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Abstract—In this paper, steady infiltration problems into
a homogeneous soil from a single trapezoidal channel are
considered. The horizontal part of the channel is impermeable.
There is an impermeable soil layer underlying the homogeneous
soil in some of the considered problems. These problems are
governed by a Richards’ equation. The problems are studied by
transforming the governing into a modified Helmholtz equation
and solved numerically using a Dual Reciprocity Method
(DRM). The method is implemented using MATLAB to obtain
required numerical solutions or results. The numerical results
indicate that at any point up to a certain level of soil depth,
values of suction potential obtained from the problems all are
about the same. From that level of soil depth, variations in
values of suction potential are observed. For the soil without
impermeable layer, values of suction potential decrease as the
depth of soil increases. On the other hand, for the soil with
impermeable layer, the results indicate that the closer location
to the impermeable layer, the higher values of suction potential.

Index Terms—Richards’ equation, DRM, suction potential,
single channels, impermeable layer.

I. INTRODUCTION

A number of researchers have conducted analysis of wa-
ter infiltration into homogeneous soils. Some of such

researchers are Azis et al. [2], Clements and Lobo [7],
Solekhudin [13], [14], [15], and Munadi et al. [12]. Azis et al.
implemented a Boundary Element Method (BEM) to study
steady infiltration from periodic irrigation channels with
three different cross-sectional shapes [2]. An implementation
of BEM to solve time-dependent infiltration problems from
irrigation channels has been carried out by Clements and
Lobo [7]. Unlike the previous studies, Solekhudin used a
Dual Reciprocity Method (DRM) instead of BEM to study
infiltration from periodic irrigation channels [13], [14], [15].
Following the use of the DRM, Munadi et. al. employed the
method to study steady water flow or infiltration from dif-
ferent types of single irrigation channel into a homogeneous
soil [12].

Water infiltration problems with impermeable inclusions
have been studied. Such studies have been presented by Lobo
et al. [11], Bareslavskii [3], and Bareslavskii and Matveev
[4]. Lobo et al. conducted a numerical study on infiltration
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problems from irrigation channels with impermeable inclu-
sions [11]. Bareslavskii studied the effect of an impermeable
inclusion in the underlying highly permeable pressurized
horizon on the conditions of ground water in an irrigated
layer of soil [3]. Bareslavskii and Matveev investigated a
problem of plane steady-state seepage of groundwater in
a homogeneous isotropic soil layer from a periodic system
of irrigation canals under conditions of both infiltration and
horizontal drainage [4].

None of these studies consider impermeable soil layer.
Meanwhile, in some area of agricultural field, an imper-
meable layer underlies the upper soil layer [10]. Hence,
in this research, we examine steady infiltration problems
from a single irrigation channel with impermeable horizontal
surface into homogeneous soil with and without impermeable
soil layer. Numerical method employed in this research is a
Dual Reciprocity Method (DRM), which is a type of BEM.
Some of researcher employing BEM as the numerical method
are Grecu and Vladimirescu [9] and Solekhudin [15]. The
effect of impermeable soil layer on water content in soil is
presented and discussed.

II. PROBLEM FORMULATION AND MATHEMATICAL
MODEL

We consider a homogeneous soil, Pima Clay Loam (PCL).
On the surface of the soil, a trapezoidal channel is cons-
tructed. The horizontal part of the channel is layered by
an impermeable material. It is assumed that the channel
is very long. The surface of the impermeable soil layer
is flat, and it is located at a certain level of soil depth.
The geometry of the channel and the soil surface does not
vary along the channel. The length of the skew part of
the channel is L. The width and the depth of the channel
are 4π/L and 3π/L, respectively. It is assumed that the
channel is filled with irrigation water all the time. The flux
on the surface of the channel is constant, which is v0.
From these assumptions, it may be assumed that the flow
pattern is two dimensions. Hence, it is sufficient to solve
these problems in two dimensional space. The problems may
be illustrated using a Cartesian coordinate XZ, with OZ
positively pointing downward. This description is illustrated
in Figure 1.

In this paper, we consider steady infiltration problems over
a semi infinite region defined by

{(X,Z) : X ∈ R and Z ≥ 0}. (1)

This region is denoted by R and bounded by a curve C.
Using the region R and the curve C, we wish to investigate
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the effect of the impermeable soil layer to water content in
the soil, which is expressed in terms of suction potential.
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Fig. 1: Geometries of the problems in the present study.

Steady infiltration problems studied in this paper are
governed by the following Richards’ equation,

∂

∂X

(
K (ψ)

∂ψ

∂X

)
+

∂

∂Z

(
K (ψ)

∂ψ

∂Z

)
=
∂K (ψ)

∂Z
, (2)

where K is the hydraulic conductivity and ψ is the suction
potential. Equation (2) describes a two-dimensional move-
ment of water in unsaturated soil. Equation (2), as the
mathematical model of infiltration problems in this study,
may not be solved analytically. Hence, we apply DRM to
solve Equation (2) numerically.

To obtain numerical solutions of Equation (2) using the
DRM, the equation is transformed into a modified Helmholtz
equation. To transform Equation (2) into a Helmholtz equa-
tion, a set of transformations, including the Kirchhoff trans-
formation and dimensionless variables, is needed. The trans-
formation process has been discussed by Solekhudin [13].
However, for the completion of this paper, the transformation
of Equation (2) is presented in this paper.

We first apply the Kirchhoff transformation. By using the
Kirchhoff transformation

θ =

ψ∫
−∞

K(s) ds, (3)

with
K(ψ) = K0 e

αψ, α > 0, (4)

where α is an empirical constant related to roughness of
soil and K0 is the hydraulic conductivity in saturated soil,
Equation (2) can be transformed into

∂2θ

∂X2
+
∂2θ

∂Z2
= α

∂θ

∂Z
. (5)

Notation θ is known as the Matric Flux Potential (MFP),
which is introduced by Gardner [8].

The flux normal to the surface with outward pointing unit
normal n = (n1, n2) is given by,

F = − ∂θ

∂X
n1 +

(
αθ − ∂θ

∂Z

)
n2. (6)

Boundary conditions of the problems in terms of θ are
determined as follows. From the description of the problems,
water fluxes on the skew part of the channel are v0. On the
surface of soil and horizontal part of the channel, water fluxes
are assumed to be 0. For the case of soil without impermeable
soil layer, we apply Batu’s assumption, θ = 0, ∂θ/∂X = 0
and ∂θ/∂Z = 0 as X2 + Z2 → ∞ [6]. For the case of
soil with impermeable soil layer, water can not penetrate the
impermeable soil layer. Hence, the water flux on the surface
of impermeable soil layer is 0.

Thus, for the case of infiltration into soil without imper-
meable soil layer, the boundary conditions are

F = −v0, on the skew part of the channel, (7)
F = 0, on the horizontal part of the channel, (8)
F = 0, on the soil surface outside the channel,(9)

and θ =
∂θ

∂X
=

∂θ

∂Z
= 0, for X2 + Z2 →∞. (10)

Let Z = k be the location of the surface of impermeable
soil layer. Hence, for the case of infiltration into soil with
impermeable soil layer, the boundary conditions are

F = −v0, on the skew part of the channel, (11)
F = 0, on the horizontal part of the channel, (12)
F = 0, on the soil surfaces outside the channel,(13)

θ =
∂θ

∂X
=

∂θ

∂Z
= 0, for X → −∞, and

Z ≥ 0, (14)

θ =
∂θ

∂X
=

∂θ

∂Z
= 0, for X →∞, and

Z ≥ 0, (15)
F = 0, for −∞ < X <∞ and Z = k. (16)

Substituting dimensionless variables

x =
α

2
X; z =

α

2
Z; ϑ =

π

v0L
θ; f =

2π

v0αL
F, (17)

and transformation

ϑ = ϕez (18)

to Equation (5), we obtain

∂2ϕ

∂x2
+
∂2ϕ

∂z2
= ϕ, (19)

which is a modified Helmholtz equation.
To implement DRM for solving the modified Helmholtz

equation, Region R must be bounded by a simple and closed
curve. Hence, imposed boundaries are needed. Let x = b and
x = −b be the imposed boundaries to replace x → ∞ and
x→ −∞, respectively. Line z = c is the imposed boundary
to replace z → ∞. Let L be the length of cross section of
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the skew part of the channel. Now, boundary conditions (7)
to (10) may be written in terms of ϕ as follows.

∂ϕ

∂n
=

2π

αL
e−z + n2ϕ, on the skew part of the channel,

(20)
∂ϕ

∂n
= −ϕ, on the horizontal part of the channel, (21)

∂ϕ

∂n
= −ϕ, on the soil surface outside the channel, (22)

∂ϕ

∂n
= ϕ = 0, for x = −b, and z ≥ 0, (23)

∂ϕ

∂n
= ϕ = 0, for x = b, and z ≥ 0, (24)

∂ϕ

∂n
= ϕ = 0, for − b < x < b and z = c. (25)

Similarly, boundary conditions (11) to (16) can be written as

∂ϕ

∂n
=

2π

αL
e−z + n2ϕ, on the skew part of the channel,

(26)
∂ϕ

∂n
= −ϕ, on the horizontal part of the channel, (27)

∂ϕ

∂n
= −ϕ, on the soil surface outside the channel, (28)

∂ϕ

∂n
= ϕ = 0, x = −b, and z ≥ 0, (29)

∂ϕ

∂n
= ϕ = 0, x = b, and z ≥ 0, (30)

∂ϕ

∂n
= ϕ, −b < x < b and z =

α

2
k. (31)

Here,
∂ϕ

∂n
=
∂ϕ

∂x
nx +

∂ϕ

∂z
nz,

is the normal derivative of ϕ.
An integral equation for solution of Equation (19) is

λ(ξ, η)ϕ(ξ, η) =

∫∫
R

φ(x, z; ξ, η)ϕ(x, z)dx dz

+

∫
C

[
ϕ(x, z)

∂

∂n

(
φ(x, z; ξ, η)

)
−φ(x, z; ξ, η) ∂

∂n

(
ϕ(x, z)

)]
ds,

(32)

where

λ(ξ, η) =

{
1/2 , if (ξ, η) on smooth part of C
1 , if (ξ, η) ∈ R ,

and

φ(x, z; ξ, η) =
1

4π
ln[(x− ξ)2 + (z − η)2]

is the fundamental solution of two-dimensional Laplace
equation. We then recast integral equation (32) into a system
of linear algebraic equations by discretizing the boundary
into a number of line segments and choosing a set of interior
collocation points.

III. RESULTS AND DISCUSSION

The method presented in the preceding section is applied
to solve four different infiltration problems. One of the
four problems is an infiltration problem into PCL without
impermeable soil layer. This problem is denoted as Problem
A. The other three problems are infiltration problems into
PCL with an impermeable soil layer. These three problems
are named as Problem B, Problem C, and Problem D. The
four problems are summarized in Table I.

TABLE I: Four different problems in this study.

Problem Impermeable soil layer location
Problem A No impermeable soil layer
Problem B Z = 900 cm
Problem C Z = 1100 cm
Problem D Z = 1300 cm

As been stated in the preceding section, in the DRM
implementation, Region R must be bounded by a simple
closed curve. Hence, imposed boundaries are needed. The
imposed boundaries are at x = −b, x = b, and x = c. Like
in our previous study [12], we set b = c = 10. For the
homogeneous soil considered in this study (PCL), values of
α and K0 are 0.014 cm−1 and 9.9 cm/day, respectively [1].
The length of L is 100 cm. The width and the depth of the
channel are 400/π cm and 300/π cm, respectively. The width
of horizontal surface of the channel is 101 cm.

From the description of the problems above, using DRM,
we determine numerical values of MFP (ϕ). Using Equations
(4), (17), and (18), suction potential (ψ) can be computed
using formula

ψ =
1

α
ln

(
αv0Lϕe

z

πK0

)
.

To compute ψ, v0 is set to be 0.75 of K0. This value is as
that in Basha’s study [5].

To implement the DRBEM, the boundary must be dis-
cretized into a number of line segments, and interior points
are chosen. Let N be the number of line segments, and M
be the number of interior points. As that in [12], we set
N = 800. The value of M for Problem A is 1152. For
Problem B, Problem C, and Problem D, the values of M
are 726, 896, and 1020, respectively. The value of M for
Problem A is the highest among the problems studied, as
the imposed boundary, z = 10, is the deepest level of soil
studied in this paper. On the other hand, the value of M for
Problem D is the smallest, as the surface of the impermeable
soil layer is the shallowest, at z = 6.3. Solving the problems
using the DRM presented in the preceding section, some of
numerical results obtained are shown in Figures 2 - 5, and
Tables II - VII.

Figure 2 shows surface plots of ψ over a region of
700× 700 cm2. Specifically, Figure 2(A) shows surface plot
of ψ over the region obtained from Problem A. Figure 2(B),
Figure 2(C), and Figure 2(D) are surface plots of ψ over the
region resulted from Problem B, Problem C, and Problem D,
respectively.

From the figures, we can observe that up to a depth level
of 300 cm, distributions of ψ for all four problems are about
the same. It can also be observed that higher values of ψ
occur at the area near the skew part of the channel, Which
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Fig. 2: Surface plot of suction potential over region 700× 700 cm2.

 

Fig. 3: Contour plot of suction potential over region 700× 700 cm2.
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(A) X = 30 cm 

 
 

(B) X = 60 cm 

    

 
 

(C) X = 110 cm 

 

  
 

(D)  X = 500 cm 
 

Fig. 4: Graphs of suction potential ψ at selected values of X along Z-axis.

is the source of the infiltration problems. At the same level
depth level of soil, values of ψ decreases as the distance
to the channel increases due to the condition of no water
flux at the surface of the soil outside the channel. These
results indicate that at shallow levels of soil, impermeable
layer considered in this study has no effect on water content
in the soil. Moreover, higher water content in the soil occurs
at area closer to the skew part of the channel.

The effect of the impermeable soil layer can be spotted at a
depth of more than 600 cm. Value of ψ rises as the soil level
increases. Shallower impermeable soil layer results in higher
ψ. These mean that the closer location to the impermeable
soil layer the higher water content.

Figure 3 shows the corresponding contour plots of the
surface plots in Figure 2. As can be seen, contour plots of
four problems near the channel are about the same. Variations
are detected from the depth level of soil around 300 cm.
From these contour plots, it seems that suction potentials in
the soil near the impermeable soil layer are higher than those
in the soil near the channel. It can be inferred that there is no
impact of the impermeable soil layer to water content near
the channel. The highest water content might be in the soil
near the impermeable soil layer.

Figure 4(A) describes the distribution of ψ under horizon-
tal part of the channels, at X = 30 cm. It can be seen that
graphs of ψ obtained from all problems have similar style
for the depth level less than 450 cm. Initially, values of ψ

increase gradually from the depth of around 100 cm to 125
cm, from which ψ decrease gently. This result indicates that
under the horizontal surface of the channel, water content in
the soil increases until a depth level of about 125 cm. This
is due to condition of no water flow from the horizontal
part of the channel. From a depth level of about 125 cm,
ψ decreases, indicating a decrease in water content. Up to
a depth level of 300 cm, it can be observed that graphs of
ψ for all problems considered seem to coincide. This means
that there is no effect of the impermeable soil layer to water
content in the soil. From a depth level of about 300 cm, the
impact of impermeable layer on suction potential is observed,
especially Problem B. Values of ψ resulted from Problem
B are slightly higher than those from other problems. This
means that the water content in Problem B is the highest
among other problems.

From a depth level about 450 cm, there are variations in
the fashion of the graphs of ψ. For Problem A, ψ decreases
as the depth of the soil increases. For Problem D, ψ continues
decreasing until the depth level of soil reach 600 cm, from
which ψ starts increasing. Problem B and Problem C result
in similar fashion in the graphs of ψ. Graphs of ψ increase
as the depth level increases. However, the graph of ψ for
Problem B is higher than that for Problem C. These results
indicate that for the infiltration problem into the soil without
impermeable soil layer, the water content in the soil decreases
as the depth level of soil increases. On the other hand, for the
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(A) Z = 400 cm 

 

 
 

(B) Z = 600 cm 

 
 

(C) Z = 700 cm 

 
 Fig. 5: Graphs of suction potential ψ at selected values of Z along X-axis.

infiltration problems into soil with impermeable soil layer,
after a certain depth of soil level, water content inclines as
the soil depth level increases. Moreover, the shallower the
impermeable soil layer, the higher the water content.

Figure 4(B) shows the values of ψ values at X = 60 cm,
a location below the skew part of the channel. From Z =
70 cm to Z = 100 cm, ψ is decreasing rapidly, and then
continue declining more gradually. This is due to condition
of water flux at the surface of the skew part of the channel,
resulting higher water content in the soil at the surface of
the skew part of the channel. As before, for the case of soil
without impermeable soil layer, values of ψ continue falling.
However, for the other cases, after a certain depth level, ψ is
inclining. For Problem B, ψ starts inclining at about a depth
of 460 cm. As for Problem C, it can be observe that from
about a depth of 500 cm, ψ increases. In Problem D, ψ starts
increasing at about a depth of 620 cm.

At X = 110 cm, the graph of ψ has similar trend as that
at X = 30 cm (see Figure 4(C)). For Z ≤ 80 cm, graphs of
ψ increase as Z increases. This means that the water content
in the soil is increasing as the soil goes deeper. This result
is an implication of condition of no water flux at the surface
of the soil.

At X = 500 cm (Figure 4(D)), values of ψ raise as Z
rises. This implies that the water content in the soil increases
as Z increases. This result is expected, as X = 500 cm is

sufficiently distance from the channel. From the surface of
the soil to a depth level of soil about 350 cm, it is observed
that for any value of Z, all the problems result in the same
value of ψ. From a depth level of 350 cm, variations in ψ are
noticed. At any value of Z, the shallower the impermeable
soil layer, the higher the values of ψ. The results show that
there is no impact of impermeable soil layer to water content
in the soil at shallow levels. However, the impermeable soil
layer gives impact on water content in the soil at deeper
levels.

Figure 5 shows graphs of ψ at selected values of Z along
X axis. Specifically, Figure 5(A) shows graphs of ψ along
line Z = 400 cm. Graphs of ψ along Z = 600 cm and
Z = 700 cm are shown in Figure 5(B) and Figure 5(C),
respectively. From Figure 5, it can be seen that ψ decreases
as X increases. This means that at any depth level of soil
water content in the soil decreases as the distance to the
channel increases.

From Figure 5(A), it appears that at any point, values of
ψ obtained from the four problems considered are about the
same. This shows that the effect of the impermeable layer is
negligible at a depth level of 400 cm. However, at a depth
level of 600 cm and 700 cm, the effect of impermeable layer
to values of ψ is observable. At a depth of 600 cm (Figure
5(B)), values of ψ in Problem B are 30 - 50 cm higher
than those in Problem A. Values of ψ in Problem C are
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15 - 40 cm higher than those in Problem A. For Problem
D, values of ψ are about the same as those in Problem A.
At a depth of 700 cm (Figure 5(B)), differences in values
of ψ are higher than those at a depth of 600 cm. Values
of ψ obtained in Problem B, Problem C, and Problem D
are respectively 90 - 120 cm, 55 - 100 cm, and 15 - 30 cm
higher than those obtained in Problem A. These results show
that the deeper the level of depth, the bigger the effect of
the impermeable layer. Furthermore, the impermeable layer
located at shallower level of depth results in higher water
content in the soil.

Now, we define variable I

I(x, y) = ψ(x, y)− ψA(x, y), (33)

where ψ(x, y) is the suction potential at point (x, y) and
ψA(x, y) is the suction potential obtained from Problem A
at point (x, y). Values of suction potential and I at selected
points are shown in Tables II - VII.

TABLE II: Values of ψ and I at Z = 105 cm.

Problem A Problem B Problem C Problem D
X ψ I ψ I ψ I ψ I

49 cm -64 0 -61 3 -65 -1 -63 1
196 cm -127 0 -127 0 -129 -2 -128 -1
350 cm -218 0 -219 -1 -219 -1 -217 1
490 cm -277 0 -282 -5 -278 -1 -275 2
651 cm -318 0 -327 -9 -318 0 -315 3

TABLE III: Values of ψ and I at Z = 245 cm.

Problem A Problem B Problem C Problem D
X ψ I ψ I ψ I ψ I

49 cm -87 0 -83 4 -88 -1 -87 0
196 cm -118 0 -116 2 -120 -2 -118 0
350 cm -183 0 -182 1 -184 -1 -183 0
490 cm -243 0 -244 -1 -244 -1 -243 0
651 cm -298 0 -302 -4 -297 1 -296 2

TABLE IV: Values of ψ and I at Z = 350 cm.

Problem A Problem B Problem C Problem D
X ψ I ψ I ψ I ψ I

49 cm -96 0 -92 4 -97 -1 -96 0
196 cm -120 0 -116 4 -121 -1 -120 0
350 cm -171 0 -167 4 -171 0 -170 1
490 cm -225 0 -222 3 -224 1 -224 1
651 cm -281 0 -280 1 -278 3 -280 1

TABLE V: Values of ψ and I at Z = 455 cm.

Problem A Problem B Problem C Problem D
X ψ I ψ I ψ I ψ I

49 cm -103 0 -96 7 -102 1 -103 0
196 cm -122 0 -115 7 -121 1 -122 0
350 cm -164 0 -154 10 -160 4 -163 1
490 cm -211 0 -199 12 -204 7 -210 1
651 cm -266 0 -252 14 -253 13 -264 2

Tables II - VII show values of ψ and I at selected points.
Specifically, Table II shows ψ and I at some points for Z =
105 cm. Table III presents ψ and I at selected points for
Z = 245 cm. Values of ψ and I at selected points for Z =
350 cm, Z = 455 cm, and Z = 560 cm are shown in Table
IV, Table V, and Table VI respectively. For Z = 672 cm, ψ
and I at selected points are in Table VII.

TABLE VI: Values of ψ and I at Z = 560 cm.

Problem A Problem B Problem C Problem D
X ψ I ψ I ψ I ψ I

49 cm -109 0 -87 22 -100 9 -108 1
196 cm -125 0 -101 24 -114 11 -123 2
350 cm -160 0 -130 30 -142 18 -157 3
490 cm -201 0 -165 36 -174 27 -197 4
651 cm -253 0 -210 43 -210 43 -246 7

TABLE VII: Values of ψ and I at Z = 672 cm.

Problem A Problem B Problem C Problem D
Point ψ I ψ I ψ I ψ I

49 cm -115 0 -43 72 -72 43 -106 9
196 cm -128 0 -52 76 -80 48 -118 10
350 cm -157 0 -72 85 -96 61 -144 13
490 cm -194 0 -98 96 -113 81 -175 19
651 cm -241 0 -138 103 -134 107 -212 29

It can be seen from the tables that for every depth level of
soil, there are variations in values of ψ and I . At Z = 105
cm (see Table II), a location near the horizontal part of the
channel, ψ varies from about -327 to -61. This means that
as X increases, ψ drops rapidly. For Problem B, Problem
C and Problem D, values of I varies from about -9 to 3,
indicating that the impermeable layer seems have no impact
to values of suction potential. Thus, water content for all four
problems are about the same.

At Z = 245 cm and Z = 350 cm (see Table III and Table
IV), values of ψ vary from about -302 to -83 and about -280
to -92. Drastic declines in ψ are still observed. Values of I
for Z = 245 cm and Z = 350 cm range between -4 to 4 and
between 0 to 4, respectively. As before, this indicates that
effect of the impermeable layer to water content in the soil
has not been observed.

At a depth level of 455 cm, remarkable decreases in ψ
are still noticed. Values of I for Problem D are about 0
to 2. Hence, the impermeable layer still has no effect to
water content in the soil. For Problem B and Problem C,
the impermeable layer begins to appear to have an effect on
water content in the soil.

From the results presented in Table VI and Table VII,
it can be seen that the impermeable layer in Problem B and
Problem C results in remarkable higher values of ψ compared
to those in Problem A. For Problem D, the impermeable layer
still has no observable impact to values of suction potential.
However, at Z = 672 cm, the impermeable layer results in
observable higher values of ψ compared to those in Problem
A.

IV. CONCLUDING REMARK

Steady infiltration problems from a single trapezoidal
channel with impermeable horizontal surface into homoge-
neous soil with and without impermeable soil layer have been
solved numerically. The governing equation is transformed
into a modified Helmholtz equation. The modified Helmholtz
equation is then solved using DRM. Numerical results ob-
tained are then presented and discussed.

The numerical results indicate that there is no effect of the
impermeable soil layer in shallow levels of soil. However, the
impact is observed in deeper levels of soil. At a deep level
of soil, the shallower the location of the impermeable soil
layer, the higher the water content in the soil.
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