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Abstract—Electronic Health Records (EHRs) provide the 

possibilities to improve patient care and promote clinical 

research. In recent years, there has been an exponential 

increase in the range of diseases, diagnostic tests, and treatment 

regimens, which complicates the decision-making processes of 

doctors. Therefore, evaluating the clinical similarity of patients 

can provide effective and timely treatments and diagnoses for 

patients, which can allow doctors to make better decisions in a 

shorter time and at lower cost. In particular, the traditional 

machine learning methods for patient similarity are difficult to 

utilize the temporal information effectively while the temporal 

information in EHR data is very useful. In this paper, we 

propose a novel framework, called Patient Similarity 

Evaluation (PSE). Specially, PSE incorporates the temporal 

information to medical concept embedding for the 

representation learning of patients. Furthermore, PSE 

combines Siamese Convolutional Neural Network (CNN) with 

Spatial Pyramid Pooling (SPP) to measure the similarity 

between all patient pairs, which can predict the future health 

status of patients in advance and with precision. Experimental 

results demonstrate that our proposed framework outperforms 

all baseline methods. 

 
Index Terms—Patient Similarity; Medical Concept 

Embedding; Temporal Information; Siamese CNN with SPP 

I. INTRODUCTION 

ith the tremendous growth of the adoption of EHRs, a 

wealth of healthcare information including medication, 

procedure and diagnosis data are important resources for 

biomedical researchers to develop quantitative models for 

identifying similar patients. Through deep mining and 

analysis of EHR data, the doctors can find similar patients, 

which will enable to improve the probability of successfully 

curing patients a lot. 

A. Motivation 

Patient similarity studies [1] may reveal how potential 

clinical decisions would affect the development of patients' 

conditions. Patient similarity aims to derive a meaningful 

distance metric in the clinical field to measure the relative 

similarity among patients according to their health records. 
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EHRs are the most fundamental, primary and meaningful 

basic data in the medical healthcare domain. The 

comprehensive analysis of EHR data will help doctors to 

judge patients' problems more accurately so as to provide 

patients with preventive and rehabilitative advice in advance. 

Therefore, EHRs are an available resource for measuring the 

clinical similarity between all patient pairs. In addition, the 

analysis of patient similarity is based on universal distance 

assessment between patients, and obtains the general rules of 

disease development from a large number of clinical practice 

data, which provides the possibility for computer-aided 

clinical decision support and personalized diagnosis and 

treatment using a general framework. Consequently, how to 

accurately and precisely measure patient similarity is an 

important and challenge issue. 

B. Challenge 

The effective representations for medical concepts (e.g., 

demographics, diagnostic history, medications, procedures, 

laboratory test results) of patients is crucial to patient 

similarity learning. A proper similarity measure enables 

various downstream applications, such as risk factor 

identification [2], medical diagnoses [3-4], morality 

prediction task [5] and clinical knowledge extraction [6]. 

However, most of the existing methods on learning effective 

vector representations of medical concepts for deriving the 

patient similarity measures still face many challenges: 

1) Non-regularity: The patient information from EHRs is 

scattered and irregular. Therefore, we need to extract 

structured knowledge from EHRs for obtaining the 

valuable medical knowledge and experience.  

2) Temporality: The process of patient treatments varies 

over time. As a result, medical concepts will change 

over time. By taking into account the temporal 

information of medical concepts, we can learn the 

effective representations of patients.  

3) High-dimensionality: EHR data includes past and 

present medical records. Each record of EHRs, collected 

for a specific patient, consists of diagnoses, medication 

orders, laboratory test results and physiological 

parameters. Therefore, EHR data is usually represented 

in a high dimensional space. 

C. Solution 

Taking into account all challenges mentioned above, 

inspired by the idea of Word2Vec [7-9], we propose a novel 

framework to represent medical concepts of patients as the 

fixed-length vectors and derive a similarity measure between 

all patient pairs based on it. One way to represent medical 

concepts is one-hot vectors. However, the one-hot vectors 

have a high dimension and cannot reflect the semantic 
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relationships between medical concepts. Another way is 

Continuous Bag-of-Words model (CBOW) and Skip-gram 

model [7]. Though the two models can reflect the semantic 

relationships between medical concepts, they only consider 

the co-occurrences of medical concepts within a fixed-size 

window as indications of contexts, which may ignore the 

temporal characteristic in EHRs. Hence, the key of medical 

concept embedding is how to represent medical concepts 

effectively without loss of temporal information. There are 

two parts in our proposed framework: representation learning 

of patients and patient similarity learning. In representation 

learning of patients, we extend the Skip-gram model by 

adopting the variable temporal scopes in order to learn the 

effective representations of medical concepts, which takes the 

temporal information of EHRs into account. Based on the 

learned embeddings of medical concepts, we stack all 

medical concepts’ embedding vectors in the medical history 

of patients to obtain the effective patient representations 

which are embedding matrices. In this way, the feature 

matrices of patients preserve the temporal properties in EHRs 

and mirrors the semantic relationships among medical 

concepts. In patient similarity learning, we deploy a patient 

similarity matching method based on Siamese CNN [10-11] 

to compute the similarity score between all patient pairs. 

After obtaining the similarity information indicating the risk 

level of the patient pair developing the same disease, we can 

better support clinical data mining work and acquire 

knowledge from retrospective data, thus supporting 

retrospective clinical research and achieving the goal of 

continuous improvement and improvement of medical 

quality. 

D. Contributions 

The main distinctive technical contributions of our work 

are summarized as follows: 

1) We analyze the challenges of patient similarity learning 

and extend the Skip-gram model by leveraging the 

variable temporal scopes. The model converts patients’ 

medical concepts to the fixed-length vectors which can 

preserve the semantic information between medical 

concepts and temporal information of EHRs at the same 

time. 

2) We incorporate Siamese CNN with SPP as a deep 

learning model to measure the similarity between all 

patient pairs. The model can deal with the patient 

matrices of arbitrary sizes. To our best knowledge, 

Siamese CNN with SPP is the first to measure the 

similarity between all patient pairs.  

3) We conduct extensive experiments on the large real 

dataset MIMIC-III, which significantly demonstrates 

that our proposed framework outperforms four baseline 

methods in terms of hospital readmission rate and 

incident rate difference for mortality. Moreover, 

comparative experiments are conducted between our 

proposed framework and the state-of-the-art methods on 

disease cohort classification and patient clustering, and 

our experimental results demonstrate that our proposed 

framework has the best performance.  

The rest of this paper is organized as follows. Section 2 

introduces the related work on patient similarity and medical 

concept embedding. We discuss our proposed framework in 

Section 3. In Section 4, we conduct experiments to compare 

our proposed framework with all baseline methods. Section 5 

concludes the paper and our future work.  

II. RELATED WORK 

In recent years, there are an increasing number of studies 

on evaluating the clinical patient similarity and representation 

learning in the medical healthcare domain. We firstly have a 

brief review in terms of patient similarity, and then review 

some related work on representation learning in the medical 

healthcare domain. 

A. Patient Similarity 

There are a lot of works concentrating on patient similarity 

in the field of health informatics. For example, Reference [12] 

deployed a cosine-similarity-based patient similarity metric 

(PSM) to weight the patient similarity measures. Reference 

[13] used the Tanimoto Coefficient (TC) to compute 

similarities between all patient pairs. Reference [14] 

proposed a locally supervised metric learning which is used 

for measuring similarities between patients represented by 

multi-dimensional time series. In [15], Wang applied the 

Triplet architecture to study fine-grained similarities among 

patients, which is used for fine-grained image similarity 

learning. Nguyen et al. [16] proposed the sequential matching 

procedure to calculate the distance between two patients, 

which can utilize the sequential order of medical concepts. 

However, these patient similarity matching methods do not 

take into account the temporal information in EHRs. 

Therefore, Wang et al. [17] presented a convolutional matrix 

factorization for detection of temporal patterns, and Cheng et 

al. [18-19] proposed an adjustable temporal fusion scheme 

using CNN extracted features. Reference [20] proposed 

Integrated Method for Personalized Modelling (IMPM) to 

provide personalized treatments and personalized drug 

designs. 

B. Representation Learning in the Medical Healthcare 

Domain 

Great progress has been made in Spoken Language 

Processing, Natural Language Processing (NLP) and Image 

Target Recognition. Many researchers utilize representation 

learning in the medical healthcare domain, for the reason that 

the sequence of medical codes can be seen as a natural 

language text. In recent years, many researchers have applied 

representation learning in the medical healthcare domain 

because an effective feature representation can simplify the 

difficulty of dealing with a problem and provide convenience 

for further applications. De Vine et al. [21] learned the 

representations of UMLS concepts from free-text patient 

records and medical journal abstracts. The Med2Vec model 

proposed by Edward Choi et al. [22] is a multi-layer 

representation learning tool for learning the representation of 

medical concepts and visit representations from EHR datasets. 

Youngduck Choi et al. [23] applied the Skip-gram model to 
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medical concept embedding from medical journals, medical 

claims and clinical narratives, which is more useful than 

learning the embeddings from the clinical text. Meanwhile, 

some researchers employ the method with attention 

mechanism to learn the representation of medical concepts. 

Cai et al. [24] applied the attention mechanism to learn a 

“soft” time-aware context window for each medical concept 

in order to incorporate the temporal information to embed 

medical concepts. Mullenbach et al. [25] used an attentional 

CNN to encode the clinical text in EHRs, and then select 

different parts of the clinical text for predict diagnosis and 

treatments codes according to different labels.    

III. THE PROPOSED FRAMEWORK 

In this section, we introduce the details of our proposed 

framework on how to incorporate the temporal information of 

EHRs to medical concept embedding for representation 

learning of patients and measure the similarity between all 

patient pairs. The overview of our proposed framework is 

shown in Fig. 1. Our framework has four main phases. In 

phase 1, medical concepts of each patient are ranked in an 

increasing order according to their timestamps and each 

medical concept is mapped to a medical code leveraging 

medical KB (e.g., DRG database, NDC database and CPT 

database). Consequently, we can obtain medical code 

sequences which represent patients from EHR data. In phase 

2, the sequence of medical codes is regarded as a natural 

language text describing a patient, and the extended 

Skip-gram model is applied to learn medical code vectors 

which represent the meaningful relations among medical 

codes. In phase 3, based on these medical code vectors, we 

construct the patient representation matrices which contain all 

medical features of patients. In phase 4, the patient matrices 

are fed into Siamese CNN with SPP to measure the similarity 

between all patient pairs.   

A. The Sequence of Medical Codes 

Our goal in this phase is to obtain medical code sequences 

which can effectively represent patients from EHR data. For 

each patient, by ranking all medical concepts in his/her EHR 

according to their happening timestamps (for medical 

concepts with the same timestamp we do not care about the 

order), we can obtain a medical concept sequence describing 

the historical condition of him/her. Moreover, each medical 

concept is mapped to a medical code leveraging medical KB. 

Finally, we can obtain medical code sequences for all patients. 

Given an ICU patient p whose associated medical concepts 

are ranked according to their timestamps in an increasing 

order, example of medical concept sequence for patient p 

mapping to medical code sequence is shown in Table I. 

B. Medical Concept Embedding 

After obtaining medical code sequences, we aim to learn 

the effective representations of medical codes by using the 

extended Skip-gram model which adopts variable temporal 

scopes. Compared with the one-hot encoding representation, 

our model can preserve the temporal information of EHRs 

and capture the latent relations among medical codes. In other 

words, medical codes which co-occur closely in time and 

have the similar scopes are mapped to the similar vectors so 

that their distance is small. Next, we first briefly review the 

Skip-gram model, and then describe how to incorporate the 

temporal information of EHRs to embed medical codes. 

TABLE I 

EXAMPLE OF MEDICAL CONCEPT SEQUENCE MAPPING 

Patient The Sequence of Medical Concepts The Sequence of Medical Codes 

p Cranial Nerve Disorders, Coronary Bypass with Cardiac Catheter, 

Percutaneous Cardiac Procedure, Pioglitazone, Aspirin, 

Oxycodone-Acetaminophen, Acetaminophen, ... 

73, 107, 1652, 64764045125.0, 17714001110.0, 406051262.0, 

51079000220.0, ... 

 

Fig. 1.  We firstly rank the medical concepts according to their timestamps in an increasing order for each patient and map medical concepts to medical 

codes leveraging medical knowledge base (KB). Next, we employ Word2Vec with variable temporal scopes to medical code embedding. Then, we stack 

medical codes vectors of patients to obtain the patient matrices. Finally, we use the patient matrices as the input of Siamese CNN with SPP to compute the 

similarity.    
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1) The Skip-Gram Model 

The Skip-gram model in Word2Vec is applied to the 

medical healthcare domain mainly because the sequence of 

medical codes is treated as a natural language text describing 

a patient and medical codes are treated as words. The 

architecture of the Skip-gram model is shown in Fig. 2.  

Formally, given a medical code sequence representing a 

patient p = {c1, c2, …, cN}, where N is the length of the 

medical code sequence, the Skip-gram model learns medical 

code vectors by using the target code ct within a sliding 

window of size W to predict the context codes. It maximizes 

the log probability of predicting the context codes ct-W, …, 

ct+W which appear nearby the target code ct: 


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+−

N

t

tWtWt cccP
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Using an independence assumption, the probability in (1) 

is the following: 
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Therefore, Equation (1) is simplified to: 
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To reduce the computational complexity of (3), the 

Skip-gram model uses the Hierarchical Softmax [26] to 

approximate the probability distribution. Hierarchical 

Softmax aims to build a Huffman tree based on the frequency 

of each word in the vocabulary, which ensures the words with 

higher word frequencies are located at the leaf nodes in the 

shallow layer of the Huffman tree, and the words with lower 

word frequencies are located at the leaf nodes in the deeper 

layer of the Huffman tree. Furthermore, Hierarchical Softmax 

turns the problem into maximizing the probability of a 

specific path in the hierarchy (See Fig. 3.). If the path from 

the root to the medical code ck is identified by a sequence of 

tree nodes (b0 = root, b1, …, blog N  = ck), then 

 


=

=

N

l

tltk cbPccP

log

1

)|()|(                       (4) 

Now, P(bl | ct) is modeled by a binary classifier that is 

assigned to the parent of the node bl as (5) shows, 

)))()(exp(1/(1)|( lttl bcvcbP −+=               (5) 

where  (bl) is the representation vector assigned to tree node 

bl’s parent and has the same dimension as medical code 

vectors, and v(ct) is the representation vector of the target 

node ct. 
2) Variable Temporal Scopes 

Usually, the Skip-gram model in Word2Vec predicts the 

surrounding contexts within a fixed-size sliding window by 

using a target word. But in the medical healthcare domain, the 

temporal information is significant for each medical concept 

because temporal information will reveal the relations 

between medical concepts. For example, diabetes mellitus 

typically lasts for several years, while dermatoses often lasts 

for several days, which indicates that a fixed-size context 

window will not work for all medical concepts. Therefore, we 

not only consider the chronological order of medical concepts, 

but also consider the context window size for each medical 

concept. We assume that the longer the medical concepts last, 

the larger the context window size of medical concepts. 

Therefore, we propose a method to determine the context 

window size of all medical concepts for each patient, which is 

inspired by the phenomenon that the medical concepts with a 

long duration appear more frequently and the medical 

concepts with a short duration appear less frequently. For 

each medical concept ci of a patient p,  
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where L(ci, p) is the context window size for medical concept 

ci of patient p and f  (ci, p) is the frequency of medical concept 

ci in the EHR of patient p.  and 
 
are the minimum and 

maximum size of context window respectively. 

Fig. 3.  Assume that the length of the medical code sequence for a patient 

is 8 (N = 8). Hierarchical Softmax factors out P(c7 | c1) over sequences of 

probability distributions corresponding to the paths starting at the root and 

ending at c7. 
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Fig. 2.  The architecture of the Skip-gram model. 
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C. Effective Patient Representation 

In the existing related works, usually a straightforward 

patient representation is constructed by converting all 

medical codes in his/her medical history to medical code 

vectors, then summing all those vectors to obtain a single 

representation vector. However, this patient representation 

will ignore the temporal information of EHRs. Therefore, we 

utilize a temporal representation: a patient is represented as 

an embedding matrix which has a dimension of Nc × d, where 

Nc is the number of medical codes in the medical history of a 

patient and d is the dimension of all medical code vectors. 

Usually, Nc varies from patient to patient. 

D. Patient Similarity Learning 

We propose a deep learning model to measure the 

similarity between all patient pairs. The model is inspired by 

the text similarity problem tackled by Siamese LSTM 

Network [27]. Therefore, it is available to measure patient 

similarity using Siamese CNN. Each of the twin subnetworks 

of Siamese CNN uses this same CNN architecture. However, 

there is a technical issue in the training and testing of CNN: 

the fixed-size patient representations are taken as the input of 

CNN, which limits both the aspect ratio and the scale of the 

input. Consequently, in order to remove the fixed-size 

constraint of the CNN, we adapt the architecture of CNN by 

introducing Spatial Pyramid Pooling [28]. Siamese CNN with 

SPP maps the patient representation matrices of arbitrary 

sizes to the fixed-size vectors, and then computes the 

similarity score between the patient pairs. 

In the following we will not only describe Siamese CNN 

and Siamese CNN with SPP in detail, but also explain how to 

compute the patient similarity score.  

1) Siamese CNN  

a) The Architecture of Siamese CNN  

Siamese CNN combines Siamese Network [10] and CNN 

[11], and then maps the inputs to the target space and 

calculates the similarity in the target space by using a simple 

distance metric. Specifically, we train Siamese CNN to map 

the pair of temporal patient matrices to the fixed-size feature 

vectors respectively and then use the Cosine distance as the 

positive similarity function to express the degree of 

relatedness between the pair of patients. That is, the Cosine 

distance between the two patient vectors is taken as the final 

similarity score. 

We assume that X1 = [v1, v2, …, vM]T and X2 = [v1ʹ, v2ʹ, …, 

vMʹ]
T are the temporal representation matrices of two patients 

p1, p2 respectively, where vi and viʹ are the medical code 

vectors, and M is the length of medical code sequences. We 

use X1 and X2 as inputs to two identical CNNs with the same 

weights. Through the operation of two CNNs, we obtain the 

feature vectors GW(X1) and GW(X2). After obtaining the 

feature vectors of two patients, the similarity between the two 

patients is evaluated by the Cosine distance of two feature 

vectors. We will discuss how to construct the loss function in 

the following. 

b) Loss Function of Siamese CNN  

Suppose that the feature vectors of two temporal patient 

matrices X1 and X2 are G1 and G2 respectively. The similarity 

of two patients is the Cosine distance of their feature vectors, 

denoted d(G1, G2). During the training phase of Siamese CNN, 

we use the contrastive loss function introduced by Chopra et 

al. in [29], which should satisfy the following two properties:  

1) For two input patients of the same cohort, the greater the 

similarity, the smaller the loss function value. 

2) For two input patients of different cohorts, the smaller 

the similarity, the smaller the loss function value.  

The loss function of Siamese CNN is defined as shown in 

(7): 

 2

21

2

2121 ),(,0max
2

1
),()1(

2

1
),,( GGdmYGGdYYXXL −+−=   (7) 

where the threshold m ˃ 0 is a constant and Y is a binary label 

assigned to the pair of input patient matrices X1 and X2, so that 

Y = 0 indicates that the two input patients belong to the same 

cohort and Y = 1 indicates the opposite. When Y = 0, the 

second term of (7) is 0, and the first term of (7) becomes 

directly half the square of the Cosine distance of the two input 

patients. When Y = 1, the first term of (7) is 0, and the second 

term of (7) is the hinge loss. In the hinge loss, if the Cosine 

distance of two input patients is less than m, a penalty will be 

given. The greater the Cosine distance of two input patients, 

the smaller the penalty. If the Cosine distance of two input 

patients is greater than m, there will be no punishment.  

2) Siamese CNN with SPP 

In the existing CNN, the input size is generally fixed 

because the fully-connected layer of CNN requires a fixed 

number of neurons. Typically, the fixed-size input data is 

generated by a crop or warp operation. However, several 

problems will arise: 

1) Forcing input data of arbitrary sizes to be converted to 

the fixed size may lose information.  

2) Crop operation on input data may result in 

incompleteness, and warp operation may result in data 

deformation. 

Therefore, when applied to the temporal patient 

representations of arbitrary sizes, we add an SPP layer behind 

the convolutional layer and before the fully-connected layer. 

This operation can address the constraint that the input size of 

Fig. 4.  The process of extracting features using SPP. 
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CNN is fixed. In the following we shall discuss how to extract 

features leveraging SPP.  

As shown in Fig. 4, when we input a temporal patient 

matrix, the matrix is firstly entered into the convolution layer 

to get the feature maps, and then the feature maps are divided 

using scales of different sizes. Using three scales of different 

sizes (i.e., 4 × 4, 2 × 2, 1 × 1), we divide the feature maps into 

21 (16 + 4 + 1) blocks. In the process of maximum pooling of 

spatial pyramids, the maximum value of each block is 

calculated separately in the 21 blocks, and then totally the 21 

output neurons are obtained. Finally, the temporal patient 

matrix of arbitrary sizes is converted into a feature vector 

with 21 dimensions. For patient matrices of arbitrary sizes, 

after convolution and SPP layer processing, we can obtain the 

feature vector with the fixed dimension which is the number 

of neurons in the fully-connected layer. 

It is worth noticing that the number of medical codes in the 

medical history of each patient is different. As a result, the 

size of representation matrix varies from patient to patient. 

Therefore, the spatial pyramid pooling strategy can be 

applied to Siamese CNN to extract spatial feature information 

for temporal patient matrices of arbitrary sizes. Fig. 5 

presents the architecture of Siamese CNN with SPP. 

We use two temporal patient matrices of different sizes as 

inputs to Siamese CNN with SPP. The two temporal patient 

matrices are respectively mapped into feature vectors of the 

same dimension through the two identical CNNs which have 

the SPP layer. In addition, we add the dropout layer to avoid 

overfitting. The main advantage of Siamese CNN with SPP is 

to overcome the defect caused by the temporal patient 

matrices of arbitrary sizes and improve the quality of patient 

clustering. Utilizing Siamese CNN with SPP makes the 

training data need not be normalized, and the effect is better 

than the traditional method.   

E. Algorithm Description 

Algorithm 1 represents our proposed framework for patient 

similarity learning―PSE in detail. The inputs of PSE are a set 

of patients, the minimum number of occurrences for medical 

codes, and the sequences of medical codes which have been 

ranked according to their timestamps in an increasing order. 

PSE has two main steps. Step 1: After mapping medical 

concepts to medical codes leveraging medical KB (Line 2), 

we train the Skip-gram model with variable temporal scopes 

from medical code sequences describing the patients to map 

each medical code into a fixed-length vector (Line 3-7). Step 

2: For each patient from EHR data, the temporal patient 

representation is an embedding matrix which is constructed 

by stacking all medical codes vectors in his/her medical 

history (Line 8). However, some medical codes may not be in 

the tagged corpus, so the feature representations of these 

medical codes are the zero vectors. Afterwards, the patient 

matrices are fed into Siamese CNN with SPP to measure the 

similarity between all patient (Line 9). Additionally, for each 

patient, we select the patient corresponding to the highest 

similarity score (Line 10-16). Intuitively, since the patients 

have similar medical code sequences, it is highly possible that 

they have the risk of developing the same disease. 

Algorithm 1 Medical Concept Embedding with Variable Temporal Scopes 

for Patient Similarity 

Input: A set of patients P = {p1, p2, …, pN}; The minimum number of 

occurrences for medical codes ; The sequences of medical codes R = 

{r1, r2, …, rN}.  

Output: The most similar patient for each patient pi ∈ P. 

1: Configuration the total number of medical codes M, the number of 

medical codes for a patient K. 

2: Map medical concepts → medical codes. 

3: foreach pi ∈ P do 

4:  foreach cj ∈ ri do 

5:     Select the medical codes with more than  occurrences to construct 

the tagged corpus T. 

6:    Learn the length of context window for each medical concept 

according to the frequency of medical concepts f (cj, pi). 

7: Train the Skip-gram model to obtain the representation of medical codes 

V = [v1, v2, …, vM]T. 

8: Stack all medical codes vectors in the medical history of pi to obtain the 

matrix Xi = [v1, v2, …, vK]T. 

9: Train the Siamese CNN with SPP using patient matrices as input. 

10: C ← {}. 

11: foreach pi ∈ P do 

12:  foreach pj ∈P \ pi do 

13:  Compute the similarity score between patient pi and pj. 

14:  Rank the similarity score. 

15:  Select the patient pj corresponding to the highest similarity score.   

16:  C ← pj. 

17: Return C. 

IV. EXPERIMENTS 

A. Dataset Overview and Preprocessing 

Medical Information Mart for Intensive Care (MIMIC) III 

[30] is a database of intensive care patients opening to the 

public free of charge and collects data on ICU patients from 

Beth Israel Deaconess Medical Center between 2001 and 

2012. The MIMIC-III dataset aims to develop and evaluate an 

advanced ICU patient monitoring system to improve the 

effectiveness, accuracy and timeliness of ICU clinical 

decision support. The MIMIC-III dataset consists of two parts, 

the clinical database and the physiological waveform 

database.   

The clinical database has collected clinical information of 

Fig. 5.  The architecture of Siamese CNN with SPP. 
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more than 60,000 ICU patients, including demographic 

characteristics of patients, discharge records, clinical and 

laboratory values, International Classification of Disease 

version 9 (ICD-9) codes associated with encounters, order, 

and referrals, procedure information in Current Procedural 

Terminology (CPT) [31] codes, diagnosis information in 

Diagnosis Related Groups (DRG) [32] codes and medication 

prescription information in National Drug Code (NDC) [33] 

codes and so on. Each record of ICU patients has detailed 

time information. The physiological waveform database 

records high-resolution waveform data from Philips bedside 

monitors such as electrocardiogram, blood pressure, pulse 

wave, and other physiological parameters such as respiration, 

blood oxygen, central venous pressure, etc. All of this data is 

subjected to rigorous de-identification processing. We choose 

the clinical database for our research. The patient features we 

used in our investigation are categorized into three groups as 

shown in Table II. 

The first step of dataset preprocessing is to choose the 

patients which satisfy the following four conditions: (1) We 

remove the patients with missing data on admission date and 

discharge date; (2) We keep the patients which consist of at 

least thirty medical codes; (3) We remove the patients which 

have the discharge date after 2200/1/1; and (4) We remove the 

patients who have the missing data on diagnosis. Next, we 

choose the diagnosis information, medication information, 

and procedure information as the medical concepts of patients. 

Moreover, when we build the tagged corpus, we remove the 

medical concepts that are co-occurring less than three times 

(the medical concepts must have appeared in at least three 

medical concept sequences). Then, we map the selected 

medical concepts to medical codes leveraging medical KB 

and rank the medical codes according to their timestamps in 

an increasing order for each patient. Besides, we remove 

medication codes with missing data on start date and end date. 

Finally, we choose nine patient cohorts from the MIMIC-III 

dataset, namely, Atherosclerosis, Heart Failure, Kidney 

Failure, Intestinal Diseases, Liver Diseases, Pneumonia, 

Septicemia, Respiratory Failure and Gastritis. The remaining 

dataset contains 18,652 inpatient medical records, as shown 

in Table III.   

B. Comparison Methods 

To evaluate the effectiveness of the proposed PSE, we 

compare the framework with the following baselines and 

approaches in terms of different performance metrics. 

1) PCA (Principal Component Analysis): A unsupervised 

method is widely used for dimension reduction and 

feature extraction [34]. We apply PCA on the one-hot 

EHR matrices of patients and perform Euclidean 

distance based on the PCA results. 

2) PCM (Primary Code based Matching): A patient 

similarity method proposed by Lee et al. [35-36] that 

identifies patients who are most similar to each patient 

from EHR data. The method utilizes the first medical 

code between two medical code sequences for patient 

matching. 

3) HDM (Hamming Distance based Matching): A method 

proposed by Hielscher et al. [37] that measures the 

patient similarity for complex objects contribute to class 

separation for a multifactorial disorder. The Hamming 

distance between two medical code sequences is the 

total number of medical codes where they mismatch. 

4) CSM: Code Sum based Matching proposed by Choi et 

al. [38] obtains the patient representation by summing 

up all its medical code vectors, absolutely eliminating 

the sequential structure of medical codes. Firstly, CSM 

learns medical code vectors from EMRs using 

Word2Vec, a well-known embedding method. Then, it 

sums up medical code vectors of the patient to retrieve a 

single representation vector. Finally, the patient 

similarity score is the Cosine distance between their 

summed vectors.  

5) Word2Vec-CNN: The method firstly learns medical 

code vectors from EHRs using the Skip-gram model in 

Word2Vec. Then we stack all medical code vectors in 

the medical history of patients to construct the patient 

matrices. Finally, the patient matrices pass through CNN 

to map into the feature vectors and we compute the 

similarity by the Cosine distance of the feature vectors. 

6) T-Word2Vec-CNN: It applies the Skip-gram with 

TABLE III 

EXAMPLE FORMAT OF INPATIENT MEDICAL RECORDS 

Subject ID Hadm ID The Sequence of Medical Codes Disease Label 

6 107064 302, 63739008901.0, 64253033335.0, 93008801.0, 472500360.0,... KidneyFailure 

13 143045 109, 0.0, 71015623.0, 45050130.0, 17714001110.0, 62584078833.0,... Atherosclerosis 

21 111970 7204, 416, 99254, 99291, 99291, 99253, 90935, 99291, 99231, 99254,... Septicemia 

109 175347 4603, 316, 59011010020.0, 59011010320.0, 781305714.0, 8084199.0,...  HeartFailure 

111 192123 1394, 566, 173069502.0, 63739002401.0, 0.0, 0.0, 597007506.0,... Pneumonia 

 

TABLE II 

DATASET INFORMATION  

Category Descriptions #Cardinality 

Diagnosis DRG codes 1,667 

Medication NDC codes 3,484 

Procedure CPT codes 2,018 

Total  7,169 
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variable temporal scopes to learn the embeddings of 

medical codes, which takes into account the temporal 

information of EHRs. 

7) Word2Vec-Siamese: A Siamese network architecture 

instead of CNN to assess the similarity between the pair 

of patients. 

C. Evaluation Metrics 

With generated representation of each patient, we calculate 

the similarity score among all patient pairs using two different 

criteria: hospital readmission rate and incident rate difference 

for mortality. With the inherent difficulty of measuring the 

patient similarity, these two criteria are chosen since (1) both 

hospital readmission rate and incident rate difference for 

mortality play an significant role in many patient matching 

applications [35], [39] and (2) they are recorded in most 

routinely collected data, and hence have a broad prospect of 

application [40-41]. Furthermore, we evaluate the 

performance of patient clustering using two different criteria: 

Rand Index [42] and Normalized Mutual Information [43]. 

We will describe the detailed definition of these four criteria 

next. 

1) The Hospital Readmission Rate (HRR) 

Assume P = {p1, p2, …, pN} is the collection of 

readmission statuses of N patients and SP = {pʹ1, pʹ2, …, pʹN} 

is the collection of readmission statuses of the most similar 

patients of N patients. HRR is computed as follows: 

NiSPiPHRR
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HRR measures the overall matching efficiency and HRR ∈ 

[0, 1]. In general, the greatest patient similarity has an HRR of 

1 and the smallest patient similarity has HRR values close to 

0. 

2) Incidence Rate Difference for Mortality (IRDM) 

Assume P = {(c1, d1), (c2, d2), …, (cN, dN)} is the collection 

of tuples (discharge date, death date) of N patients, where ci is 

the discharge date, and di is the death date. The incidence rate 

of the collection of patients is computed as follows: 
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where count(death) is the number of patients which have the 

death dates, di and ci are death date and discharge date 

respectively, and dnull is 2200/1/1. 

Similarly, we can compute the incidence rate of the most 

similar patients of N patients, called IR(SP). IRDM is 

computed as follows: 

)()( SPIRPIRIRdiff −=                      (10) 

IRdiff has lower bound of 0 corresponding to the perfect match 

between the partitions and upper bound of 1 that indicates the 

opposite. 

3) Rand Index (RI) 

RI is the most frequently used evaluation metric in data 

clustering. RI is computed as follows: 
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where TP is the number of times a pair of patients belonging 

to the same cohort who are grouped into one single cluster. 

TN is the number of times a pair of patients from different 

cohorts who are grouped into different clusters. n is the total 

number of patients. In general, the larger the value of RI, the 

more consistent the clustering results are with the real 

situation. 

4) Normalized Mutual Information (NMI) 

NMI is often used in data clustering to measure the 

similarity of the two clustering results. NMI is computed as 

follows: 

  2/)()(
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where Mutual Information I(X, Y) is the relative entropy of 

the joint distribution p(x, y) and the product distribution 

p(x)(y), whose formula is: 

=
x y ypxp

yxp
yxpYXI

)()(

),(
log),(),(         (13)  

H(X) is the information entropy, and the formula is: 

−=
i

ii xpxpXH )(log)()(                  (14) 

Similar to the value of RI, the closer the value of NMI is to 1, 

the better the quality of data clustering. 

D. Parameter Setting 

1) Medical Concept Embedding 

For the Skip-gram model with variable temporal scopes, 

the sliding window size W is set to 30 and the learning rate is 

set as 0.05. We note that the minimum size of context window 

is the sliding window size ( = 30) and the maximum size of 

context window in our model is set as twice as the sliding 

window size ( = 60). The Skip-gram model with variable 

temporal scopes is trained with 500 epochs for the MIMIC-III 

dataset. The dimension of medical codes vectors d is set to 20, 

50, 80, 100, 150, 200, respectively, for the comparison 

purpose, and after a serial of practices we select 100 as the 

dimension of medical codes vectors according to the best 

performance. 

2) Patient Similarity Using Siamese CNN with SPP 

In tensorflow, the parameters of Siamese CNN with SPP 

are as follows: the number of convolutional feature maps is 

set to 100. In the SPP layer, we use a 3-level pyramid. The 
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pyramid is {4 × 4, 2 × 2, 1 × 1} (totally 21 bins). We use 

stochastic gradient descent [44] as the optimization method 

and contrastive loss as the loss function. We train Siamese 

CNN with SPP using 128 examples of shuffled mini-batches 

and adopt nonlinear rectification (ReLU) activation function. 

With regards to overfitting issue we add dropout 

regularization with dropout rate setting to 0.6. 

E. Results and Analysis 

1) Top-K Most Similar Patients 

We run the proposed PSE and other three patient similarity 

learning methods to obtain the top-k most similar patients for 

each patient. We select 5 patients at random. Table IV, V, VI 

and VII describe the top-k (k = 3) most similar patients 

obtained by PCM, HDM, CSM and the proposed PSE, 

respectively. As shown in Table IV, V, VI and VII, the results 

of PCM and HDM are quite different from that of PSE. The 

main reason for this phenomenon is that PCM and HDM are 

the non-embedding methods for measuring patient similarity 

and the sequential information of patients from EHR data are 

not taken into account. For example, the top-3 most similar 

patients’ IDs obtained by the patient ID 2376 using the PCM 

and HDM methods are completely different from the top-3 

most similar patients’ IDs obtained by PSE. However, the 

result of CSM is close to that of PSE because it is the 

embedding method for measuring patient similarity. As can 

be seen from Table VI and VII, the top-3 most similar 

patients’ IDs obtained by the patient ID 2376 using the CSM 

method have something in common with that of PSE. This 

result might be due to the fact that they both utilize Word2Vec 

to learn the representation of medical concepts.  

2) The Performance of Patient Similarity 

In this section, we utilize the two criteria (HRR and IRDM) 

to evaluate the performance of patient similarity. We select 

500 patients randomly and pick the most similar patient of 

each selected patient, and then use these two criteria to 

evaluate the performance of our proposed framework. Table 

VIII and IX are HRR and IRDM of the proposed PSE and 

other four patient similarity matching methods respectively. 

As can be seen from Table VIII and IX, the proposed PSE is 

obviously superior to other baseline methods for measuring 

the similarity between all patient pairs. The proposed PSE has 

the best performance in HRR and IRDM, which is 0.766 and 

0.255, respectively. Comparing to the best performance, CSM 

achieves the second-best performance in HRR and IRDM, 

which is 0.684 and 0.336, respectively. The three patient 

similarity learning methods, namely PCA, PCM and HDM, 

achieve decline in HRR and IRDM compared with the other 

two methods for measuring the similarity between all patient 

TABLE IX 

INCIDENCE RATE DIFFERENCE FOR MORALITY (1E-5) 

Method Technique IRDM 

PCA Principal Component Analysis 0.420 

PCM Primary Code Matching 0.401 

HDM Hamming Distance Metric 0.384 

CSM Word2Vec 0.336 

PSE Siamese CNN with SPP 0.255 

 

TABLE IV 

TOP-3 MOST SIMILAR PATIENTS (PCM) 

Patient 

(ID)  

Nearest Patient 

(ID) 

2nd Nearest Patient 

(ID) 

3rd Nearest Patient 

(ID) 

12359 336 1398 1541 

340 48 49 347 

7242 95 516 1013 

606 48 49 347 

2376 7 54 94 

 

TABLE V 

TOP-3 MOST SIMILAR PATIENTS (HDM) 

Patient 

(ID)  

Nearest Patient 

(ID) 

2nd Nearest Patient 

(ID) 

3rd Nearest Patient 

(ID) 

12359 11319 2419 7269 

340 4916 6797 10370 

7242 7228 7632 10560 

606 4916 1179 1569 

2376 14438 4239 4514 

 
TABLE VI 

TOP-3 MOST SIMILAR PATIENTS (CSM) 

Patient  

(ID) 

Nearest Patient 

(ID) 

2nd Nearest Patient 

(ID) 

3rd Nearest Patient 

(ID) 

12359 10873 9734 14130 

340 2843 7581 7643 

7242 13188 4735 7320 

606 1748 2843 7190 

2376 2334 2730 13104 

 

TABLE VII 

TOP-3 MOST SIMILAR PATIENTS (PSE) 

Patient 

(ID)  

Nearest Patient 

(ID) 

2nd Nearest Patient 

(ID) 

3rd Nearest Patient 

(ID) 

12359 6198 10873 13955 

340 321 7105 10581 

7242 3868 2407 13188 

606 15103 12704 2904 

2376 2334 935 13104 

 

TABLE VIII 

HOSPITAL READMISSION RATE (HRR) 

Method Technique HRR 

PCA Principal Component Analysis 0.593 

PCM Primary Code Matching 0.614 

HDM Hamming Distance Metric 0.638 

CSM Word2Vec 0.684 

PSE Siamese CNN with SPP 0.766 
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pairs and PCA achieves the lowest performance in HRR and 

IRDM. This is probably due to the fact that PCA learns lower 

dimensional feature representations directly from the 

correlation matrix while not considering the semantic 

relationships among medical concepts. However, the 

semantic relationships can better reach the goal of producing 

meaningful representations of medical concepts. To sum up, 

context features are learned better in Word2Vec. 

As we can see, HRR gains achieved by CSM are nearly 7% 

and 5% compared with PCM and HDM, respectively. CSM 

makes progress with nearly 7% and 6% in IRDM compared 

with PCM and HDM, respectively. CSM is superior to PSM 

and HDM mainly due to that CSM converts the medical 

concepts into the fixed-length vectors using the Skip-gram 

model in Word2Vec. Therefore, the method using words 

embedding has the better performance than the method 

without using words embedding. What is more, HRR gains 

achieved by the proposed PSE are nearly 15% and 13% 

compared with PCM and HDM, respectively. The proposed 

PSE makes progress with nearly 15% and 13% in IRDM 

compared with PCM and HDM, respectively. The proposed 

PSE achieves the most competitive performance because PSE 

not only takes into account the semantic relationships among 

medical concepts and the temporal information in EHR data, 

but also using a deep learning model to measure the similarity 

between all patient pairs. Overall, PSE achieves the best 

results on the large real dataset, demonstrating its 

generalizing ability in similarity learning of patients. 

3) Disease Cohort Classification 

We further investigate the effectiveness of the proposed 

PSE on disease cohort classification task. In the experiment, 

we successfully transform the patients of EHRs into the 

low-dimensional representations using different patient 

similarity learning methods including PCA, CSM and PSE, 

and apply MLP classification on the learned patient 

representations in order to correctly diagnose the diseases 

suffered by the patients. In addition, we use Macro Area 

Under The Curve (Macro-AUC), accuracy and Macro-F1 to 

evaluate the performance of disease cohort classification 

task, and use 10-fold cross-validation in which we randomly 

select 80% of the data for learning and the remaining 20% of 

data for testing the MLP classification.  

Comparative results of different patient similarity learning 

methods for disease cohort classification task are shown in 

Table X. We observe that our proposed PSE achieves 

Macro-AUC of 0.818, accuracy of 0.891, and Macro-F1 of 

0.534, which outperforms all the other methods, and CSM 

achieves the second highest performance. It is reasonable 

that the semantic information between medical concepts and 

temporal information of EHRs play the important roles in 

deriving meaningful information from EHRs. Thus, the 

embedding representations of patients obtained by PSE can 

enhance the performance of disease cohort classification. In 

general, our proposed PSE is a good choice in practice for 

disease cohort classification task due to its good 

performance.  

4) Patient Clustering Results 

We randomly choose 2,000 patients from 9 cohorts of 

diseases and use the two criteria RI and NMI to evaluate the 

performance of patient clustering. We adopt the proposed 

PSE and other three baseline methods to learn the 

representations of patients. Fig. 6 shows the results of two 

clustering criteria. We view that the proposed PSE achieves 

the best performance in RI and NMI, which are 0.785 and 

0.727, respectively. T-Word2Vec-CNN is the second-best 

performance in the two criteria. Therefore, using the temporal 

information in EHR data makes the performance of patient 

clustering better than that of methods without using the 

temporal information. For the reason that we incorporate the 

temporal information in EHR data to medical concept 

embedding, the effective representations of medical concepts 

can be learned, which can make us obtain the better 

representations of patients. Another observation is that using 

Siamese CNN with SPP can achieve a higher score in the two 

criteria than the one using CNN model. The results indicate 

that using Siamese CNN with SPP can learn the better 

representation of patients from EHR data and achieve the 

better performance in measuring the similarity between all 

patient pairs.  

Fig. 6.  Performance of Patient Clustering. 

 

TABLE X 

DISEASE COHORT CLASSIFICATION RESULTS 

Method Technique Macro-AUC Accuracy Macro-F1 

PCA Principal Component Analysis 0.604 0.738 0.417 

CSM Word2Vec 0.726 0.792 0.446 

PSE Siamese CNN with SPP 0.818 0.891 0.534 

 

Word2Vec-CNN 

Word2Vec-Siamese 

T-Word2Vec-CNN 

PSE 

Engineering Letters, 28:3, EL_28_3_02

Volume 28, Issue 3: September 2020

 
______________________________________________________________________________________ 



 

 

5) Visualization 

We utilize t-SNE [45] to reduce the dimension of medical 

code vectors, and plot the vectors of patients in a 2D space. 

T-SNE algorithm maps high-dimensional data to two or three 

dimensions suitable for human observation. We randomly 

choose 2,000 patients from 9 cohorts of diseases. As a result, 

each patient is mapped as a two-dimensional vector. Then we 

can visualize each vector as a point on a two-dimensional 

space. For patients which are labelled as different cohorts, we 

use different colors on the corresponding points. Therefore, a 

good visualization result is that the points of the same color 

are near from each other. The visualization figure is shown in 

Fig. 7. 
From Fig. 7, we can see that the result of PCA is not 

satisfactory because the points belonging to different cohorts 

are mixed each other. For CSM, the clusters of different 

cohorts are formed. However, in the top part the patients of 

different cohorts are still mixed with each other and the 

boundaries of each group are not very clear. Obviously, the 

visualization of PSE performs best in both the aspects of 

group separation and boundary aspects. 

F. Parameter Sensitivity of Medical Concept Embedding 

The accuracy of the Skip-gram model depends on the 

parameters. In order to analyze the parameter sensitivity, we 

conduct the experiment in which we vary the dimension 

number of medical code vectors and report the results for the 

Skip-gram model. 

Fig. 8 illustrates the Micro-F1 value (including training 

datasets and test datasets) of the Skip-gram model when using 

a specific number of dimensions. In the experiment, the 

Skip-gram model has the better performance than the CBOW 

model in medical concept embedding. The Skip-gram model 

performs better might be due to infrequent words (medical 

concepts) in the training corpus. On dimension d = 100 the 

result margin between both models is maximized and the 

Micro-F1 value reach its peak. On dimension d < 100 the 

Micro-F1 value between both models is increasing fast. On 

dimension d > 100 the Micro-F1 value between both models 

is decreasing slowly. We assume that this leads to some kind 

of overfitting and, thus, the optimal number of dimensions for 

medical concept embedding probably depends on the number 

of medical concepts and amount of training data. 

In summary, we demonstrate that the Skip-gram model in 

Word2Vec performs best. It is interesting to see that the 

number of optimal dimensions for medical concept 

embedding must be geared to the underlying corpus. 

V. CONCLUSIONS AND FUTURE WORK 

Due to the complexity of MIMIC-III dataset, extracting the 

effective representations of patients is vitally important. In 

the existing related works for medical concept embedding, 

many works usually overlook the temporal information in 

EHR data. In this paper, we present a patient similarity 

framework which exploits comprehensive semantic 

information among medical concepts and temporal 

information. The proposed PSE is divided into two parts. One 

is medical concept embedding for the representation learning 

of patients and the other is patient similarity learning 

leveraging Siamese CNN with SPP. The experimental results 

on the MIMIC-III dataset achieve the better performance 

compared with all baseline methods. Our next plan is to be 

going to mortality prediction task and other applications 

using our patient similarity framework. 
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