167 0.0000 0.0288 0.0473 

QC15(p.u.) 0.0059 0.0137 0.0119 0.0157 

QC17(p.u.) 0.0077 0.0493 0.0441 0.0450 

QC20(p.u.) 0.0301 0.0066 0.0476 0.0291 

QC21(p.u.) 0.0097 0.0124 0.0108 0.0333 

QC23(p.u.) 0.0023 0.0044 0.0312 0.0500 

QC24(p.u.) 0.0286 0.0500 0.0137 0.0235 

QC29(p.u.) 0.0208 0.0416 0.0300 0.0088 

FEM (ton/h) 0.2379 0.2352 0.2351 0.2375 

FBF ($/h) 833.19 831.32 830.79 832.65 
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Fig.4 PFs of Exp 1 
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Fig.5 PFs of Exp 2 

 

TABLE Ⅲ 

BCS SOLUTIONS OF EXP 2 

independent variables NSGA-Ⅱ MPSO NMAFSA 

PG2(MW) 60.8395 51.8749 62.3020 

PG5(MW) 23.7605 22.9111 25.9040 

PG8(MW) 21.9856 34.6631 32.9081 

PG11(MW) 28.3491 18.4797 16.3379 

PG13(MW) 17.0558 25.7165 18.8095 

VG1(p.u.) 1.0587 1.0997 1.0923 

VG2(p.u.) 1.0373 1.0893 1.0805 

VG5(p.u.) 1.0132 1.0427 1.0649 

VG8(p.u.) 1.0126 1.0667 1.0635 

VG11(p.u.) 1.0521 1.0767 1.0690 

VG13(p.u.) 0.9817 1.0530 1.0865 

T11(p.u.) 0.9894 1.0778 1.0327 

T12(p.u.) 0.9654 0.9073 0.9146 

T15(p.u.) 1.0185 0.9694 1.0335 

T36(p.u.) 0.9473 1.0512 0.9835 

QC10(p.u.) 0.0145 0.0000 0.0290 

QC12(p.u.) 0.0079 0.0117 0.0091 

QC15(p.u.) 0.0000 0.0086 0.0380 

QC17(p.u.) 0.0237 0.0299 0.0255 

QC20(p.u.) 0.0241 0.0500 0.0476 

QC21(p.u.) 0.0318 0.0070 0.0254 

QC23(p.u.) 0.0430 0.0000 0.0438 

QC24(p.u.) 0.0427 0.0051 0.0500 

QC29(p.u.) 0.0298 0.0345 0.0353 

FEM (ton/h) 0.2638 0.2586 0.2579 

FFV ($/h) 860.96 859.28 855.83 

 

3) Exp 3 

A triple-objective experiment (Exp 3), which considers the 

simultaneous optimization of FEM, FBF and FAP, requires 

higher performance of suggested NMAFSA algorithm. The 

PFs of NSGA-Ⅱ and NMAFSA algorithms are shown in Fig. 6 

while the PFs of MPSO and NMAFSA are shown in Fig. 7. 

Both MPSO and NMAFSA algorithms achieves the 

uniformly-distributed and well-diversified PFs in contrast to 

NSGA-Ⅱ algorithm. Furthermore, the PF of novel NMAFSA 

method is more superior to the one of MPSO algorithm. 

Besides, the details of obtained BCSs of Exp 3 are given in 

TABLE Ⅳ. The BCS of proposed NMAFSA algorithm 

consists of 865.39 of FBF, 4.3553 of FAP and 0.2128 of FEM, 

which surpasses the BCS of NSGA-Ⅱ including 872.74 of FBF, 

4.8843 of FAP, 0.2130 of FEM . Furthermore, the BCS of 

NMAFSA algorithm is superior to the BCS of MPSO 

including 873.45 of FBF, 4.6347 of FAP, 0.2137 of FEM as well. 

Additionally, NMAFSA algorithm also achieves the smaller 

FBF and FEM values comparing with MOFA-PFA algorithm in 

literature [28]. 

B. Trials on IEEE 57-bus System 

One dual-objective case (Exp 4) and another triple one 

(Exp 5) are carried out on the standard 57-bus system. In 

detail, Exp 4 aims to optimize FBF and FEM at the same time. 

Meanwhile, Exp 5 aims to optimize FBF, FEM and FAP 

synchronously. 

1) Exp 4 

Fig. 8 gives the PFs determined by NMAFSA algorithm 

and two comparison approaches while TABLE Ⅴ gives the 

details of BCSs for Exp 4. 
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Fig. 8 intuitively indicates that NMAFSA algorithm 

achieves the significantly superior PF with satisfactory 

diversity in contrast to MPSO and NSGA-Ⅱ methods. Besides, 

the BCS achieved by NMAFSA algorithm composed of 

43114.71 of FBF and 1.2421 of FEM is better than the ones 

found by two comparative methods as well. To be more 

persuasive, the BCS of proposed NMAFSA algorithm also 

precedes the one of MODFA algorithm which is given in 

literature [18]. 
 

TABLE Ⅳ 

BCS SOLUTIONS OF EXP 3 

independent  

variables 
NSGA-Ⅱ MPSO NMAFSA 

MOFA-PFA 

[28] 

PG2(MW) 80.0000 58.1879 60.9741 57.890 

PG5(MW) 28.0558 41.6045 36.8206 36.290 

PG8(MW) 35.0000 31.3610 33.6751 35.000 

PG11(MW) 26.7647 28.7171 27.6888 29.271 

PG13(MW) 31.3583 30.4097 32.6088 40.000 

VG1(p.u.) 1.1000 1.0810 1.0967 1.0985 

VG2(p.u.) 1.0933 1.0757 1.0886 1.0869 

VG5(p.u.) 1.0876 1.0553 1.0659 1.0625 

VG8(p.u.) 1.0933 1.0452 1.0760 1.0767 

VG11(p.u.) 1.0616 1.0462 1.0952 1.0857 

VG13(p.u.) 1.0997 1.0240 1.0792 1.0386 

T11(p.u.) 1.0877 0.9374 0.9952 1.0860 

T12(p.u.) 0.9831 0.9686 1.0528 0.9930 

T15(p.u.) 0.9688 1.0042 1.0664 1.0520 

T36(p.u.) 1.0356 0.9711 0.9783 1.0770 

QC10(p.u.) 0.0000 0.0381 0.0462 0.0140 

QC12(p.u.) 0.0075 0.0293 0.0112 0.0220 

QC15(p.u.) 0.0058 0.0289 0.0431 0.0080 

QC17(p.u.) 0.0500 0.0400 0.0261 0.0250 

QC20(p.u.) 0.0354 0.0368 0.0075 0.0390 

QC21(p.u.) 0.0115 0.0021 0.0340 0.0270 

QC23(p.u.) 0.0419 0.0426 0.0211 0.0100 

QC24(p.u.) 0.0127 0.0236 0.0131 0.0170 

QC29(p.u.) 0.0189 0.0105 0.0357 0.0500 

FBF ($/h) 872.74 873.45 865.39 879.91 

FAP (MW) 4.8843 4.6347 4.3553 4.2179 

FEM (ton/h) 0.2130 0.2137 0.2128 0.2165 
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Fig.8 PFs of Exp 4 

2) Exp 5 

At present, there are only a few intelligent algorithms to 

study the triple-objective MOOPF problems on the IEEE 

57-bus system. It is exciting that the NMAFSA method put 

forward in this paper has the potential to deal with the 

tri-objective optimization effectively. 

Fig. 9 and Fig. 10 separately show the PF of NMAFSA 

algorithm compared with NSGA-Ⅱ and MPSO algorithms. 

The diversity of PF obtained by NMAFSA clearly better than 

NSGA-Ⅱ method, and the distribution is obviously superior to 

MPSO method. The control variables of BCSs found by three 

involved methods are listed in TABLE Ⅵ. TABLE Ⅵ states 

that the BCS of NMAFSA algorithm which is composed of 

42605.49 of FBF, 11.6947 of FAP and 1.4151 of FEM dominates 

the ones of NSGA-Ⅱ and MPSO methods. Furthermore, 

NMAFSA algorithm also achieves the smaller FBF and FEM 

values comparing with MONBA-CPNS algorithm published 

in literature [22]. 

Exp 4 and Exp 5 indicate that the great advantage of 

NMAFSA algorithm in dealing with the non-convex MOOPF 

problem is more fully reflected on the larger-scale 57-bus 

system. 
TABLE Ⅴ 

BCS SOLUTIONS OF EXP 4 

independent 

variables 
NSGA-Ⅱ MPSO NMAFSA MODFA [18] 

PG2(MW) 99.8469 96.2005 98.7165 99.9703 

PG3(MW) 101.5084 95.0937 90.5956 88.2975 

PG6(MW) 99.6098 98.1370 100.0000 99.9135 

PG8(MW) 287.1533 364.6798 355.8303 343.6324 

PG9(MW) 99.8504 100.0000 100.000 99.9138 

PG12(MW) 365.8721 304.5912 306.9302 310.8878 

VG1(p.u.) 1.0006 1.0095 1.0621 1.0600 

VG2(p.u.) 1.0007 0.9903 1.0553 1.0544 

VG3(p.u.) 1.0007 0.9858 1.0590 1.0467 

VG6(p.u.) 1.0007 0.9847 1.0556 1.0500 

VG8(p.u.) 1.0007 0.9865 1.0609 1.0558 

VG9(p.u.) 1.0007 0.9999 1.0497 1.0433 

VG12(p.u.) 1.0007 1.0146 1.0657 1.0332 

T19(p.u.) 0.9021 1.0814 1.0398 0.9916 

T20(p.u.) 1.0996 0.9113 0.9460 0.9805 

T31(p.u.) 1.0855 0.9814 0.9217 0.9972 

T35(p.u.) 0.9325 1.0263 1.0917 0.9693 

T36(p.u.) 0.9805 0.9383 0.9651 0.9646 

T37(p.u.) 1.0992 1.0709 0.9805 0.9788 

T41(p.u.) 0.9249 0.9378 1.0127 0.9570 

T46(p.u.) 1.0710 1.0254 0.9585 0.9741 

T54(p.u.) 1.0169 0.9000 0.9530 1.0310 

T58(p.u.) 0.9007 0.9084 1.0421 0.9523 

T59(p.u.) 0.9316 0.9843 0.9477 0.9452 

T65(p.u.) 1.0125 1.0461 1.0001 1.0045 

T66(p.u.) 0.9002 0.9473 0.9516 0.9344 

T71(p.u.) 0.9567 0.9937 0.9295 0.9481 

T73(p.u.) 1.0657 0.9313 0.9800 0.9621 

T76(p.u.) 0.9018 0.9720 0.9786 0.9587 

T80(p.u.) 0.9143 1.0350 1.0218 0.9703 

QC18(p.u.) 0.2026 0.0000 0.0254 0.1896 

QC25(p.u.) 0.1233 0.2104 0.2296 0.1191 

QC53(p.u.) 0.2773 0.1487 0.0539 0.0331 

FBF ($/h) 43876.06 43278.28 43114.71 43174.57 

FEM (ton/h) 1.2643 1.2585 1.2421 1.2679 
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TABLE Ⅵ 

BCS SOLUTIONS OF EXP 5 

independent  

variables 
NSGA-Ⅱ MPSO NMAFSA 

MONBA-CPNS 

[22] 

PG2(MW) 97.3371 69.4687 88.0998 99.1093 

PG3(MW) 96.5188 89.7803 85.6876 97.7004 

PG6(MW) 90.5771 91.7003 93.2268 89.4406 

PG8(MW) 319.1209 356.6882 345.1766 312.8840 

PG9(MW) 81.6383 98.4973 89.7787 98.3716 

PG12(MW) 402.1791 365.8965 375.3263 404.5135 

VG1(p.u.) 1.1000 1.1000 1.1000 1.0940 

VG2(p.u.) 1.1000 1.0972 1.1000 1.0894 

VG3(p.u.) 1.1000 1.0929 1.1000 1.0883 

VG6(p.u.) 1.1000 1.0986 1.1000 1.0961 

VG8(p.u.) 1.1000 1.1000 1.1000 1.0980 

VG9(p.u.) 1.0999 1.0886 1.1000 1.0893 

VG12(p.u.) 1.1000 1.0796 1.1000 1.0830 

T19(p.u.) 1.0566 1.0452 1.0769 0.9756 

T20(p.u.) 0.9837 1.0491 0.9953 1.0194 

T31(p.u.) 1.0129 1.0873 0.9903 0.9533 

T35(p.u.) 1.0823 1.0501 1.0716 1.1000 

T36(p.u.) 1.0965 1.0250 1.0914 1.0631 

T37(p.u.) 1.0866 0.9953 1.0617 0.9934 

T41(p.u.) 1.0806 1.0954 1.0794 1.0238 

T46(p.u.) 1.0275 0.9764 1.0007 0.9594 

T54(p.u.) 1.0998 0.9333 1.0962 0.9938 

T58(p.u.) 0.9861 1.0182 0.9923 0.9738 

T59(p.u.) 1.0384 1.0286 0.9875 0.9791 

T65(p.u.) 0.9834 1.0092 1.0062 0.9907 

T66(p.u.) 1.0687 1.0070 0.9584 0.9709 

T71(p.u.) 0.9678 1.0447 0.9821 1.0038 

T73(p.u.) 1.0796 0.9708 1.0837 1.0997 

T76(p.u.) 0.9396 0.9983 0.9487 0.9763 

T80(p.u.) 1.0578 1.0768 1.0897 1.0077 

QC18(p.u.) 0.0665 0.1633 0.1230 0.1225 

QC25(p.u.) 0.2795 0.1959 0.2236 0.2179 

QC53(p.u.) 0.2617 0.1385 0.1767 0.1676 

FBF ($/h) 43119.96 42668.69 42605.49 43052.18 

FAP (MW) 12.6817 12.1123 11.6947 10.5961 

FEM (ton/h) 1.4429 1.4248 1.4151 1.4292 
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Fig.9 PFs of NSGA-Ⅱ and NMAFSA for Exp 5 

C. Trials on IEEE 118-bus System 

A dual-objective case (Exp 6) which aims to reduce FBF and 

FEM concurrently is performed on the complex IEEE 118-bus 

system. The PFs and the specific solutions of Exp 6, 

respectively, are given in Fig. 11 and TABLE Ⅶ. Fig. 11 

intuitively shows that the PF found by MPSO is much more 

irregularly-distributed and the PF of NMAFSA is clearly 

advantageous to NSGA-Ⅱ method.  

The BCS, the boundary solution with minimal FBF and the 

boundary one with minimal FEM are given in TABLE Ⅶ. 

Specifically, the BCS of NMAFSA including 61719.19 of FBF 

and 2.3569 of FEM is more preferable than the BCSs of 

NSGA-Ⅱ and MPSO algorithms. Furthermore, the NMAFSA 

algorithm put forward in this paper achieves 60144.08 of 

minimal FBF and 2.1024 of minimal FEM. 

 
TABLE Ⅶ 

SPECIFIC SOLUTIONS OF EXP 6 

Exp 6 NSGA-Ⅱ MPSO NMAFSA 

BCS 
FBF 61738.97 61849.58  61719.19 

FEM 2.6834 2.6965 2.3569 

minimal FBF 
FBF 60784.76 60489.66 60144.08 

FEM 3.3625 3.3914 3.0520 

minimal FEM 
FBF 64280.06 62841.95 63863.76 

FEM 2.2770 2.3950 2.1024 
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Fig.10 PFs of MPSO and NMAFSA for Exp 5 
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VI. EVALUATION 

In this paper, the convergence and distribution of PFs 

obtained by NMAFSA algorithm are discussed based on the 

iterative process and generation distance (GD) index. 

A. Convergence 

Taking the Exp 1 as an example, the convergence of three 

mentioned algorithms is analyzed from the dynamic iterative 

process. Fig. 12 shows the iterative process of NMAFSA, 

MPSO and NSGA-Ⅱ methods. It is not difficult to find that, 

the presented NMAFSA algorithm seeks the qualified POS 

which satisfies all ERs and IRs at the 57th iteration. The 

NSGA-Ⅱ and MPSO find the POS with zero constraint 

violation at the 86th and 128th iterations, respectively. Thus, 

Fig. 12 proves the superiority of NMAFSA algorithm in fast 

convergence. 

B. Distribution 

The distribution of obtained POS for four dual-objective 

trials in this paper (Exps 1, 2, 4, 6) is analyzed quantitatively 

based on GD index. The GD index is expressed as formula 

(27) and its definition can be found in [18, 21, 29]. 

 

2

1

N

i

i

de

GD
N




  (27) 

The smaller GD value represents the better distribution of 

obtained POS. The boxplots and average values of GD index 

for all dual-objective trials are shown in Fig. 13 and TABLE 

Ⅷ. The closer boxplots and smaller average of GD index 

indicate that the PF of NMAFSA algorithm is more consistent 

with the reference PF. The smaller deviation values also 

validate that compared with MPSO and NSGA-Ⅱ algorithms, 

NMAFSA algorithm achieves the more stable operation. 

 
TABLE Ⅷ 

AVERAGE AND DEVIATION OF GD 
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Fig.12 Iterative process of Exp 1 
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Fig.13 Boxplot of GD index for dual-objective cases 

GD NSGA-Ⅱ MPSO NMAFSA 

Exp 1 
average 0.1522 0.1918 0.1341 

standard deviation 0.0310 0.0944 0.0263 

Exp 2 
average 0.1676 0.1742 0.1663 

standard deviation 0.0331 0.0496 0.0327 

Exp 4 
average 0.7688 0.9858 0.7359 

standard deviation 0.1533 0.2507 0.1466 

Exp 6 
average 1.9111 5.1799 1.8138 

standard deviation 0.8159 3.1270 0.6765 
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VII. CONCLUSION 

The optimized operation of electric system, one of the most 

common practical engineering problems, has been widely 

concerned. In this paper, the novel NMAFSA algorithm with 

OSG guidance and NIR retention mechanisms is proposed to 

solve the complex MOOPF problems. Six dual-goal and 

triple-goal MOOPF trials on three different-scale systems are 

carried out to demonstrate the extensive applicability of 

suggested NMAFSA method. Plenty of results indicate that in 

contrast to MPSO and NSGA-Ⅱ algorithms, NMAFSA 

algorithm obtains the evenly-distributed PFs and the more 

satisfactory BCS solutions. Besides, the iterative process and 

GD index also prove the great edges of NMAFSA algorithm 

in fast-convergence and better-distribution when dealing with 

the high-dimensional MOOPF problems. 

As the representative of solving practical engineering 

problems with computer technology, the NMAFSA algorithm 

is of great significance to deal with the security-constrained 

MOOPF problems more effectively. 
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