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Abstract—This paper deals with fuzzy multi-objective

multi-period portfolio selection problems. The portfolio
selection is proposed by taking into account three criteria of
final return, cumulative risk and entropy. In the model, the
return level is quantified by the possibilistic mean value of
return, and the risk is quantified by the possibilistic variance of
return while fuzzy entropy is adopted to increase the risk
dispersion degree to some extent. Then a fuzzy multi-objective
multi-period portfolio model is presented in a more complex
market environment. To solve the complex model, the
multi-objective functions are transformed into a single objective
and the risk preference parameter is introduced to balance the
return and risk to meet with investors’ preferences. To ensure
the investor can obtain the optimal portfolio strategy, a hybrid
intelligent algorithm is designed by combining both genetic
algorithm and wavelet neural network algorithm, which not
only utilizes the good localization property of wavelet transform
but also utilizes the effective self-learning function of neural
network. Finally, a numerical example is presented to illustrate
this approach and the designed algorithm. The results show that
the proposed model and the designed algorithm are practical
and flexible, while they are meaningful for the study on
portfolio selection and multi-objective programming.

Index Terms—portfolio selection, multi-period, multi-
objective, entropy, hybrid intelligent algorithm

I. INTRODUCTION

ODERN portfolio theory was originally proposed by
Markowitz [1] in 1952. He put forward a well-known

mean-variance model in which portfolio return is quantified
by the mean and portfolio risk is quantified by the variance.
This model has been proved to be effective and useful, so it is
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widely used in both portfolio selection and asset allocation.
Although many scholars have accepted the idea of using
mean and variance to measure portfolio return and risk[2]–
[3], with the development of the technology and the
increasing complexity of security market, many scholars
have done deeper research on other kind of measures of
uncertain return and risk.

On the one hand, the security uncertainty is a hot topic in
the portfolio research. In papers [1]–[3], security returns are
regarded as random variables. However, security returns are
not always about the random uncertainty in many situations.
In fact, some scholars have found that the portfolio selection
problem also includes fuzzy uncertainty and have used fuzzy
set theory in their researches such as Watada [4], Deng et. al
[5]–[8].

On the other hand, the risk measurement is another hot
topic in the portfolio research. For example, Markowitz [9]
considered the semi-variance of return rate as risk, Konno
and Yamazaki [10] defined the absolute-deviation of return
rate as risk, and Shannon [11] defined the concept of
information entropy and then used this concept to measure
risk.

It is noted that the entropy can also present the uncertainty
of security risk. For this reason, some scholars have done
some researches about entropy. For example, Philippatos and
Wilson [12] regarded random entropy as risk and then studied
the relationship between entropy, market risk and the
selection of efficient portfolios. Qin [13] et. al discussed the
Kapur cross-entropy minimization model for portfolio
selection problem under fuzzy environment, which can
minimize the divergence of the fuzzy investment return from
a priori one.

Multi-period portfolio selection model has a wider
application than single-period model because investors
usually want to invest in a long term. Sadjadi [14] et. al
constructed a fuzzy multi-period portfolio selection model
with different rates for borrowing and lending, and Liu [15] et.
al proposed a robust multi-period portfolio model based on
prospect theory. Nevertheless, there are still few researches
on multi-objective multi-period portfolio selection. It is
necessary to do some research work about multi-objective
and multi-period portfolio problem. In this paper, a
multi-objective multi-period model was formulated
originally based on the above researches. In this model, not
only the variance but also the entropy of the asset is
considered as portfolio risk. Considering that the objective
functions are non-smooth in some points, thus, a hybrid
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intelligent algorithm is designed. The algorithm combines
genetic algorithm (GA) with wavelet neural network
algorithm (WNN) and is used to solve the proposed model.
Finally, a numerical example is presented to validate the
model and the designed algorithm. The research is practical
and meaning for economic investment.

The rest of this paper is organized as follows. In Section 2,
some basic knowledge is introduced with fuzzy variables,
random entropy and fuzzy entropy. In Section 3, a
mean-fuzzy entropy-variance model is proposed and then
simplified. In Section 4, a hybrid intelligent algorithm is
designed for solving the proposed model. In Section 5, a
numerical example is given to illustrate this approach.
Section 6 summarizes the research work.

II. PRELIMINARIES

A. Possibilistic Mean and Variance and Covariance of
Fuzzy Numbers
Let us first review some basic concepts about fuzzy

number, which are necessary for the following sections.
Assume that A is a fuzzy set of the real line with a normal,
fuzzy convex and continuous membership function of
bounded support, the following definitions is given by
Carlsson and Fuller [16]:
Definition 1. Let A be a fuzzy number, then the  -level

set of A is denoted by    1 2( ), ( ) , 0,1A a a


     .

Definition 2. Let A be a fuzzy number, then the
possibilistic mean value of A can be defined as:

 
1

1 20
( ) ( ) ( ) .E A a a d     (1)

In portfolio selection, possibilistic mean value is used to
denote the expected returns of a fuzzy variable.
Definition 3. The possibilistic variance of A can be

defined as:

 1 2 2

1 20
( ) ( ) ( ) + ( ) ( ) d .Var A E A a E A a              (2)

Definition 4. Let A and B be fuzzy numbers, then the
covariance between A and B is defined as:

  
  

1

1 10

1

2 20

( , ) ( ) ( ) ( ) ( ) d

                   ( ) ( ) ( ) ( ) d ,

Cov A B E A a E B b

E A a E B b

   

   

  

  




  

 
(3)

where  1 2( ), ( )A a a


  ,  1 2( ), ( ) ,B b b


   0,1  .
In portfolio selection, possibilistic variance and

possibilistic covariance are often used to denote the risk of a
portfolio that composed of fuzzy variables.

Based on the Zedeh Extension Principle, when
( 1, 2, , )iA i n  are all fuzzy variables, we get:

1 1 2 2
1

,
n

n n i i
i

E A A A A   


          (4)

1 1 2 2
1 1

( , ).
n n

n n i j i j
j i

Var A A A Cov A A    
 

           (5)

If ( , , , )A a b   is a trapezoid fuzzy variable with the
following membership function:

1 , if ,

1, if ,
( )

1 , if ,

0, otherwise.

A

a x a x a

a x b
x

x b b x b









    


       




 (6)

It is not difficult to find that the  -level set of A is

   (1 ) , (1 ) , 0,1 .A a b


           Then, according
to (1) and (2), the expected value and variance of the
trapezoid fuzzy variable are given by:

( ) ,
2 6

a bE A   
  (7)

2 2 2( ) ( )( ) .
2 6 72 72

b aVar A              
 

 (8)

Let A and B be trapezoid fuzzy variables, then the
covariance between A and B is:

1 1 1 1 2 2 2 2

1 2 1 2

( , )=
2 6 2 6

1                  ( ).
36

b a b a
Cov A B

   

   

        
  

 

 

(9)

B. Entropy
The concept of entropy was originally derived from

thermo-dynamics, and later developed to the statistical
mechanics, information theory and other disciplines. As its
description in thermo-dynamics, entropy can measure the
disorder of a specific system. In other words, it can measure
the internal uncertainty of something. Here, we introduced
the original definition of entropy and its extension to fuzzy
variable.
Definition 5. Consider a probabilistic test with n results

and a discrete probability  ( 1, 2, , )ip i n  . Entropy is
defined as:

1
ln .

n

n i i
i

S p p


  (10)

where
1

0 ( 1, 2, , ) and 1.
n

i i
i

p i n p


  

Definition 6. Let  be a continuous fuzzy variable with
membership function ( )x , and then its entropy is defined
as:

( ) ( ) ( ) ( )[ ] ( ln (1 ) ln(1 )) .
2 2 2 2
x x x xH dx   




     (11)

So the entropy of a trapezoid fuzzy variable
( , , , )A a b   is:

[ ] ( ) ln 2.
2

H A b a 
   (12)

1 1 2 2
1

( ) ( ),
n

n n i i
i

H b b b b H   


    (13)

where ( 1, 2, , )ib i n  is a real number.

III. MODEL

To make it easier to understand, we put together all the
notations that will be used hereafter.
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Notations
kx : the investment proportion of riskless asset at period k ;

k

iy : the investment proportion of risky asset i at period k ;

k

i : the investment strategy of risky asset i at the

beginning of period k , when 0
k

i  ,
k

i is the amount of

asset i which is sold at the beginning of period k , when
0

k

i  ,
k

i is the amount of asset i which is purchased at the

beginning of period k ;

k

i : the return rate of risky asset i at period k ;

kr : the return rate of riskless asset at period k ;
i
k : the unit transaction cost of risky asset i at period

k ( 0,1, , 1, 1, 2, ,k T i n    ).
In this paper, assume that the whole investment process is

self-financing, that is, the investor does not invest the
additional capital during the investment period. According to
the previous section, the mean value of the return rate of

1 2( , , , )
k k k

ny y y at period k is determined by

1
1

[ ]( ).
n

i i i
k k k k

i
E E y 



  (14)

The return rate of the riskless asset at period k is
determined by

2
1

[ ( )].
n

i i i
k k k k k k

i
E r x   



    (15)

Then the total mean value at period k is

1 2
1

1

[ ]( )

                          [ ( )].

n
i i i

k k k k k k
i

n
i i i

k k k k k
i

E E E E y

r x

 

  





   

   




(16)

So the investor’s final return is determined by
1

0 1 1
[ ]( ) [ ( )] .

T n n
i i i i i i
k k k k k k k k

k i i
E y r x    



  

      
 

   (17)

According to Section 2, the variance of the portfolio at
period k is determined by

, 1

( ) ( ) ( , ).
n

i i j j i j
k k k k k k k

i j
R y y Cov   



    (18)

The total risk of the portfolio is determined by
1

0 , 1

( ) ( ) ( , ) .
T n

i i j j i j
k k k k k k

k i j

y y Cov   


 

 
   

 
  (19)

The entropy of the portfolio at period k is determined by

1
( ) [ ].

n
i i i

k k k k
i

H y H 


  (20)

The final entropy of the portfolio is determined by
1

0 1
( ) [ ] .

T n
i i i
k k k

k i
y H 



 

  
 

  (21)

In each period, we have

1
1

1

(1 )[ ( )],

(1 [ ]) ( ),

n
i i i

k k k k k k
i

i i i i
k k k k

x r x

y E Y

  

 






   

   








(22)

and 0 1,2, , ; 0,1, , 1.i
ky i n k T    ，

According to the concept of Markowitz’s mean-variance
model, the goal of investors is to maximize the return of
portfolio while minimizing the whole risk. Considering that
multi-period investment is a special form of investment many
times, it is rational to pursue the maximal of the final return
and the minimal of the cumulative risk. In addition, to reduce
the uncertainty of the portfolio and then bring investors a
better experience, the entropy of the portfolio should be
minimized. To state simply, entropy can be regarded as other
kind of risk measure in portfolio.

Thus, we can summary the investor’s goal and requirement
in (23).

This is a multi-objective optimization model whose
solution depends strongly on the investors’ preference for
each objective. In this paper, we require that the entropy
value of each period cannot be too much or too small. That is,
we change the goal of minimizing the entropy value to a
special constrain of the model and then place more emphasis
on the return and risk. It should be noticed that the entropy
value cannot be too small, or it would conflict with the other
two goals.

Then, for other two goals, let:  1 2( , , , , )nk k k kX x y y y 

1
, 0, 0, 1,2, ,

n
i i

k k k k
i

x y x y i n


 


     , max ( )k kx X
E E x


 ,

min ( )k kx X
E E x


 , max ( )k kx X

R R x


 , min ( )k kx X

R R x


 .

Obviously, kE
 and kE

 respectively represent the
maximal and the minimal expected returns at period k
while kR

 and kR
 respectively represent the maximal and

1

0 1 1

1

0 , 1

1

0 1

1
1

max [ ]( ) [ ( )]

min ( ) ( ) ( , )

min ( ) [ ]

s.t. (1 )[ ( )],

       

T n n
i i i i i i
k k k k k k k k

k i i

T n
i i j j i j
k k k k k k

k i j

T n
i i i
k k k

k i

n
i i i

k k k k k k
i

i
k

E y r x

y y Cov

y H

x r x

y

    

   

 

  



  



 



 




 
     

 
 

   
 
 

 
 

   

  

 

 


1 (1 [ ]) ( ),

      , 0, 0, 0,1, , 1, 1, 2, , .

i i i
k k k

i i i
k k k k

E y

y x k T i n

 

 
















    
         

(23)
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1

0

0 0
1

1
1

1

min (1 )

s.t. ( ) [ ] ,

(1 )[ ( )],

(1 [ ]) ( ),

, 0, 0, 0,1, , 1, 1, 2, , .

T
k k k k

k k k k k

n
i i i

k k k k k
i

n
i i i

k k k k k k
i

i i i i
k k k k
i i i
k k k k

E E R R
E E R R

H y H H

x r x

y E y

y x k T i n

 

 

  

 

 

 

   


 








   
   

  

   


    

    


      









 


(25)

the minimal risks at period k , so that we have

 0,1k k

k k

E E
E E



 





and  0,1k k

k k

R R
R R



 





.

As mentioned above, the goals of (23) are to maximize kE

while minimizing kR , which are equivalent to minimize both

k k

k k

E E
E E



 




and k k

k k

R R
R R



 




. Thus, we can combine the last two

goals. To make the final goal more flexible, the risk
preference parameter [0,1]  is introduced. Then we could
build a new objective function as follow:

min (1 ) .k k k k

k k k k

E E R R
E E R R

 
 

   

 
 

 
(24)

Also, it can be pointed out that the new objective function
still has a range of [0,1] . When the parameter is higher than
0.5, the final return is paid more attention; conversely, the
cumulative risk is paid more attention. Thus, it is convenient
for investors to choose the value of the parameter according
to their risk preferences. The new model is obtained as (25).

IV. HYBRID INTELLIGENT ALGORITHM

A. The Basic Idea of the Algorithm
Since it is difficult to find the optimal solution of (25) in

traditional ways, a hybrid intelligent algorithm combining
genetic algorithm (GA) with wavelet neural network
algorithm (WNN) is designed to help investors find the
optimal solution. The GA was initialized by Holland [17] in
1975, and has been well developed. WNN is structured by
combining wavelet transform with neural network, which not
only utilizes the good localization property of wavelet
transform but also utilizes the self-learning function of neural
network. So WNN can solve the prediction problem of
decision variables with nonlinear relation. In addition, the
experiments show that the parameters of wavelet neural
network have good theoretical basis, the nonlinear function
approximation method has high accuracy, and the local
extreme can be jumped out to find the global optimum. The
method of reverse dynamic programming is used to solve
(25).

Combined with genetic algorithm and wavelet neural
network, the basic idea of using the reverse dynamic
programming method which the initial state has given to
solve model is as follows:
1) The investment process is divided into some stages, and

in this paper, each period is regarded as a stage.

Considering the period 0k , select the investment

portfolio
0 0

{ , }i
k kx y at the beginning of period 0k being

the state variable, the optimal investment decision
0

{ }ik

being the decision variable, and define the objective

function as
0

1

(1 )
T

k k k k

k k k k k k

E E R R
E E R R

 
 

   


  
  

  
 . Thus,

the original model is decomposed into a series of
sub-models of the same type, and then the sub-models
are solved by one by one. The optimal investment
decision is solved by genetic algorithm.

2) Solve the model gradually from the period 1T  using
the method of reverse dynamic programming. After
solving the sub model of period 1T  , the state variables
are used as the input values of the wavelet network, and
the optimal investment decision and the optimal index
are used as the output values of the wavelet network. The
wavelet network is trained by using the function relation
between input and output values. In order to solve the
period 2T  sub model, we not only need to calculate the
objective function of the period 2T  , but also need the
objective function value of the period 1T  sub model.
Adding the two objective-function values, and let this
sum be the objective function value of the period 2T 
sub model. Then every sub-model can be solved like
this.

By using the above optimization theory, the multi-period
portfolio problem solving process can be expressed as a
continuous recursive process, which is calculated by the
backward forward step by step.

B. Specific Steps
Let 1 2{ , , , }( 0,1, , 1)n

k k k k k T       .
Step 1: when 1k T  , according to (25), we can decompose
the whole goals into multiple single goals for each period.
Then, the objective function of 1T  period is:

1 1 1 1
1 1

1 1 1 1

min ( ) (1 ) ,T T T T
T T

T T T T

E E R R
E E R R

  
 
   

     
   

 
   

 
(26)

where 1TE

 , 1TE


 , 1TR


 and 1TR


 can be got according to (14),

(15), (16) and (18).
1) Randomly generate a set of initial investment

portfolio 1
1 1 1{ , , , }n

T T Tx y y   which satisfies the
constraint conditions.

2) Use genetic algorithm to solve the optimal investment
strategy 1 2

1 1 1 1{ , , , }n
T T T T        and the objective
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function value 1T  .
3) Repeat 1) and 2) for N times to get N sets of initial

investment portfolio, the optimal investment strategy
and the objective function value, and record them. Let
N sets of 1

1 1 1{ , , , }n
T T Tx y y   be the input values of the

wavelet network, N sets of 1 2
1 1 1 1{ , , , , }n

T T T T      be
the output values of the wavelet network. So, we can get
the following approximation function:

1 1 1 2
1 1 1 1 1 1

2 2 1 2
1 1 1 1 1 1

1 2
1 1 1 1 1 1

1 2
1 1 1 1 1 1

( , , , , )
( , , , , )

( , , , , )
( , , , , )

n
T T T T T T

n
T T T T T T

n n n
T T T T T T

n n
T T T T T T

x y y y
x y y y

x y y y
x y y y






     

     

     

     

  
  

  
  








，

，

，

(27)

Step 2: when 2k T  , the objective function is written as:
2 2

2 2 2 2
1

2 2 2 2

min ( )

        (1 ) + .

T T

T T T T
T

T T T T

E E R R
E E R R



 

 

 
   

   
   

 

  
     

(28)

1) Randomly generate a set of initial investment
portfolio 1

2 2 2{ , , , }n
T T Tx y y   which satisfies the

constraint conditions.
2) Use genetic algorithm to obtain the optimal investment

strategy 1 2
2 2 2 2{ , , , }n

T T T T        , and get 1T 
according to Step1. Then calculate the objective function
value 2T  .

3) Repeat 1) and 2) for N times to get N sets of initial
investment portfolio, the optimal investment strategy
and the objective function value, and record them. Let
N sets of 1

2 2 2{ , , , }n
T T Tx y y   be the input values of the

wavelet network, 1 2
2 2 2 2{ , , , , }n

T T T T      be the
output values of the wavelet network. The following
approximation function can be obtained:

1 1 1 2
2 2 2 2 2 2

2 2 1 2
2 2 2 2 2 2

1 2
2 2 2 2 2 2

1 2
2 2 2 2 2 2

( , , , , ),
( , , , , ),

( , , , , ),
( , , , , ).

n
T T T T T T

n
T T T T T T

n n n
T T T T T T

n n
T T T T T T

x y y y
x y y y

x y y y
x y y y






     

     

     

     

  
  

  
  








(29)

Step 3: When 0k  , the objective function is:

0 0 0 0
0 0 1

0 0 0 0

min ( ) (1 ) + .
E E R R
E E R R

  
 

   

  
       

(30)

In the same way, the following approximation function can
be obtained:

1 1 1 2
0 0 0 0 0 0

1 2
0 0 0 0 0 0

1 2
0 0 0 0 0 0

( , , , , ),
                 

( , , , , ),

( , , , , ).

n

n n n

n n

x y y y

x y y y

x y y y





  




 
  







(31)

Step 4: Since the initial investment portfolio
1 2

0 0 0 0{ , , , , }nx y y y is determined, the obtained T wavelet
neural networks are used to get the optimal solution for each
period. As shown in (32).
1) According to (31) and 1 2

0 0 0 0{ , , , , }nx y y y , the optimal

investment strategy 0


and objective function value 0




can be obtained.

2) Then we can get 1 2
1 1 1 1{ , , , , }nx y y y , so we can obtain the

optimal investment strategy 1


and objective function

value 1



 .
3) With the iterative process, finally we can

get 1 2{ , , , , }nT T T Tx y y y . So the final asset of an investor

is i
T Tx y , the optimal investment strategy are

0 1 1T  
  

， ， ， , and the final objective function value is

0



 .

V. NUMERICAL EXAMPLE

In order to illustrate the idea of our model, an example is
given to simulate the real transaction. Suppose that the initial
wealth of the investor is 0 1w  , and the investor invested
0.15, 0.2, 0.1 and 0.2 for four risky assets and the rest for a
riskless asset. Set 3T  , the return rate of these four risky
assets is denoted by trapezoidal fuzzy number and the
probability distributions of these fuzzy numbers in the three
periods are listed in Table I.

TABLE I
THE PROBABILITY DISTRIBUTIONS OF FOUR ASSETS IN THE THREE PERIODS

Period Asset i ia ib i i

1t 

Asset1 0.9976 1.0628 0.0958 0.1138
Asset 2 1.0198 1.0760 0.2385 0.2027
Asset 3 1.0050 1.1100 0.2537 0.1018
Asset 4 0.9695 1.1075 0.1993 0.1608

2t 

Asset 1 0.7794 0.9834 0.0000 0.5865
Asset 2 1.0440 1.1949 0.3183 0.3152
Asset 3 1.0085 1.0665 0.1386 0.2631
Asset 4 0.9954 1.0869 0.3225 0.3676

3t 

Asset 1 1.0073 1.1417 0.3387 0.1260
Asset 2 0.6983 1.0443 0.3164 0.4836
Asset 3 1.0194 1.0794 0.3575 0.1887
Asset 4 0.9822 1.0617 0.4259 0.1883

In Table I, ( , , , )i i i ia b   represents the return rate of asset
i in the form of trapezoid fuzzy number. It could be deduced
that all these four assets have a stable performance in each
period. But it does not mean that we can keep our investment
strategy unchanged all times, which would be stated in detail
below.

01 2 1 21 2
0 0 0 0 1 1 1 1

11 2 1 2 1 2
1 1 1 1 1 1 1 1

{ , , , , } { , , , , }{ , , , , }

{ , , , , } { , , , , } { , , , , }

0

1

kn nn
k k k k

Tn n n
k k k k T T T T T T T T

x y y y x y y yx y y y

x y y y x y y y x y y y

k

T

 

 
       

 



  

  

 

  





(32)
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According to (7) and (12), the means iE and entropy
values iH of the four risky assets and the riskless asset are
obtained in Table II. In addition, the covariance matrix of the
risky assets is given in Table III According to (9), and the
concrete steps for data processing are shown in Table IV.

TABLE II
THE MEANS AND ENTROPY VALUES OF FOUR SAMPLE ASSETS AND

RISKLESS ASSET IN THE THREE PERIODS

Asset i 1 ( , )
i i

t E H 2 ( , )
i i

t E H 3 ( , )
i i

t E H

Asset 1  1.0332,0.1500  0.9791,0.4347  1.0391,0.3255

Asset 2  1.0419,0.2596  1.1189,0.4213  0.8992,0.6398

Asset 3  1.0572,0.2159  1.0583,0.2411  1.0213,0.3147

Asset 4  1.0321,0.2757  1.0485,0.4090  1.9823,0.3622

riskless  1.0270,0.0000  1.0306,0.0000  1.0468,0.0000

From Table II, we can find that:
1) In period 1, the difference between the return rates and

entropy values of each risky asset is not significant,
which is consistent with Table I.

2) In period 2, it is obvious that the balance is broken. The
return rate of asset 2 is the highest and the entropy value
of asset 3 is the lowest.

3) In period 3, the return rate of asset 2 is the lowest, which
is entirely contrary to the condition in period 2.

Comparatively, the return rate of asset 4 is the highest,
which is almost twice as much as that of asset 2. Besides,
the entropy value of asset 2 is the highest.

In conclusion, the return rates and the uncertainty of each
risky assets are changed at each period, which requires us to
change the portfolio strategy to avoid serious loss and obtain
more returns.

As to Table III, we will do some analysis after solving the
portfolio selection model, which can make the analysis
clearer.

The proposed algorithm is employed to solve the model,
and the parameters setting are stated as follows:

In genetic algorithm: let the population size be 30, the
length of chromosome be 5, the iteration number be 500, the
crossover probability be 0.1, the mutation probability be 0.02,
and the repeat number be 100. In wavelet neural network: let
the number of nodes in the input layer be 5, the number of
hidden layer nodes be 6, and the number of output layer
nodes be 5.

In order to be closer to the actual financial market, when
the program is calculated, the return on each period of each
stock is multiplied by 0.1. According to the specific model
and relevant data, let 0.2  , the results are obtained by
using our algorithm under the MATLAB environment as
follow (In order to avoid short selling, some amendments to
the calculation result were made).

TABLE III
THE COVARIANCE MATRIX IN THE THREE PERIODS

1t  2t  3t 

0.0052 0.0085 0.0069 0.0099 0.0495 0.0389 0.0202 0.0354
0.0085 0.0131 0.0109 0.0153 0.0389 0.0383 0.0212 0.0352

   
0.0069 0.0109 0.0096 0.0128 0.0202 0.0212 0.0117 0.
0.0099 0.0153 0.0128 0.0185

 
 
 
 
 
 

0.0246 0.0497 0.0206 0.0240
0.0497 0.1031 0.0432 0.0500

   
0198 0.0206 0.0432 0.0192 0.0213

0.0354 0.0352 0.0198 0.0326 0.0240 0.0500 0.0213 0.0262

   
   
   
   
   
   

TABLE IV
THE CONCRETE STEPS FOR DATA PROCESSING

Steps Concrete methods
Step 1： Initialization. Generate initial values randomly of Wavelet function parameters ,j ja b , weight

,ij jkw w , and learning rate ;

Step 2： Enter training samples for Training Wavelet Neural Network;
Step 3： Predictive output. The training samples are input into the network, the network output is calculated

and the error e between the network output and the expected output is calculated.
Step 4： Weight correction. Correcting weights and parameters according to errors e to make the predicted

value of the network approach the expected value in the near future;
Step 5： Judging whether the algorithm is over, if yes, go to Step 6; if no, return to Step 3;
Step 6： Output final coefficients ,j ja b and weights ,ij jkw w , which are saved as a well-trained wavelet

neural network for the next calculation.

TABLE V
THE OPTIMAL INVESTMENT STRATEGY WHEN 0.2 

Investment stage Asset 1 Asset 2 Asset 3 Asset 4 Riskless sum
Begin of Period 1 0.1500 0.2000 0.1000 0.2000 0.3500 1.0000
Strategy of Period 1 0.0263 -0.1003 0.0343 -0.1593 0.1990 0.0000
End of Period 1 0.1946 0.1101 0.1485 0.0449 0.6036 1.1016
Strategy of Period 2 -0.0188 -0.1101 0.0390 -0.0449 0.1348 0.0000
End of Period 2 0.1930 0.0000 0.2073 0.0000 0.8133 1.2136
Strategy of Period 3 -0.1570 0.0000 -0.1293 0.2458 -0.0405 0.0000
End of period 3 0.0397 0.0000 0.0860 0.2699 0.8256 1.2212
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TABLE VI
THE OPTIMAL INVESTMENT STRATEGY WHEN 0.8 

Investment stage Asset 1 Asset 2 Asset 3 Asset 4 Riskless sum
Begin of Stage 1 0.1500 0.2000 0.1000 0.2000 0.3500 1.0000

Strategy of Stage 1 -0.0597 0.1932 0.2446 -0.0281 -0.3500 0.0000
End of Stage 1 0.0996 0.4342 0.3810 0.1896 0.0000 1.1045

Strategy of Stage 2 -0.0737 0.2061 -0.0681 -0.0643 0.0000 0.0000
End of Stage 2 0.0285 0.7119 0.3460 0.1385 0.0000 1.2249

Strategy of Stage 3 0.0888 -0.1053 0.0812 -0.1015 0.0367 0.0000
End of Stage 3 0.1295 0.6611 0.4709 0.0407 0.0373 1.3395

When 0.2  , investors are risk-averse, that is to say,
they focus on the pursuit of low risk. From Table V, we can
see that:
1) The expected return of asset 1 in period 1 is nearly equal

to asset 4, but the variance value of asset 1 in period 1 is
significantly less than the asset 4; asset 3 in period 1 has
a higher expected return but a lower variance value. So,
the strategy of the period 1 is to reduce the amount of
assets 2 and 4, at the same times to increase the amount
of assets 1, 3 and the riskless asset.

2) The expected return of asset 3 in period 2 is just less
than asset 2, but the variance value of asset 3 in period 2
is significantly less than the other assets. So, the
strategy of the period 2 is to reduce the amount of assets
1, 2 and 4, at the same times to increase the amount of
asset 3 and the riskless asset.

3) The expected return of asset 2 in period 3 is the lowest
in these four assets, but the variance value of asset 2 in
period 3 is the highest. Although the performance of
asset 4 in period 3 is not as good as asset 3, the investor
still increases the amount of asset 4, and we attribute
this behavior to ensure the diversification degree of
portfolio selection problem.

When 0.8  , investors are risk-preferred and focus on
the pursuit of higher return. From Table VI, we can see that:
1) The expected return of assets 2 and 3 in period 1 is

higher than assets 1 and 4, and the riskless asset has a
lowest expected return. Thus, the strategy of the period
1 is to reduce the amount of asset 1 and 4, and reduce
the amount of the riskless asset to zero, at the same to
increase the amount of assets 2 and 3.

2) The expected return of asset 2 has a highest expected
return in period 2. Thus, the strategy of the period 2 is to
reduce the amount of asset 1, 3 and 4, at the same to
increase the amount of asset.

3) The expected return of assets 1 and 3 in period 3 is
higher than assets 2 and 4.

VI. CONCLUSION

In this paper, not only variance, but also entropy was used
to measure the risk of portfolios. As a tool to describe the
internal uncertainty of a system, entropy can reflect the risk
dispersion degree of a portfolio. The smaller the entropy
value, the more concentrative the portfolio return distributes.
The more concentrative the portfolio return distributes, the
more likely the specific return one expects will occur, and
thus, the safer the portfolio. However, as one of the
objectives of the portfolio model, too small entropy value
will conflict with the objective of maximizing the portfolio
return. Thus, we need to control the entropy value not too
much nor too small to balance the uncertainty and return.

In addition, the paper proposed a model that includes
multi-period investment, and then employed a hybrid
intelligent algorithm to solve the proposed multi-period
model. The calculation results and analysis of the given
numerical example show that the proposed model can
provide investors with satisfactory strategies that meet their
risk appetite, while ensuring the diversification degree of
portfolio selection, so that it is practicable and effective.
Moreover, the design of the intelligent hybrid algorithm is
apparently superior to the traditional ways. As the result, the
hybrid GA with WNN could have a better performance for
the optimization models which have non-smooth functions.
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