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Abstract—In this paper, some new oscillation criteria for
a class of fractional dynamic equations with damping ter-
m on time scales are established by use of the properties
of fractional calculus and generalized Riccati transformation
technique, where the fractional derivative is defined in the
sense of the conformable fractional derivative. The established
oscillation criteria unify continuous and discrete analysis, and
are new results so far in the literature. Oscillation criteria
for corresponding dynamic equations on time scales involving
integer order derivative are special cases of the present results.
For illustrating the established results, some examples are also
presented.
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I. INTRODUCTION

It is well known that research on solutions of various
differential equations, fractional differential equations, dy-
namic equations is very important in the literature, such as
the qualitative properties involving stability, existence and
so on [1-3], the numerical methods [4-8], the analytical
method for finding exact solutions [9,10]. Oscillation belongs
to the range of qualitative properties analysis. In the last
few decades, research for oscillation of various equations
including differential equations, difference equations has
been a hot topic in the literature, and much effort has been
done to establish new oscillatory criteria for these equations
so far (for example, see [11-22], and the references therein).
In [23], Hilger initiated the theory of time scale trying to
treat continuous and discrete analysis in a consistent way.
Based on the theory of time scale, Many authors have taken
research in oscillation of various dynamic equations on time
scales (see [24-40] for example). In these investigations for
oscillation of dynamic equations on time scales, we notice
that most of the results are concerned of dynamic equations
involving derivatives of integer order, while none attention
has been paid to the research of oscillation of fractional
dynamic equations on time scales so far in the literature.

A time scale is an arbitrary nonempty closed subset of
the real numbers. In this paper, T denotes an arbitrary
time scale. On T we define the forward and backward
jump operators σ ∈ (T,T) and ρ ∈ (T,T) such that
σ(t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t}.

Definition 1.1. A point t ∈ T is said to be left-
dense if ρ(t) = t and t ̸= inf T, right-dense if σ(t) = t
and t ̸= supT, left-scattered if ρ(t) < t and right-scattered
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if σ(t) > t. The set Tκ is defined to be T if T does not
have a left-scattered maximum, otherwise it is T without
the left-scattered maximum.

Definition 1.2. A function f ∈ (T,R) is called rd-
continuous if it is continuous at right-dense points and if the
left-sided limits exist at left-dense points, while f is called
regressive if 1 + µ(t)f(t) ̸= 0, where µ(t) = σ(t) − t. Crd

denotes the set of rd-continuous functions, while R denotes
the set of all regressive and rd-continuous functions, and
R+ = {f |f ∈ R, 1 + µ(t)f(t) > 0, ∀t ∈ T}.

Definition 1.3: For some t ∈ Tκ, and a function
f ∈ (T,R), the delta derivative of f at t is denoted
by f∆(t) (provided it exists) with the property such that
for every ε > 0 there exists a neighborhood U of t satisfying

|f(σ(t)) − f(s) − f∆(t)(σ(t) − s)| ≤ ε|σ(t) − s|
for all s ∈ U .

Note that if T = R, then f∆(t) becomes the usual
derivative f ′(t), while f∆(t) = f(t + 1) − f(t) if T = Z,
which represents the forward difference.

Definition 1.4: For p ∈ R, the exponential function is
defined by

ep(t, s) = exp(
∫ t

s
ξµ(τ)(p(τ))∆τ) for s, t ∈ T.

If T = R, then

ep(t, s) = exp(
∫ t

s
p(τ)dτ), for s, t ∈ R,

If T = Z, then

ep(t, s) =
t−1∏
τ=s

[1 + p(τ)], for s, t ∈ Z and s < t.

The following two theorems include some known
properties on the exponential function.

Theorem 1.5 [41, Theorem 5.1]. If p ∈ R, and fix
t0 ∈ T, then the exponential function ep(t, t0) is the
unique solution of the following initial value problem y∆(t) = p(t)y(t),

y(t0) = 1.

Theorem 1.6 [41, Theorem 5.2]. If p ∈ R+, then
ep(t, s) > 0 for ∀s, t ∈ T.

Recently, Benkhettou etc. developed a conformable
fractional calculus theory on arbitrary time scales [42], and
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established the basic tools for fractional differentiation and
fractional integration on time scales.

Definition 1.7 [42, Definition 1]. For t ∈ Tκ, α ∈ (0, 1],
and a function f ∈ (T,R), the fractional derivative of α
order for f at t is denoted by f (α)(t) (provided it exists)
with the property such that for every ε > 0 there exists a
neighborhood U of t satisfying

|[f(σ(t)) − f(s)]t1−α − f (α)(t)(σ(t) − s)| ≤ ε|σ(t) − s|
for all s ∈ U .

Definition 1.8 [42, Definition 28]. If F (α)(t) =
f(t), t ∈ Tκ, then F is called an α-order antiderivative
of f , and the Cauchy α-fractional integral of f is defined
by∫ b

a
f(t)∆αt =

∫ b

a
f(t)tα−1∆t = F (b) − F (a), where

a, b ∈ T.

Theorem 1.9 [42, Theorem 4]. For t ∈ Tκ, α ∈ (0, 1],
and a function f ∈ (T,R), the following conclusions hold:

(i). If f is conformal fractional differentiable of order α
at t > 0, then f is continuous at t.

(ii). If f is continuous at t and t is right-scattered, then
f is conformable fractional differentiable of order α at t

with f (α)(t) =
f(σ(t))− f(t)

σ(t)− t
t1−α =

f(σ(t))− f(t)
µ(t)

t1−α.

(iii). If t is right-dense, then f is conformable fractional
differentiable of order α at t if, and only if, the limit

lim
s→t

f(s)− f(t)
s− t t1−α exists as a finite number. In this case,

f (α)(t) = lim
s→t

f(s)− f(t)
s− t t1−α.

(iv). If f is fractional differentiable of order α at t, then
f(σ(t)) = f(t) + µ(t)t1−αf (α)(t).

Corollary 1.10. According to the definition of the
conformable fractional differentiable of order α, it holds
that f (α)(t) = t1−αf∆(t), where f∆(t) is the usual ∆
derivative in the case α = 1. Furthermore, if f (α)(t) > 0
(< 0) for t > 0, then f is increasing (decreasing) for t > 0.

By a combination of Theorem 1.5 and Corollary 1.10 one
can obtain the following theorem.

Theorem 1.11: Let p̃(t) = tα−1p(t), α ∈ (0, 1]. If
p̃ ∈ R, and fix t0 ∈ T, then the exponential function
e
p̃
(t, t0) is the unique solution of the following initial value

problem y(α)(t) = p(t)y(t),

y(t0) = 1.

Theorem 1.12 [42, Theorem 15]. Assume f, g ∈ (T,R)
are conformable fractional differentiable of order α. Then

(i). (f + g)(α)(t) = f (α)(t) + g(α)(t).

(ii). (fg)(α)(t) = f (α)(t)g(t) + f(σ(t))g(α)(t)

= f (α)(t)g(σ(t)) + f(t)g(α)(t).

(iii). ( 1
f
)(α)(t) = − f (α)(t)

f(t)f(σ(t))
.

(iv). (fg )
(α)(t) =

f (α)(t)g(t)− f(t)g(α)(t)
g(t)g(σ(t))

.

Theorem 1.13 [42, Theorem 31]. Let α ∈ (0, 1],
a, b, c ∈ T, λ ∈ R, and f, g be two rd-continuous
functions. Then the following properties hold:

(i).
∫ b

a
[f(t) + g(t)]∆αt =

∫ b

a
f(t)∆αt+

∫ b

a
g(t)∆αt.

(ii).
∫ b

a
(λf)(t)∆αt = λ

∫ b

a
f(t)∆αt.

(iii).
∫ b

a
f(t)∆αt = −

∫ a

b
f(t)∆αt.

(iv).
∫ b

a
f(t)∆αt =

∫ c

a
f(t)∆αt+

∫ b

c
f(t)∆αt.

(v).
∫ a

a
f(t)∆αt = 0.

(vi). For |f(t)| ≤ g(t), it holds that |
∫ b

a
f(t)∆αt| ≤∫ b

a
g(t)∆αt.

(vii). If f(t) > 0, then
∫ b

a
f(t)∆αt ≥ 0.

Theorem 1.14. Let α ∈ (0, 1], f, g be two rd-continuous
functions. Then∫ b

a
f (α)(t)g(t)∆αt = [f(t)g(t)]ba−

∫ b

a
f(σ(t))g(α)(t)∆αt.

The proof of Theorem 1.14 can be completed by fulfilling
α-fractional integral for the first equality in Theorem 1.12
(ii).

Motivated by the analysis above, in this paper, we will
consider oscillation of solutions of the following fractional
dynamic equation with damping term on time scales of the
following form:

(a(t)[r(t)x(α)(t)](α))(α) + p(t)[r(t)x(α)(t)](α)

+q(t)x(t) = 0, t ∈ T0, (1.1)
where α ∈ (0, 1], T is an arbitrary time scale, T0 =
[t0,∞)

∩
T, t0 > 0, a, r, p, q ∈ Crd(T0,R+).

A solution of Eq. (1.1) is said to be oscillatory if it is
neither eventually positive nor eventually negative, otherwise
it is nonoscillatory. Eq. (1.1) is said to be oscillatory in case
all its solutions are oscillatory.

We will establish some new oscillation criteria for Eq.
(1.1) by properties of conformable fractional calculus and
generalized Riccati transformation technique in Section 2,
and present some applications for the established results in
Section 3. Some conclusions are presented in Section 4.
Throughout this paper, R denotes the set of real numbers
and R+ = (0,∞), while Z denotes the set of integers.
ti ∈ T, [ti,∞)T = [ti,∞)

∩
T, i = 0, 1, ..., 5. For the

sake of convenience, denote δ1(t, ti) =
∫ t

ti

e
− p̃

a

(s, t0)

a(s)
∆αs,

where p̃(t) = tα−1p(t).
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II. MAIN RESULTS

Lemma 2.1. Suppose − p̃
a ∈ R+, and assume that

∫∞
t0

e
− p̃

a

(s, t0)

a(s)
∆αs = ∞, (2.1)∫∞

t0
1

r(s)
∆αs = ∞, (2.2)

and Eq. (1.1) has a positive solution x on [t0,∞)T. Then
we have the following statements:

(i). There exists a sufficiently large t1 such that

(
a(t)[r(t)x(α)(t)](α)

e
− p̃

a

(t, t0)
)(α) < 0, [r(t)x(α)(t)](α) > 0 on

[t1,∞)T.

(ii). If furthermore assume that

lim
t→∞

sup
∫ t

t0
[ 1
r(ξ)

∫∞
ξ

(

e
− p̃

a

(τ, t0)

a(τ)

∫∞
τ

q(s)
e
− p̃

a

(σ(s), t0)
∆αs)

∆ατ ]∆αξ = ∞, (2.3)

then either there exists a sufficiently large t4 such
that x(α)(t) > 0 on [t4,∞)T or lim

t→∞
x(t) = 0.

Proof of (i). By − p̃
a ∈ R+ and Theorem 1.6, we

have e
− p̃

a

(t, t0) > 0. Since x is a positive solution of (1.1)

on [t0,∞)T, by Theorem 1.12 (iv) and Theorem 1.11 we
obtain that

(
a(t)[r(t)x(α)(t)](α)

e
− p̃

a

(t, t0)
)(α) =

1
e
− p̃

a

(t, t0)e
− p̃

a

(σ(t), t0)
{e

− p̃
a

(t, t0)(a(t)[r(t)x
(α)(t)](α))(α)

−(e
− p̃

a

(t, t0))
(α)a(t)[r(t)x(α)(t)](α)}

=
a(t)[r(t)x(α)(t)](α))(α) + p(t)[r(t)x(α)(t)](α)

e
− p̃

a

(σ(t), t0)

=
−q(t)x(t)

e
− p̃

a

(σ(t), t0)
< 0. (2.4)

According to Corollary 1.10 one can see a(t)[r(t)x(α)(t)](α)

e
− p̃

a

(t, t0)

is decreasing on [t0,∞)T. Furthermore, by Theorem 1.6
one has e

− p̃
a

(t, t0) > 0. So considering a(t) > 0 one

can obtain that [r(t)x(α)(t)](α) is eventually of one sign.
We claim [r(t)x(α)(t)](α) > 0 on [t1,∞)T. Otherwise,
assume there exists a sufficiently large t2 > t1 such that
[r(t)x(α)(t)](α) < 0 on t ∈ [t2,∞)T. Then from Corollary
1.10 one can see r(t)x(α)(t) is decreasing on [t2,∞)T, and
from Definition 1.8 it holds that

r(t)x(α)(t)− r(t2)x
(α)(t2)

=
∫ t

t2

e
− p̃

a

(s, t0)a(s)[r(s)x
(α)(s)](α)

e
− p̃

a

(s, t0)a(s)
∆αs

≤ a(t2)[r(t2)x
(α)(t2)]

(α)

e
− p̃

a

(t2, t0)

∫ t

t2

e
− p̃

a

(s, t0)

a(s)
∆αs. (2.5)

It follows from (2.1) that lim
t→∞

r(t)x(α)(t) = −∞, and thus
there exists a sufficiently large t3 ∈ [t2,∞)T such that
r(t)x(α)(t) < 0 on [t3,∞)T. So

x(t)− x(t3) =
∫ t

t3

r(s)x(α)(s)
r(s)

∆αs

≤ r(t3)x
(α)(t3)

∫ t

t3
1

r(s)
∆αs.

Due to (2.2) one can deduce that lim
t→∞

x(t) = −∞, which

leads to a contradiction. So it holds that [r(t)x(α)(t)](α) > 0
on [t1,∞)T, and the proof is complete.

Proof of (ii). According to (i), since [r(t)x(α)(t)](α) > 0
on [t1,∞)T, from Corollary 1.10 one can see that x(α)(t)
is eventually of one sign. So there exists a sufficiently large
t4 > t1 such that either x(α)(t) > 0 or x(α)(t) < 0 on
[t4,∞)T.

If x(α)(t) < 0, then x(t) is decreasing, and
considering x(t) is a positive solution of Eq. (1.1) on
[t0,∞)T, one can obtain that lim

t→∞
x(t) = β1 ≥ 0 and

lim
t→∞

r(t)x(α)(t) = β2 ≤ 0. We claim β1 = 0. Otherwise,
assume β1 > 0. Then there exists t5 such that x(t) ≥ β1 on
[t5,∞)T, and fulfilling α-fractional integral for (2.4) from
t to ∞ yields

−a(t)[r(t)x(α)(t)](α)

e
− p̃

a

(t, t0)

= − lim
t→∞

a(t)[r(t)x(α)(t)](α)

e
− p̃

a

(t, t0)
+
∫∞
t

−q(s)x(s)
e
− p̃

a

(σ(s), t0)
∆αs

≤ −
∫∞
t

q(s)x(s)
e
− p̃

a

(σ(s), t0)
∆αs

≤ −β1

∫∞
t

q(s)
e
− p̃

a

(σ(s), t0)
∆αs,

which is followed by

−[r(t)x(α)(t)](α) ≤ −β1[

e
− p̃

a

(t, t0)

a(t)

∫ ∞

t

q(s)

e
− p̃

a

(σ(s), t0)
∆αs].

(2.6)

Substituting t with τ in (2.6), fulfilling α-fractional integral
for (2.6) with respect to τ from t to ∞ yields

r(t)x(α)(t) = lim
t→∞

r(t)x(α)(t)

−β1

∫∞
t

(

e
− p̃

a

(τ, t0)

a(τ)

∫∞
τ

q(s)
e
− p̃

a

(σ(s), t0)
∆αs)∆ατ

= β2 − β1

∫∞
t

(

e
− p̃

a

(τ, t0)

a(τ)

∫∞
τ

q(s)
e
− p̃

a

(σ(s), t0)
∆αs)∆ατ

≤ −β1

∫∞
t

(

e
− p̃

a

(τ, t0)

a(τ)

∫∞
τ

q(s)
e
− p̃

a

(σ(s), t0)
∆αs)∆ατ,

which implies

x(α)(t) ≤ −β1
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[ 1
r(t)

∫∞
t

(

e
− p̃

a

(τ, t0)

a(τ)

∫∞
τ

q(s)
e
− p̃

a

(σ(s), t0)
∆αs)∆ατ ].(2.7)

Substituting t with ξ in (2.7), fulfilling α-fractional
integral for (2.7) with respect to ξ from t5 to t yields

x(t)− x(tt) ≤ −β1

∫ t

t5
[ 1
r(ξ)

∫∞
ξ

(

e
− p̃

a

(τ, t0)

a(τ)∫∞
τ

q(s)
e
− p̃

a

(σ(s), t0)
∆αs)∆ατ ]∆αξ. (2.8)

By (2.8) and (2.3) we have lim
t→∞

x(t) = −∞, which
leads to a contradiction. So it holds that β1 = 0. The proof
is completed.

Lemma 2.2. Suppose − p̃
a ∈ R+, and assume that x

is a positive solution of Eq. (1.1) such that

[r(t)x(α)(t)](α) > 0, x(α)(t) > 0 on [t1,∞)T,
where t1 ≥ t0 is sufficiently large. Then we have

x(α)(t) ≥ δ1(t, t1)
r(t)

[
a(t)[r(t)x(α)(t)](α)

e
− p̃

a

(t, t0)
].

Proof . From Lemma 2.1 one can see that
a(t)[r(t)x(α)(t)](α)

e
− p̃

a

(t, t0)
is decreasing on [t1,∞). So

r(t)x(α)(t) ≥ r(t)x(α)(t)− r(t1)x
(α)(t1)

=
∫ t

t1

e
− p̃

a

(s, t0)a(s)[r(s)x
(α)(s)](α)

e
− p̃

a

(s, t0)a(s)
∆αs

≥ a(t)[r(t)x(α)(t)](α)

e
− p̃

a

(t, t0)

∫ t

t1

e
− p̃

a

(s, t0)

a(s)
∆αs

= δ1(t, t1)
a(t)[r(t)x(α)(t)](α)

e
− p̃

a

(t, t0)
,

and then

x(α)(t) ≥ δ1(t, t1)
r(t)

[
a(t)[r(t)x(α)(t)](α)

e
− p̃

a

(t, t0)
].

The proof is completed.

Theorem 2.3. Assume (2.1), (2.2), (2.3) hold, − p̃
a ∈ R+,

ϕ, φ are two given nonnegative functions on T, and for all
sufficiently large t1, there exists t2 > t1 such that

lim
t→∞

sup{
∫ t

t2
{q(s) ϕ(s)

e
− p̃

a

(σ(s), t0)
− ϕ(s)[a(s)φ(s)](α)

+
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
}∆αs}

= ∞. (2.9)

Then every solution of Eq. (1.1) is oscillatory or tends to
zero.

Proof . Assume (1.1) has a nonoscillatory solution x

on [t0,∞)T. Without loss of generality, assume x(t) > 0 on
[t1,∞)T, for some sufficiently large t1. By Lemma 2.1 (ii)
it holds either x(α)(t) > 0 on [t2,∞)T for some sufficiently
large t2 > t1 or lim

t→∞
x(t) = 0.

Now we consider the case x(α)(t) > 0 on [t2,∞)T. To
this end, we define the generalized Riccati function:

ω(t) = ϕ(t)a(t)[
(r(t)x(α)(t))(α)

x(t)e
− p̃

a

(t, t0)
+ φ(t)].

Then by Lemma 2.1 (i) one has ω(t) ≥ 0, and by
Theorem 1.12 (ii) and Theorem 1.11 one can deduce that

ω(α)(t) =
ϕ(t)
x(t)

[
a(t)(r(t)x(α)(t))(α)

e
− p̃

a

(t, t0)
](α)

+[
ϕ(t)
x(t)

](α)
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

e
− p̃

a

(σ(t), t0)

+ϕ(t)[a(t)φ(t)](α) + ϕ(α)(t)a(σ(t))φ(σ(t))

=
ϕ(t)
x(t)

1
e
− p̃

a

(t, t0)e
− p̃

a

(σ(t), t0)

{e
− p̃

a

(t, t0)(a(t)[r(t)x
(α)(t)](α))(α)

−(e
− p̃

a

(t, t0))
(α)a(t)[r(t)x(α)(t)](α)}

+[
x(t)ϕ(α)(t)− x(α)(t)ϕ(t)

x(t)x(σ(t))
]
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

e
− p̃

a

(σ(t), t0)

+ϕ(t)[a(t)φ(t)](α) + ϕ(α)(t)a(σ(t))φ(σ(t))

=
ϕ(t)
x(t)

[
(a(t)[r(t)x(α)(t)](α))(α) + p(t)[r(t)x(α)(t)](α)

e
− p̃

a

(σ(t), t0)
]

+
ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))

−[
ϕ(t)x(α)(t)

x(t)
]
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

x(σ(t))e
− p̃

a

(σ(t), t0)

+ϕ(t)[a(t)φ(t)](α)

= −q(t)
ϕ(t)

e
− p̃

a

(σ(t), t0)
+

ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))

−[
ϕ(t)x(α)(t)

x(t)
]
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

x(σ(t))e
− p̃

a

(σ(t), t0)

+ϕ(t)[a(t)φ(t)](α).

From Lemma 2.2 one furthermore has

ω(α)(t) ≤ −q(t)
ϕ(t)

e
− p̃

a

(σ(t), t0)
+

ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))

−(
ϕ(t)
x(t)

)
δ1(t, t2)
r(t)

[
a(t)[r(t)x(α)(t)](α)

e
− p̃

a

(t, t0)
]

a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

x(σ(t))e
− p̃

a

(σ(t), t0)
+ ϕ(t)[a(t)φ(t)](α)

≤ −q(t)
ϕ(t)

e
− p̃

a

(σ(t), t0)
+

ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))

−(
ϕ(t)

x(σ(t))
)
δ1(t, t2)
r(t)

[
a(σ(t))[r(σ(t))x(α)(σ(t))](α)

e
− p̃

a

(σ(t), t0)
]
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a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

x(σ(t))e
− p̃

a

(σ(t), t0)
+ ϕ(t)[a(t)φ(t)](α)

= −q(t)
ϕ(t)

e
− p̃

a

(σ(t), t0)
+

ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))

−[
ϕ(t)δ1(t, t2)

r(t)
][
a(σ(t))(r(σ(t))x(α)(σ(t)))(α)

x(σ(t))e
− p̃

a

(σ(t), t0)
]2

+ϕ(t)[a(t)φ(t)](α)

= −q(t)
ϕ(t)

e
− p̃

a

(σ(t), t0)
+

ϕ(α)(t)
ϕ(σ(t))

ω(σ(t))− [
ϕ(t)δ1(t, t2)

r(t)
]

[
ω(σ(t))
ϕ(σ(t))

− a(σ(t))φ(σ(t))]2 + ϕ(t)[a(t)φ(t)](α)

= −q(t)
ϕ(t)

e
− p̃

a

(σ(t), t0)
+ ϕ(t)[a(t)φ(t)](α)

−ϕ(t)δ1(t, t2)a
2(σ(t))φ2(σ(t))
r(t)

+[
ϕ(α)(t)
ϕ(σ(t))

+ 2
ϕ(t)δ1(t, t2)a(σ(t))φ(σ(t))

r(t)ϕ(σ(t))
]ω(σ(t))

− ϕ(t)δ1(t, t2)
r(t)ϕ2(σ(t))

ω2(σ(t))

≤ −q(t)
ϕ(t)

e
− p̃

a

(σ(t), t0)
+ ϕ(t)[a(t)φ(t)](α)

−ϕ(t)δ1(t, t2)a
2(σ(t))φ2(σ(t))
r(t)

+
[ϕ(α)(t)r(t) + 2ϕ(t)δ1(t, t2)a(σ(t))φ(σ(t))]

2

4r(t)ϕ(t)δ1(t, t2)
. (2.10)

Substituting t with s in (2.10), fulfilling α-fractional
integral for (2.10) with respect to s from t2 to t yields∫ t

t2
{q(s) ϕ(s)

e
− p̃

a

(σ(s), t0)
− ϕ(s)[a(s)φ(s)](α)

+
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
}∆αs

≤ ω(t2)− ω(t) ≤ ω(t2),
which contradicts the condition (2.9), and thus the proof is
completed.

Corollary 2.4. in the case T = R, if we assume
that

∫∞
t0

e
− p̃

a

(s, t0)

a(s)
sα−1ds = ∞, (2.11)∫∞

t0
1

r(s)
sα−1ds = ∞, (2.12)

∫∞
t0

[
ξα−1

r(ξ)

∫∞
ξ

(

e
− p̃

a

(τ, t0)

a(τ)

∫∞
τ

q(s)sα−1

e
− p̃

a

(σ(s), t0)
ds)τα−1dτ ]dξ

= ∞, (2.13)

and for all sufficiently large t1, there exists t2 such
that

lim
t→∞

sup{
∫ t

t2
{q(s) ϕ(s)

e
− p̃

a

(s, t0)
− ϕ(s)s1−α[a(s)φ(s)]′

+
ϕ(s)δ1(s, t2)a

2(s)φ2(s)
r(s)

− [s1−αϕ′(s)r(s) + 2ϕ(s)δ1(s, t2)a(s)φ(s)]
2

4r(s)ϕ(s)δ1(s, t2)
}sα−1ds}

= ∞, (2.14)

where ϕ, φ are two given nonnegative functions on
R, then every solution of Eq. (1.1) is oscillatory or tends to
zero.

Corollary 2.5. Let T = Z and − p̃
a ∈ R+. Assume

that

∞∑
s=t0

e
− p̃

a

(s, t0)

a(s)
sα−1 = ∞, (2.15)

∞∑
s=t0

1
r(s)

sα−1 = ∞, (2.16)

∞∑
ξ=t0

[
ξα−1

r(ξ)

∞∑
τ=ξ

τα−1(

e
− p̃

a

(τ, t0)

a(τ)

∞∑
s=τ

q(s)sα−1

e
− p̃

a

(s+ 1, t0)
)]

= ∞, (2.17)

and for all sufficiently large t1, there exists t2 such
that

lim
t→∞

sup{
t−1∑
s=t2

{q(s) ϕ(s)
e
− p̃

a

(s+ 1, t0)
− ϕ(s)s1−α[a(s+ 1)

φ(s+1)−a(s)φ(s)]+
ϕ(s)δ1(s, t2)a

2(s+ 1)φ2(s+ 1)
r(s)

−

[s1−α(ϕ(s+ 1)− ϕ(s))r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
}}

= ∞, (2.18)

where ϕ, φ are two given nonnegative functions on
Z. Then every solution of Eq. (1.1) is oscillatory or tends
to zero.

Based on the results above, furthermore we prove and
establish some Philos type oscillation criteria for Eq. (1.1).

Theorem 2.6. Assume (2.1)-(2.3) hold, and −p
a ∈ R+.

Define D = {(t, s)|t ≥ s ≥ t0}. If there exists a function
H ∈ Crd(D,R) such that

H(t, t) = 0, for t ≥ t0,

H(t, s) > 0, for t > s ≥ t0, (2.19)

and H has a nonpositive continuous α− partial fractional
derivative H

(α)
s (t, s) with respect to the second variable, and

lim
t→∞

sup 1
H(t, t0)

{
∫ t

t0
H(t, s)[q(s)

ϕ(s)
e
− p̃

a

(σ(s), t0)
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−ϕ(s)(a(s)φ(s))(α) +
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
]∆αs} = ∞,

(2.20)

where t2 is sufficiently large. Then every solution of
Eq. (1.1) is oscillatory or tends to zero.

Proof . Assume (1.1) has a nonoscillatory solution x
on [t0,∞)T. Without loss of generality, we may assume
x(t) > 0 on [t1,∞)T, where t1 is sufficiently large. By
Lemma 2.1 (ii) we have either x(α)(t) > 0 on [t2,∞)T for
some sufficiently large t2 or lim

t→∞
x(t) = 0.

Now we assume x(α)(t) > 0 on [t2,∞)T. Let ω(t) be
defined as in Theorem 2.3. By (2.10) we have

q(t)
ϕ(t)

e
− p̃

a

(σ(t), t0)
− ϕ(t)(a(t)φ(t))(α)

+
ϕ(t)δ1(t, t2)a

2(σ(t))φ2(σ(t))
r(t)

− [ϕ(α)(t)r(t) + 2ϕ(t)δ1(t, t2)a(σ(t))φ(σ(t))]
2

4r(t)ϕ(t)δ1(t, t2)

≤ −ω(α)(t). (2.21)

Substituting t with s in (2.21), multiplying both sides
by H(t, s) and fulfilling α-fractional integral with respect to
s from t2 to t, together with Theorem 1.14 one can obtain
that∫ t

t2
H(t, s){q(s) ϕ(s)

e
− p̃

a

(σ(s), t0)
− ϕ(s)(a(s)φ(s))(α)

+
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
}∆αs

≤ −
∫ t

t2
H(t, s)ω(α)(s)∆αs

= H(t, t2)ω(t2) +
∫ t

t2
H

(α)
s (t, s)ω(σ(s))∆αs

≤ H(t, t2)ω(t2) ≤ H(t, t0)ω(t2),

where in the last two steps we have used the fact that
the function H(t, s) is decreasing with respect to the second
variable due to H

(α)
s (t, s) is nonpositive. Then∫ t

t0
H(t, s)[q(s)

ϕ(s)
e
− p̃

a

(σ(s), t0)
− ϕ(s)(a(s)φ(s))(α)

+
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
]∆αs

=
∫ t2
t0

H(t, s)[q(s)
ϕ(s)

e
− p̃

a

(σ(s), t0)
− ϕ(s)(a(s)φ(s))(α)

+
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
]∆αs

+
∫ t

t2
H(t, s)[q(s)

ϕ(s)
e
− p̃

a

(σ(s), t0)
− ϕ(s)(a(s)φ(s))(α)

+
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
]∆αs

≤ H(t, t0)ω(t2) +H(t, t0)
∫ t2
t0

|q(s) ϕ(s)
e
− p̃

a

(σ(s), t0)

−ϕ(s)(a(s)φ(s))(α) +
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
|∆αs.

Furthermore,

lim
t→∞

sup 1
H(t, t0)

{
∫ t

t0
H(t, s)[q(s)

ϕ(s)
e
− p̃

a

(σ(s), t0)

−ϕ(s)(a(s)φ(s))(α) +
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
]∆αs

≤ ω(t2) +
∫ t2
t0

|q(s) ϕ(s)
e
− p̃

a

(σ(s), t0)
− ϕ(s)(a(s)φ(s))(α)

+
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
|∆αs

< ∞,

which contradicts (2.20), and then the proof is completed.

Theorem 2.7. Assume that (2.1), (2.2), (2.3) hold,
and − p̃

a ∈ R+. If either of the following two conditions
satisfy:

(i). lim
t→∞

sup 1
(t− t0)

m {
∫ t

t0
(t− s)m[q(s)

ϕ(s)
e
− p̃

a

(σ(s), t0)

−ϕ(s)(a(s)φ(s))(α) +
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
]∆αs}

= ∞, m ≥ 1, (2.22)

(ii). lim
t→∞

sup 1
(ln t− ln t0)

{
∫ t

t0
(ln t− ln s)

[q(s)
ϕ(s)

e
− p̃

a

(σ(s), t0)
− ϕ(s)(a(s)φ(s))(α)

+
ϕ(s)δ1(s, t2)a

2(σ(s))φ2(σ(s))
r(s)

− [ϕ(α)(s)r(s) + 2ϕ(s)δ1(s, t2)a(σ(s))φ(σ(s))]
2

4r(s)ϕ(s)δ1(s, t2)
]∆αs}

= ∞, (2.23)

then every solution of Eq. (1.1) is oscillatory or tends
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to zero.

The proof of Theorem 2.7 can be reached by setting
H(t, s) = (t − s)m, m ≥ 1 or H(t, s) = ln t

s in Theorem
2.6.

Remark 1. In the established oscillation criteria above,
if we set α = 1, then the results reduce to corresponding
oscillation criteria for dynamic equations on time scales
involving integer order derivative.

III. APPLICATIONS

In this section, we will present some applications for the
established results above. First we consider the following
fractional differential equation with damping term:

Example 1. {
√
t[t−

1
2x( 1

2 )(t)](
1
2 )}( 1

2 )+t−
5
2 [t−

1
2x( 1

2 )(t)](
1
2 )

+t−
3
2x(t) = 0, t ∈ [2,∞). (3.1)

Related to (1.1), one has T = R, α =
1
2 , a(t) =

√
t, p(t) = t−

5
2 , q(t) = t−

3
2 , p̃(t) =

t−
1
2 p(t) = t−3, r(t) = t−

1
2 , t0 = 2. So

µ(t) = σ(t) − t = 0, which means − p̃
a ∈ R+. Then

e
− p̃

a

(t, t0) = e
− p̃

a

(t, 2) = exp(−
∫ t

2

p̃(s)
a(s)

ds). Moreover,

1 > exp(−
∫ t

2

p̃(s)
a(s)

ds) ≥ 1−
∫ t

2

p̃(s)
a(s)

ds = 1−
∫ t

2
s−

7
2 ds

= 1 + 2
5[t

− 5
2 − 2−

5
2 ] > 3

5 .

So towards (2.1)-(2.2), by Definition 1.8 one can deduce that

∫∞
t0

e
− p̃

a

(s, t0)

a(s)
∆αs =

∫∞
t0

e
− p̃

a

(s, t0)

a(s)
sα−1∆s

=
∫∞
t0

e
− p̃

a

(s, t0)

a(s)
sα−1ds

> 3
5

∫∞
2

1√
s
sα−1ds = 3

5

∫∞
2

1
sds = ∞,

and∫∞
t0

1
r(s)

∆αs =
∫∞
t0

1
r(s)

s−
1
2 ds =

∫∞
t0

1ds = ∞.

Furthermore, for (2.3) one has

∫∞
t0

[ 1
r(ξ)

∫∞
ξ

(

e
− p̃

a

(τ, t0)

a(τ)

∫∞
τ

q(s)
e
− p̃

a

(σ(s), t0)
∆αs)∆ατ ]∆αξ

=
∫∞
t0

ξα−1[ 1
r(ξ)

∫∞
ξ

τα−1(

e
− p̃

a

(τ, t0)

a(τ)∫∞
τ

q(s)sα−1

e
− p̃

a

(σ(s), t0)
∆s)∆τ ]∆ξ

=
∫∞
t0

ξα−1[ 1
r(ξ)

∫∞
ξ

τα−1(

e
− p̃

a

(τ, t0)

a(τ)∫∞
τ

q(s)sα−1

e
− p̃

a

(σ(s), t0)
ds)dτ ]dξ

=
∫∞
2

[
∫∞
ξ

τ−
1
2 (

e
− p̃

a

(τ, 2)
√
τ

∫∞
τ

1
s2e

− p̃
a

(s, 2)
ds)dτ ]dξ

> 3
5

∫∞
2

[
∫∞
ξ

( 1τ
∫∞
τ

1
s2

ds)dτ ]dξ = 3
5

∫∞
2

[
∫∞
ξ

1
τ2

dτ ]dξ

= 3
5

∫∞
2

1
ξ
dξ = ∞.

On the other hand, for a sufficiently large t2, we have

δ1(t, t2) =
∫ t

t2

e
− p̃

a

(s, t0)

a(s)
∆αs =

∫ t

t2

e
− p̃

a

(s, t0)

a(s)
sα−1∆s

=
∫ t

t2

e
− p̃

a

(s, t0)

a(s)
sα−1ds > 3

5

∫ t

t2
1
sds → ∞ (t → ∞).

So there exists a sufficiently large t3 > t2 such that
δ1(t, t2) > 1 for t ∈ [t3,∞).

Setting ϕ(t) = t, φ(t) = 0 in (2.14), one can obtain that∫ t

t3
[q(s)

ϕ(s)
e
− p̃

a

(σ(s), t0)
− s2−2α(ϕ′(s))2r(s)

4ϕ(s)δ1(s, t2)
]sα−1ds

>
∫ t

t3
(1s − 1

4s )ds =
∫ t

t3
3
4sds → ∞ (t → ∞).

From the analysis above one can see (2.11)-(2.14) all
hold. So it follows from Corollary 2.4 that every solution of
Eq. (3.1) is oscillatory or tends to zero.

Next we consider the following fractional difference
equation:

Example 2. ∆( 1
2 ){

√
t∆( 1

2 )[t−
1
2∆( 1

2 )x(t)]}+ t−
5
2

∆( 1
2 )[t−

1
2∆( 1

2 )x(t)]+t−
3
2x(t) = 0, t ∈ [2,∞)Z, (3.2)

where ∆( 1
2 ) denotes the fractional difference operator

of order 1
2 .

Related to (1.1), one has T = Z, α = 1
2 , a(t) =√

t, p(t) = t−
5
2 , q(t) = t−

3
2 , p̃(t) = t−

1
2 p(t) =

t−3, r(t) = t−
1
2 , t0 = 2. Then µ(t) = σ(t)− t = 1, and

1− µ(t)
p̃(t)
a(t)

= 1− t−
7
2 ≥ 1− t−3 ≥ 1− 1

23
> 0,

which means − p̃
a ∈ R+. So according to [43, Lemma 2]

one can obtain that

e
− p̃

a

(t, t0) = e
− p̃

a

(t, 2) ≥ 1−
∫ t

2

p̃(s)
a(s)

∆s

= 1−
∫ t

2
s−

7
2∆s = 1−

t−1∑
s=2

s−
7
2

≥ 1−
∫ t−1

1
s−

7
2 ds = 1 + 2

5[(t− 1)−
5
2 − 1] > 3

5 ,

and

e
− p̃

a

(t, t0) ≤ exp(−
∫ t

2

p̃(s)
a(s)

∆s) < 1.

To use Corollary 2.5, one needs to verify (2.15)-(2.18). To
this end, one has

∞∑
s=t0

e
− p̃

a

(s, t0)

a(s)
sα−1 =

∞∑
s=2

e
− p̃

a

(s, 2)

a(s)
sα−1
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=
∞∑
s=2

e
− p̃

a

(s, 2)

s > 3
5

∞∑
s=2

1
s = ∞,

and

∞∑
s=t0

1
r(s)

sα−1 =
∞∑
s=2

1 = ∞.

Furthermore,

∞∑
ξ=t0

[
ξα−1

r(ξ)

∞∑
τ=ξ

τα−1(

e
− p̃

a

(τ, t0)

a(τ)

∞∑
s=τ

q(s)sα−1

e
− p̃

a

(s+ 1, t0)
)]

=
∞∑

ξ=t0

[
ξα−1

r(ξ)

∞∑
τ=ξ

τα−1(

e
− p̃

a

(τ, 2)

a(τ)

∞∑
s=τ

q(s)sα−1

e
− p̃

a

(s+ 1, 2)
)]

> 3
5

∞∑
ξ=2

[
∞∑
τ=ξ

( 1τ

∞∑
s=τ

1
s2

)] > 3
5

∞∑
ξ=2

[
∞∑
τ=ξ

( 1τ

∞∑
s=τ

1
s(s+ 1)

)]

= 3
5

∞∑
ξ=2

∞∑
τ=ξ

1
τ2

> 3
5

∞∑
ξ=2

∞∑
τ=ξ

1
τ(τ + 1)

= 3
5

∞∑
ξ=2

1
ξ
= ∞.

So (2.15)-(2.17) hold. Moreover, since for a sufficiently
large t2, it holds that

δ1(t, t2) =
t−1∑
s=t2

e
− p̃

a

(s, t0)

a(s)
sα−1

> 3
5

t−1∑
s=t2

1
s → ∞ (t → ∞),

then there exists t3 > t2 such that δ1(t, t2) > 1 for
t ∈ [t3,∞)Z. If we let ϕ(t) = t, φ(t) = 0 in (2.18), then
one can obtain that

t−1∑
s=t3

[q(s)
ϕ(s)

e
− p̃

a

(s+ 1, t0)
−s2−2α(ϕ(s+ 1)− ϕ(s))2r(s)

4ϕ(s)δ1(s, t2)
]sα−1

>
t−1∑
s=t3

(1s − 1
4s ) =

t−1∑
s=t3

3
4s → ∞ (t → ∞).

So (2.18) also holds. After an application of Corollary
2.5 one can see that every solution of Eq. (3.2) is oscillatory
or tends to zero.

Finally we consider the following fractional q− difference
equation:

Example 3. ∆( 3
5 ){t0.6∆( 3

5 )[t−0.4∆( 3
5 )x(t)]}

+t−2.4∆( 3
5 )[t−0.4∆( 3

5 )x(t)] + t−1.6x(t) = 0,

t ∈ [β,∞)βZ , (3.3)

where ∆( 3
5 ) denotes the fractional difference operator

of order 3
5 , β ≥ 2.

Related to (1.1), one has T = βZ, α = 3
5 , a(t) =

t0.6, p(t) = t−2.4, q(t) = t−1.6, p̃(t) = t−0.4p(t) =
t−2.8, r(t) = t−0.4, t0 = β. Then µ(t) = σ(t)−t = t(β−1),
and considerin g t ≥ β, one has

1− µ(t)
p̃(t)
a(t)

= 1− t(β − 1) 1
t3.4

= 1− (β − 1) 1
t2.4

≥ 1− (β − 1) 1
β2 =

β2 − β + 1
β2 > 0,

which means − p̃
a ∈ R+. So we obtain

e
− p̃

a

(t, t0) = e
− p̃

a

(t, β) ≥ 1−
∫ t

β

p̃(s)
a(s)

∆s

= 1−
∫ t

β
1

s3.4
∆s ≥ 1−

∫ t

β
1
s3

∆s = 1−(β−1)
t−2 − β−2

β−2 − 1

=
1 + (β − 1)t−2 − β−1

1− β−2 >
1− β−1

1− β−2

≥ 1
2− 2β−2 =

β2

2(β2 − 1)
,

and

e
− p̃

a

(t, t0) ≤ exp(−
∫ t

q

p̃(s)
a(s)

∆s) < 1.

Now we verify the conditions (2.1)-(2.3).

∫∞
t0

e
− p̃

a

(s, t0)

a(s)
∆αs =

∫∞
β

e
− p̃

a

(s, β)

a(s)
sα−1∆s

=
∫∞
β

e
− p̃

a

(s, β)

s ∆s >
β2

2(β2 − 1)

∫∞
β

1
s∆s = ∞,

and∫∞
t0

1
r(s)

∆αs =
∫∞
t0

1
r(s)

sα−1∆s =
∫∞
t0

1∆s = ∞.

Furthermore,

∫ t

t0
[ 1
r(ξ)

∫∞
ξ

(

e
− p̃

a

(τ, t0)

a(τ)

∫∞
τ

q(s)
e
− p̃

a

(σ(s), t0)
∆αs)∆ατ ]∆αξ

=
∫∞
t0

ξα−1[ 1
r(ξ)

∫∞
ξ

τα−1(

e
− p̃

a

(τ, t0)

a(τ)∫∞
τ

q(s)sα−1

e
− p̃

a

(σ(s), t0)
∆s)∆τ ]∆ξ

=
∫∞
β

ξα−1[ 1
r(ξ)

∫∞
ξ

τα−1(

e
− p̃

a

(τ, β)

a(τ)∫∞
τ

q(s)sα−1

e
− p̃

a

(σ(s), β)
∆s)∆τ ]∆ξ

>
β2

2(β2 − 1)

∫∞
β

[
∫∞
ξ

( 1τ
∫∞
τ

1
s2

∆s)∆τ ]∆ξ

>
β2

2(β2 − 1)

∫∞
β

[
∫∞
ξ

( 1τ
∫∞
τ

1
sσ(s)

∆s)∆τ ]∆ξ

=
β2

2(β2 − 1)

∫∞
β

[
∫∞
ξ

( 1τ [−
1
s ]

∞
τ )∆τ ]∆ξ

=
β2

2(β2 − 1)

∫∞
β

[
∫∞
ξ

1
τ2

∆τ ]∆ξ

>
β2

2(β2 − 1)

∫∞
β

[
∫∞
ξ

1
τσ(τ)

∆τ ]∆ξ

=
β2

2(β2 − 1)

∫∞
β

1
ξ
∆ξ = ∞.

So (2.1)-(2.3) hold. On the other hand, one can see
for a sufficiently large t2 that

δ1(t, t2) =
∫ t

t2

e
− p̃

a

(s, t0)

a(s)
∆αs =

∫ t

t2

e
− p̃

a

(s, t0)

a(s)
sα−1∆s

>
β2

2(β2 − 1)

∫ t

t2
1
s∆s → ∞ (t → ∞).
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So there exists t3 > t2 such that δ1(t, t2) > 1 for
t ∈ [t3,∞)qZ .

To use Theorem 2.7, let m = 1, ϕ(t) = t, φ(t) = 0 in
(2.22), and one has

lim
t→∞

sup 1
(t− t0)

{
∫ t

t3
[(t− s)q(s)

ϕ(s)
e
− p̃

a

(σ(s), t0)

− (ϕ(α)(s))2r(s)
4ϕ(s)δ1(s, t2)

]∆αs}

= lim
t→∞

sup 1
(t− t0)

{
∫ t

t3
[(t− s)q(s)

ϕ(s)
e
− p̃

a

(σ(s), t0)

−s2−2α(ϕ∆(s))2r(s)
4ϕ(s)δ1(s, t2)

]sα−1∆s}

> lim
t→∞

sup 1
(t− t0)

∫ t

t3
(t− s) 34s∆s

= lim
t→∞

sup[ t
(t− β)

∫ t

t3
3
4s∆s− 3(t− t2)

4(t− β)
] = ∞,

which means (2.22) also holds, and by Theorem 2.7
one can deduce that every solution of Eq. (3.3) is oscillatory
or tends to zero.

Remark 2. From the examples presented above, one
can see that the oscillation criteria established in Section
II can be used for the research of oscillation of fractional
dynamic equations on various time scales involving
fractional differential equations and fractional difference
equations.

IV. CONCLUSIONS

We have established some new oscillation criteria for a
class of fractional dynamic equation with damping term on
time scales by use of the properties of fractional calculus
and generalized Riccati transformation technique. Oscillation
criteria for corresponding dynamic equations on time scales
involving integer order derivative are only special cases
of our results. The validity of the established results are
illustrated by some examples. We note that this approach can
be applied to research oscillation of other types of fractional
dynamic equation on time scales.

In further research, we will apply the presented method in
this paper to research oscillation of fractional delay dynamic
equation on time scales such as
(a(t)([r(t)x(α)(t)](α))ν)(α) + p(t)([r(t)x(α)(t)](α))ν +

q(t)f(x(κ(t))) = 0, t ∈ T0,
where x(α)(t) denotes the fractional derivative of order α,
κ ∈ Crd(R,R) is the delay function satisfying κ(t) ≤
t, κ∆(t) ≥ 0 and lim

t→∞
κ(t) = ∞.
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